
ON A PAPER OF ERDÖS AND SZEKERES

J. BOURGAIN AND M.-C. CHANG

ABSTRACT. Propositions 1.1 – 1.3 stated below contribute to results and certain problems con-

sidered in [E-S], on the behavior of products
∏n

1
(1 − zaj), 1 ≤ a1 ≤ · · · ≤ an integers. In

the discussion below,{a1, . . . , an} will be either a proportional subset of{1, . . . , n} or a set of

large arithmetic diameter.

1. Introduction

The aim of this paper is to revisit some of the questions put forward in the paper [E-S] of

Erdos and Szekeres.

Following [E-S], define

M(a1, . . . , an) = max
|z|=1

n∏

i=1

|1 − zai | (1.1)

where we assumea1 ≤ a2 ≤ · · · ≤ an positive integers (in this paper, we restrict ourselves to

distinct integersa1 < · · · < an).

Denote

f(n) = min
a1≤···≤an

M(a1, . . . , an) and f∗(n) = min
a1<···<an

M(a1, . . . , an). (1.2)

It was proven in [E-S] that

f(n) ≥
√

2n. (1.3)

This lower bound remains presently still unimproved.

In the other direction, [E-S] establish an upper bound

f(n) < exp(n1−c) for some c > 0. (1.4)

Subsequent improvements were given by Atkinson [A]

f(n) = exp{O(n
1
2 log n)} (1.5)
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and Odlyzko [O]

f(n) = exp{O(n
1
3 (log n)4/3)}. (1.6)

Also to be mentioned is a construction due to Kolountzakis ([Kol2], [Kol4]) of a sequence

1 < a1 < · · · < an < 2n+O(
√
n) for which

f∗(n) ≤M(a1, . . . , an) < exp{O(n
1
2 log n)} (1.7)

(Note that Odlyzko’s construction does not come with distinct frequencies).

As shown by Atkinson [A], there is a relation between the [E-S] problem and thecosine-

minimum problem.

Define

M2(n) = inf{−min
θ

n∑

j=1

cos ajθ} (1.8)

with infinum taken over integer setsa1 < · · · < an.

Then

log f∗(n) < O(M2(n) logn). (1.9)

The problem of determiningM2(n) was put forward by Ankeny and Chowla [C1] motivated by

questions on zeta functions.

It is known thatM2(n) = O(n
1
2 ) and conjectured by Chowla that in factM2(n) ∼ n

1
2 [C2].

The current best lower bound is due to Ruzsa [R]

M2(n) > exp(c
√

log n) (1.10)

for somec > 0.

As pointed out in [O], polynomials of the form (1.1) are also of interest in connection to

Schinzel’s problem [S] of bounding the number of irreducible factors of a polynomial on the

unit circle in terms of its degree andL2-norm.

Propositions 1.1 and 1.2 in this paper establish new resultsfor ‘dense’ setsS = {a1 < · · · <
an}. The former improves upon (1.7).

Proposition 1.1. There is a subset{a1 < · · · < an} ⊂ {1, . . . , N}, n ≍ N
2

, such that

M(a1, . . . , an) < exp(c
√
n
√

log n log log n). (1.11)
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On the other hand, the following holds

Proposition 1.2. There is a constantτ > 0 such that if{a1 < . . . < an} ⊂ {1, . . . , N} and

n > (1 − τ)N , then

M(a1, . . . , an) > exp τn. (1.12)

The latter result generalizes the comment made in [E-S] that

lim
n→∞

[M(1, 2, . . . , n)]1/n (1.13)

exists and is between 1 and 2.

In converse direction, one may prove new lower bounds onM(a1, . . . , an) assuming that the

set{a1 < · · · < an} has a sufficiently large arithmetic diameter.

First, we are recalling the notion of a ‘dissociated set’ of integers. We say thatD =

{ν1, . . . , νm} ⊂ Z is dissociated providedD does not admit non-trivial0, 1,−1 relations. Thus

ε1ν1 + · · · + εmνm = 0 with ε1 = 0, 1,−1 (1.14)

implies

ε1 = · · · = εm = 0.

A more detailed discussion of this notion and its relation tolacunarity appears in§5 of the

paper.

Proposition 1.3. Assume{a1 < · · · < an} contains a dissociated set of sizem. Then

logM(a1, . . . , an) ≫ m
1
2
−ε

(logn)1/2
. (1.15)

Hence (1.15) improves upon (1.3) as soon as

m≫ (logn)3+ε. (1.16)
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2. Preliminary estimates

Let

z = e(θ) = e2πiθ.

By taking the real part ofLog(1 − e2πiθ) = −
∑∞

k=1
1
k
e2πikθ, we have

log |1 − z| = −
∞∑

k=1

cos 2πkθ

k
.

Therefore, we have

Fact 1.
n∏

j=1

|1 − zaj | = e−
Pn

j=1

P

∞

k=1

cos 2πkajθ

k .

We first establish some preliminary inequalities for later use.

Since the functionex is convex, we obtain for any probability measureµ onT that
n∏

j=1

|1 − e(ajθ)| ∗ µ ≥ e−(
Pn

j=1

P

∞

k=1

cos 2πkaj ·

k
)∗µ(θ)

and therefore we have

Fact 2.
∥∥∥

n∏

j=1

|1 − e(ajθ)|
∥∥∥
∞

≥ e
−min

θ
{Pn

j=1

P

∞

k=1

cos 2πkaj ·

k
∗µ}(θ)

.

Lemma 2.1.

log |1 − e2πiθ| ≤ −
J∑

j=1

ρj

j
cos 2πjθ +O

( 1√
J

)
(2.1)

whereρ = 1 − 1√
J

and (2.1) is valid for allθ.

Proof. We rely on a calculation that appears in [O], Proposition 1.

Use the inequality
(
[O], (2.4)

)

∣∣∣
1 − eiθ

1 − ρeiθ

∣∣∣ ≤ 2

1 + ρ
for θ ∈ [0, 2π], 0 < ρ < 1. (2.2)
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From (2.2)

log |1 − eiθ| ≤ log |1 − ρeiθ| + log
2

1 + ρ

= −
∞∑

j=1

ρj

j
cos jθ + log

2

1 + ρ

≤ −
J∑

j=1

ρj

j
cos jθ +

ρJ

J(1 − ρ)
+ C(1 − ρ)

(2.3)

by partial summation and since

log
2

1 + ρ
= − log

(
1 − 1 − ρ

2

)
.

Thus (2.1) follows from (2.3) withρ as above.

�

Proposition 2.2. There is a subset{a1 . . . am} ⊂ {1, . . . , n} of size

m ≍ n

2

and ∥∥∥
m∏

k=1

|1 − zak |
∥∥∥

L∞(|z|=1)
≤ ec

√
n
√

log n)(log log n). (2.4)

Remark. (2.4) is a slight improvement of the estimate

∥∥∥
m∏

k=1

|1 − zak |
∥∥∥

L∞(|z|=1)
≤ ec

√
n log n

resulting from a construction in [Kol1], p. 162 of a set{a1, . . . , am} as above and such that
m∑

k=1

cos 2πakθ ≥ −c
√
m

and Lemma 2.1

log

m∏

k=1

|(1 − 2ak)| ≤ −
J∑

j=1

ρj

j

m∑

k=1

cos 2πak(jθ) +O
( m√

J

)

≤ C(logJ)
√
m+O

( m√
J

)

< C logn
√
n,
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takingJ = m2.

Proof of Proposition 2.2. Take independent selectors(ξj)1≤j<n with values0, 1 and mean

E[ξj ] = 1 − j
n
. LetFn(θ) = 2

∑
0<j<n(1 − j

n
) cos 2πjθ + 1 be the Fejer kernel

m∑

k=1

cos akθ =
n∑

ℓ=1

ξℓ cos ℓθ =
1

2
Fn(θ) − 1

2
+

n∑

ℓ=1

(ξℓ − E[ξℓ]) cos ℓθ. (2.5)

By Lemma 2.1 (applies withJ = n10)

m∑

k=1

log |1 − e2πiakθ| ≤ −
J∑

j=1

m∑

k=1

ρj

j
cos 2πjakθ +O

( m√
J

)
(2.6)

and we takeJ at leastn to bound the last term in the right hand side of (2.5) by
√
n. We analyze

the first term. Inserting (2.5) gives the sum of the followingtwo expressions ((2.7) and (2.8))

−
J∑

j=1

ρj

j

(1

2
Fn(jθ) − 1

2

)
(2.7)

−
J∑

j=1

n∑

ℓ=1

ρj

j
(ξℓ − E[ξℓ]) cos 2πℓjθ. (2.8)

SinceFn(jθ) ≥ 0, (2.7)≤ log J .

Rewrite

(2.8) = −
n∑

ℓ=1

(ξℓ − E[ξℓ])
[ J∑

j=1

ρj

j
cos 2πjℓθ

]
. (2.9)

Note that all frequencies in (2.9) are bounded bynJ .

Applying the probabilistic Salem-Zygmund inequality [Kol3] shows that with large proba-

bility

(2.9) .
√

log nJ
[ n∑

ℓ=1

∣∣∣
J∑

j=1

ρj

j
cos 2πjℓθ

∣∣∣
2] 1

2

. (2.10)

Our next task is to evaluate the expression
∑n

ℓ=1

∣∣∣
∑J

j=1
ρj

j
cos 2πjℓθ

∣∣∣
2

.

A first observation is that we can assume

‖θ‖ > 1

10n
(2.11)
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since otherwise

|1 − e2πiakθ| ≤ 2πak‖θ‖ <
2π

10
< 1

for all k = 1, . . . , m, and also the left hand side of (2.4) is bounded by1.

Next, we note that (sinceρ = 1 − 1√
J
)

∣∣∣
J∑

j=1

ρj

j
cos 2πjℓθ

∣∣∣ ≤
∣∣ log |1 − ρe(ℓθ)|

∣∣ +
ρJ

J(1 − ρ)

<
∣∣ log |1 − ρe(ℓθ)|

∣∣ + 1.

Hence
n∑

ℓ=1

∣∣∣
J∑

j=1

ρj

j
cos 2πjℓθ

∣∣∣
2

.

n∑

ℓ=1

∣∣ log |1 − ρe(ℓθ)|
∣∣2 + n. (2.12)

Fix θ and for1 < R . log J define the dyadic set

SR = {1 ≤ ℓ ≤ n :
∣∣ log |1 − ρe(ℓθ)|

∣∣ ∼ R}.

Thus forℓ ∈ SR

‖ℓθ‖ < |1 − ρe(ℓθ)| < e−cR =: ε.

Let q ∈ N be the smallest integer with‖qθ‖ < 2ε. It follows that |SR| . n
q

+ 1. Assuming

q > R3, one obtains ∑

ℓ∈SR

∣∣ log |1 − ρe(ℓθ)|
∣∣2 .

( n

R3
+ 1

)
R2

with collected contribution (summing over dyadicR)

∼ n+ (log J)2. (2.13)

It remains to considerθ’s with the property that for some largeR andq < R3,

‖qθ‖ < e−cR.

Hence eitherθ admits a rational approximation
∣∣∣θ − a

q

∣∣∣ <
e−cR

q
< e−cR, q < R3 and (a, q) = 1 (2.14)

or
(
in (2.14) whena = 0

)
, by (2.11)

1

n
. ‖θ‖ < e−cR. (2.15)
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Consider first the case (2.15). Then

|SR| ≤ |{ℓ = 1, . . . , n : ‖ℓθ‖ < e−cR}| . ne−cR

and the above estimate still holds.

Assume next thatθ satisfies (2.14). Write

θ =
a

q
+ ψ with β = |ψ| < e−cR. (2.16)

First, we consider the caseβ & 1
nq

.

Let V ⊂ {1, . . . , n} be an interval of size∼ 1
qβ

so that{ℓθ : ℓ ∈ V } consists ofqβ-separated

points filling a fraction of[0, 1] (mod 1). Hence

∑

ℓ∈V

∣∣ log |1 − ρe(ℓθ)|
∣∣2 .

1

βq

∫ 1

0

∣∣ log |1 − ρe(t)|
∣∣2dt+ log2(1 − ρ)

.
1

βq
+ log2 J

and
n∑

ℓ=1

∣∣ log |1 − ρe(ℓθ)|
∣∣2 . n+ nq β log2 n . n

unless

qβ log2 n > 1, i.e. log n > ecR or R . log logn

where we used (2.14). Thus ifβ & 1
nq
, (2.12) . n(log log n)2.

The next case isβ < 1
100nq

.

It follows that for1 ≤ ℓ ≤ n
∣∣∣ℓθ − ℓa

q

∣∣∣ <
1

100q
. (2.17)

We obtain
∑

q∤ℓ

∣∣ log |1 − ρe(ℓθ)|
∣∣2 . n

∫ 1

0

∣∣ log |1 − ρe(t)|
∣∣2dt . n



ON A PAPER OF ERD̈OS AND SZEKERES 9

and
∑

q|ℓ

∣∣ log |1 − ρe(ℓθ)|
∣∣2 ∼ 1

qβ

∫ nβ

0

∣∣ log |1 − ρe(t)|
∣∣2dt

≤ 1

qβ

∫ nβ

0

(
log

1

t

)2

dt

.
n

q
(log nβ)2.

(2.18)

We obtain again a boundO(n) unless

| lognβ| > √
q

i.e.

β <
e−

√
q

n
. (2.19)

Thus (2.17) may be replaced by
∣∣∣ℓθ − ℓ

a

q

∣∣∣ < e−
√

q for 1 ≤ ℓ ≤ n. (2.20)

For θ satisfying (2.20) we proceed in a different way. Write

∏
|1 − e(akθ)| =

n∏

j=1

|1 − e(jθ)|ξj

.

n∏

j=1

(∣∣∣1 − e
(
j
a

q

)∣∣∣ +
1

q10

)ξj

.

(2.21)

We replaceξj by its expectationE[ξj ] = 1 − j
n

using again a random argument. Thus if

n∏

j=1

(∣∣∣1 − e
(
j
a

q

)∣∣∣ +
1

q10

)1− j

n

(2.22)

we have

| log(2.21) − log(2.22)| ≤
∣∣∣∣

n∑

j=1

(
ξj − E[ξj ]

)
log

(∣∣∣1 − e
(
j
a

q

)∣∣∣ +
1

q10

)∣∣∣∣. (2.23)

Recall thatq < R3 . (log J)3 ∼ (log n)3. Thus with high probability we may bound (2.23) by

c
√
n
√

log logn log q < c
√
n(log logn)3.

Hence

(2.21) ≤ ec
√

n(log log n)3(2.22).
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Partition{1, . . . , n} in intervalsI = [rq, (r + 1)q − 1] and estimate for each such interval

∏

j∈I

(∣∣∣1 − e
(
j
a

q

)∣∣∣ +
1

q10

)1− j

n

≤ qc q2

n

[ 1

q10

q−1∏

s=1

(∣∣∣1 − e
(
s
a

q

)∣∣∣ +
1

q10

]1− rq

n

≤ qc q2

n

[ 1

q10

q−1∏

s=1

∣∣∣1 − e
(s
q

)∣∣∣
]1− rq

n

.

(2.24)

The product
∏q−1

s=1

∣∣1 − e
(

s
q

)∣∣ may be evaluated using Lemma 2.1 takingJ = q2, ρ = 1 − 1
q
.

Thus clearly

q−1∑

s=1

log
∣∣∣1 − e

(s
q

)∣∣∣ ≤ −
J∑

j=1

ρj

j

q−1∑

s=1

cos 2πj
s

q
+O(1)

≤
∑

1≤j≤J
q∤j

ρj

j
+ q

∑

1≤j≤J
q|j

ρj

j
+O(1)

< log q + C

implying that

(2.24) < qc q2

n

( 1

q10
elog q+c

)1− rq

n

< qc q2

n . (2.25)

Since (2.22) is obtained as product of (2.24), (2.25) over the intervalsI, we showed that

(2.22) < qc q2

n
n2q < e(log n)3 .

Thus the preceding shows that ifθ satisfies (2.20), then

∏
|1 − e(akθ)| < ec

√
n(log log n)3 . (2.26)

Going back to (2.10), omitting the case (2.20) estimated by (2.26), we obtained the bound

cn(log logn)2 on (2.12) which permits to majorize (2.8) byc
√
n log n(log logn) and

∏
|1 − e(akθ)| by ec

√
n log n log log n. This completes the proof of Proposition 2.2.
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3. Almost full proportion

It was observed in [E-S] that

lim
n→∞

M(1, . . . , n)
1
n (3.1)

exists and lies strictly between 1 and 2.

This fact is in contrast with Proposition 2.2 which gives a subsetS ⊂ {1, . . . , n}, |S| ≍ n
2

s.t.

logM(S) .
√
n(log n)

1
2 log logn. (3.2)

However

Proposition 3.1. There is a constantτ > 0 such that ifS ⊂ {1, . . . , n} satisfies|S| > (1−τ)n,

then

logM(S) > cn (3.3)

for somec > 0.

Thus (3.3) generalizes (3.1) in some sense, but in view of (3.2), it fails dramatically if we do

not assume1 − |S|
n

small enough.

Proof of Proposition 3.1.

It will be convenient to use Fact 2 for an appropriateµ-convolution, which allow us to esti-

mate the tail contribution in thek-summation.

Thus consider

− min
θ

{∑

j∈S

∞∑

k=1

cos 2πkj·
k

∗ µ
}

(θ)

= − min
θ

∞∑

k=1

∑

j∈S

µ̂(jk)

k
cos 2πkjθ

≥ −min
θ

k0∑

k=1

n∑

j=1

µ̂(jk)

k
cos 2πkjθ (3.4)

− (log k0)πn

−
∑

k>k0

n∑

j=1

|µ̂(jk)|
k

(3.5)
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since we assumed|S| > (1 − τ)n.

Separating in (3.4) the casesk = 1, and2 ≤ k ≤ k0, we write

(3.4) ≥−
( n∑

j=1

cos 2πjθ
)
−

n∑

j=1

|1 − µ̂(j)|

−
k0∑

k=2

1

k

∣∣∣
n∑

j=1

µ̂(jk) cos 2πkjθ
∣∣∣.

(3.6)

Takeµ = FnR(θ), R > 1 an appropriate constant andFnR(θ) the Féjer kernel.

Thus

F̂nR(s) = 1 − |s|
nR

for |s| ≤ nR

= 0 otherwise.

Takeθ = 3
4n

. The first term in (3.6) becomes, since

n∑

j=1

cos jx =
1

2
Dn(x) −

1

2
, where Dn(x) =

sin(n+ 1
2
)x

sin x
2

is the Dirichlet kernel,
1

2
− 1

2

sin 3π
2n

(n+ 1
2
)

sin 3π
4n

∼ +
1

2 sin 3π
4n

.

The second term is

−
n∑

j=1

j

nR
= −n + 1

2R
.

The third term becomes

−
k0∑

k=2

1

k

∣∣∣
n∑

j=1

(
1 − jk

nR

)

+
cosπ

3kj

2n

∣∣∣. (3.7)

By partial summation, the inner sum is bounded by

max
j1≤min(n, nR

k
)

∣∣∣
j1∑

j=1

cosπ
3kj

2n

∣∣∣

= max
j1≤min(n, nR

k
)

∣∣∣
1

2
Dj1

(3

2
π
k

n

)
− 1

2

∣∣∣

≤ 1

2| sin 3
4
π k

n
| +

1

2
.
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Fork < k0 = o(n), the first term

∼ 1

2k sin 3π
4n

.

Hence

(3.7) ≥ −
k0∑

k=2

1

2k2

1

sin 3π
4n

− log k0

≥ − 1

2 sin 3π
4n

(π2

6
− 1

)
− log k0.

It follows from the preceding that

(3.4) ≥ +
1

2 sin 3π
4n

(
2 − π2

6

)
− log k0 −

n+ 1

2R

= cn− log k0

for R a sufficiently large constant.

We bound (3.5) by

(3.5) ≥ −
∑

k≥k0

1

k

∑

j≤nR
k

1 ≥ −
∑

k≥k0

nR

k2
≥ −R

k0

n.

In summary, we proved that

−
∑

j∈S

∞∑

k=1

µ̂(jk)

k
cos 2πjk

3

4n
≥ cn− log k0 − τ(log k0)n− C ′n

k0
>
c

2
n

be choosing firstk0 large enough and then assumingτ sufficiently small.

This proves Proposition 3.1.

4. Sets with large arithmetical Diameter

As we pointed out the general lower boundM(a1, . . . , an) >
√
n remains unimproved. How-

ever Proposition 4.1 stated below shows that in certain cases one can do better.

First, we give the following definition.

Definition. D = {v1, . . . , vm} ⊂ Z is called dissociated provided the relation

ε1v1 + · · · + εmvm = 0 with εi = 0, 1,−1

implies thatε1 = · · · = εm = 0.
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We note that Hadamard lacunary sets are dissociated.

Proposition 4.1. AssumeS = {a, . . . , an} contains a dissociated setD of sizem. Then

logM(a1, . . . , an) ≫ m
1
2
−o(1)

(log n)
1
2

. (4.1)

Thus (4.1) improves the general lower bound from [E-S] providedm > (logn)3+ε.

Remark. By a result of Pisier [P], our assumption is equivalent toS containing a Sidon setΛ

of size|Λ| ∼ m. Here ‘Sidon set’ is in the harmonic analysis sense i.e.
∥∥∥

∑

n∈Λ

λne(nθ)
∥∥∥
∞

≥ c
∑

|λn| for all scalars{λn}

with c = c(Λ) to be considered as a constant. (This concept is different from the Sidon sets in

combinatorics!).

Dissociated sets are Sidon and conversely, Pisier proved that if Λ is a finite Sidon set, thenΛ

contains a proportional dissociated set.

Proof of Proposition 4.1.

We derive (4.1) from the equivalent statement

max
θ

(
log |1 − e(a1θ)| + · · · + log |1 − e(anθ)|

)
≫ m

1
2
−o(1)

(log n)1/2
(4.2)

which, since
∫

log |1 − e(aθ)| = 0 for a ∈ Z\{0}, is a consequence of the stronger claim that

‖F‖1 ≫
m

1
2
−o(1)

(logn)1/2
(4.3)

denoting

F (θ) = log |1 − e(a1θ)| + · · · + log |1 − e(anθ)|.

Recall that by Fact 1

F (θ) = −
∞∑

k=1

1

k
f(kθ) (4.4)

with

f(θ) =
n∑

j=1

cos(2πajθ).
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We first perform a finite Mobius inversion on (4.4). Recall that

∑

d|k,d≤r
d square free

µ(d) =





1 if k = 1

0 if 1 < k ≤ r

Hence
∑

d<r
square free

F (dθ)
µ(d)

d
= −

n∑

j=1

∞∑

k=1

∑

d<r
square free

cos(2πajdkθ)
µ(d)

dk

= −
n∑

j=1

∞∑

ℓ=1

cos(2πajℓθ)

ℓ

[ ∑

d|ℓ,d<r
square free

µ(d)

]

= −f(θ) −
n∑

j=1

∑

ℓ>r

cos(2πajℓθ)

ℓ

[ ∑

d|ℓ,d<r
square free

µ(d)

]

= −f(θ) +G(θ),

(4.5)

where

G(θ) = −
n∑

j=1

∑

ℓ>r

cos(2πajℓθ)

ℓ

[ ∑

d|ℓ,d<r
square free

µ(d)

]
.

Note also that ∣∣∣
∑

d|ℓ,d<r
square free

µ(d)
∣∣∣ ≤ 2ω(ℓ), (4.6)

whereω(ℓ) is the number of distinct prime factors ofℓ.

Denotem the size of the largest dissociated set contained in{a1, . . . , an}. Our first task will

be to bound the Fourier transform‖Ĝ‖∞ of G.

Thus givent ∈ Z, we have

|Ĝ(t)| ≤ 1

2

n∑

j=1

aj

t
2

ω( t
aj

)
. (4.7)

We will bound (4.7) by considering dyadic ranges, letting for K > r dyadic

J = JK = {j ∈ [1, n] : aj|t and
t

aj

∼ K}.
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Thus
∑

j∈J

aj

t
2

ω( t
aj

) ≤
√∑

j∈J

(aj

t

)2 ( ∑

k≤K

4ω(k)
) 1

2

. |J | 12K−1K
1
2 (logK)2 =

( |J |
K

) 1
2

(logK)2.

(4.8)

Assume

|J | > K

(logK)8
. (4.9)

Our aim is to get a contradiction for appropriate choice ofr.

At this point, we invoke the following result from [H-T] (seeFq (1.14)).

Denote

ψ(x, y) =
∣∣{n ≤ x : if p|n, thenp ≤ y}

∣∣.

Lemma 4.2. For any0 < α < 1, we have

ψ
(
x, (log x)1/α

)
< x1−α+o(1) for x→ ∞. (4.10)

It follows from (4.9) that for any fixed1 > α > 0, we have

|J | > 2ψ
(
K, (logK)

1
α

)
. (4.11)

We make the following construction.

By (4.11), there isj1 ∈ J such that t
aj1

has a prime divisorp1 > (logK)
1
α and we write

t
aj1

= p1b1.

Next, letJ1 = {j ∈ J : p1| t
aj

}. Hence|J1| < K
p1

+ 1 < K

(log K)
1
α
<

|J |
(log K)

1
α−8

where we

assumeα taken much smaller than1
8
.

It follows that also

|J\J1| >
(
2 − 1

(logK)
1
α
−8

)
ψ

(
K, (logK)

1
α

)

which permits to introducej2 ∈ J\J1 and a primep2 > (logK)
1
α such thatp2| t

aj2

. Write
t

aj2

= p2b2. Clearlyp2 6= p1 andp1 ∤ b2.

The contribution of the process is clear. We may introduce elements

j1, . . . , js ∈ J with s & (logK)
1
α
−8
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and prime divisorsps′| t
aj

s′
. Write t

aj
s′

= ps′bs′ such thatps′ ∤ t
aj

s′′
for s′ < s′′. Henceps′′ 6= ps′

for s′ 6= s′′ and

ps′ ∤ bs′′ for s′ < s′′. (4.12)

We claim that the set{aj1, . . . , ajs
} is dissociated. Otherwise, there is a non-trivial relation

ε1aj1 + · · · + εsajs
= 0 with εs′ = 0, 1,−1

which by the preceding translates in

ε1
1

p1b1
+ · · ·+ εs

1

psbs
= 0

or
s∑

s′=1

εs′

∏

s′′ 6=s′

ps′′bs′′ = 0.

Let s1 be the smallests′ with εs′ 6= 0. Then
s∑

s′=s1

εs′

∏

s′′ 6=s′

s′′≥s1

ps′′bs′′ = 0. (4.13)

Since

ps1

∣∣∣
∏

s′′ 6=s′

s′′≥s1

ps′′bs′′ for s′ > s1,

identity (4.13) implies

ps1

∣∣∣
∏

s′′>s1

bs′′ ,

contradicting (4.12).

Hence{aj1, . . . , ajs
} is dissociated and by definition ofm,

s ≤ m

implying

m ≥ (logK)
1
α
−8 and log r ≤ m

α
1−8α .

Thus, by taking

log r ∼ m2α (α small enough)

we obtain a contradiction under assumption (4.9).
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Hence

|JK | < K

(logK)8
for K > r

and summing (4.8) over dyadic ranges ofK > r gives the bound

|Ĝ(t)| <
∑

K>r
dyadic

1

(logK)2
.

1

log r
. (4.14)

Consequently

(̂4.5)(t) = −f̂(t) +O
( 1

log r

)
= −f̂(t) + o(1) for all t ∈ Z. (4.15)

Since

f̂(j) =
1

2
,

we have

(̂4.5)(j) = −1

2
+ o(1). (4.16)

Next, letD be a sizem dissociated set in{a1, . . . , an}. Define

ϕ(θ) =
1√
m

∑

j∈D

e(jθ).

Also, letΦ,Ψ be the dual Orliez functions

Φ(x) = x
√

log(2 + x) and Ψ(x) = ex2

.

It is well known (e.g. Theorem 3.1 in [Rud].) that

‖ϕ‖LΨ = O(1).

By (4.16)
(1

2
− o(1)

)√
m ≤

∣∣∣
∫ 1

0

(4.5)ϕ(θ)dθ
∣∣∣ ≤ C‖(4.5)‖LΦ (4.17)

It remains to bound‖(4.5)‖LΦ.

Estimate ∫
|(4.5)|

√
log(|(4.5)| + 2) dθ

≤
∑

j>0

2j/2

∫

22
j−1 ≤λ≤22

j
µ(M) dλ,

(4.18)



ON A PAPER OF ERD̈OS AND SZEKERES 19

WhereM = {θ : (4.5)(θ) > λ} andµ is the measure. Using the left hand side of (4.5), the

j-summands is bounded by

2j/2‖(4.5)‖1 . 2j/2 log r ‖F‖1. (4.19)

Also, letΨ1(u) = eu. Then
∥∥∥∥

∑

d≤r

|F (dθ)|
d

∥∥∥∥
LΨ1

≤ (log r)‖F‖LΨ1 . n log r,

since‖ log |1 − eiθ| ‖LΨ1 <∞.

Thus also the bound

µ(M) ≤ e
−c λ

n log r

implying the following bound for thej-summands

2j/222j

e
−c 22

j−1

n log r . (4.20)

Hence

(4.18) <
∑

j

2j/2 min
(
(log r)‖F‖1, 2

2j

e
−c 22

j−1

n log r

)
.

For22j−2

< n log r, we get the contribution

(logn)
1
2 log r‖F‖1.

For22j−2 ≥ n log r, we bound by

(n log r)4+ǫe−cn log r + (n log r)4·2+ǫ e−c(n(log r))3 + · · · + (n log r)4·2u−1+ǫ e−c(n log r)2
u
−1

+ · · ·

< O(1).

Hence

‖(4.5)‖LΦ . (4.18) < (logn)
1
2m2α‖F‖1 (4.21)

recalling above choice forlog r.

Returning to (4.17), we proved that
(1

2
− o(1)

)
m

1
2
−2α . (logn)

1
2‖F‖1

hence

‖F‖1 & m
1
2
−ε(log n)−

1
2 .

This proves (4.3) and hence Proposition 4.1.
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