ON A PAPER OF ERDOS AND SZEKERES

J. BOURGAIN AND M.-C. CHANG

ABSTRACT. Propositions 1.1 — 1.3 stated below contribute to resultscertain problems con-
sidered in [E-S], on the behavior of produﬁ:’f(l —2%),1 <a; <--- < a, integers. In
the discussion belowa,, . . ., a, } will be either a proportional subset ¢f, ..., n} or a set of
large arithmetic diameter.

1. Introduction

The aim of this paper is to revisit some of the questions pwwded in the paper [E-S] of
Erdos and Szekeres.

Following [E-S], define

M(ay,...,a,) = 1‘rn‘a>1<H|1 — 2™
z|l=
i=1

(1.1)
where we assume, < a; < --- < a, positive integers (in this paper, we restrict ourselves to
distinct integers;; < --- < a,).
Denote
f(n)= min M(ay,...,a,) and fi(n)= min M(ay,...,a,). (1.2)
a1<-<ap a1<-<an
It was proven in [E-S] that
f(n) > +V2n. (1.3)

This lower bound remains presently still unimproved.
In the other direction, [E-S] establish an upper bound
f(n) < exp(n'~¢) for somec > 0. (1.4)

Subsequent improvements were given by Atkinson [A]

f(n) = exp{lO(n% logn)} (1.5)
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and Odlyzko [O]

f(n) = exp{O(n3 (log n)"/*)}. (1.6)
Also to be mentioned is a construction due to Kolountzaki®I], [Kol4]) of a sequence
l<a <---<a, < 2n+ O(y/n) for which

fe(n) < M(ay,...,a,) < eXp{O(n% logn)} (1.7)
(Note that Odlyzko’s construction does not come with didtirequencies).

As shown by Atkinson [A], there is a relation between the [Ea®blem and thecosine-
minimum problem

Define
M,(n) = inf{— m@inzl cos a0} (1.8)
J:
with infinum taken over integer seis < - - - < a,,.

Then
log f«(n) < O(Msy(n)logn). (1.9)

The problem of determining/,(n) was put forward by Ankeny and Chowla [C1] motivated by
guestions on zeta functions.

It is known thatM,(n) = O(n2) and conjectured by Chowla that in fabf, (n) ~ n2 [C2].
The current best lower bound is due to Ruzsa [R]

Ms(n) > exp(cy/logn) (1.10)
for somec > 0.

As pointed out in [O], polynomials of the form (1.1) are aldoirterest in connection to
Schinzel’'s problem [S] of bounding the number of irredueifdctors of a polynomial on the
unit circle in terms of its degree ard-norm.

Propositions 1.1 and 1.2 in this paper establish new refultdense’ setsS = {a; < -+ <
a,}. The former improves upon (1.7).

Proposition 1.1. There is a subs€ia; < --- < a,} C {1,...,N},n = % such that

M(ay,...,a,) < exp(cy/ny/lognloglogn). (1.11)
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On the other hand, the following holds

Proposition 1.2. There is a constant > 0 such that if{a; < ... < a,} C {1,..., N} and
n > (1 —7)N, then

M(ay,...,a,) > expTn. (1.12)

The latter result generalizes the comment made in [E-S] that
lim [M(1,2,...,n)]"/" (1.13)

exists and is between 1 and 2.

In converse direction, one may prove new lower boundd/n,, . .., a,) assuming that the
set{a; < --- < a,} has a sufficiently large arithmetic diameter.

First, we are recalling the notion of alissociated sétof integers. We say thaD =

{v1,...,vn} C Zis dissociated provide®® does not admit non-trividl, 1, —1 relations. Thus
e+t emlm =0 with e, =0,1, -1 (1.14)
implies
€1 =-+=¢€n=0.

A more detailed discussion of this notion and its relatiotatmunarity appears if5 of the
paper.

Proposition 1.3. Assumga; < --- < a,} contains a dissociated set of size Then

1_
m?2

(logn) "

£

log M(ay,...,a,) > (1.15)

Hence (1.15) improves upon (1.3) as soon as

m > (logn)**e. (1.16)
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2. Preliminary estimates

Let
z = e(f) = ™.
By taking the real part ofog(1 — e*™) = — > | 1e*™* we have
. cos 27ko
log|l — 2| = =y =27
og|l — z| > ’
k=1
Therefore, we have
Fact 1.
cosQTrkajG

n
H‘l_zaj‘ze—Z?zlziil %
7j=1

We first establish some preliminary inequalities for latee.u

Since the functior® is convex, we obtain for any probability measuren T that

cos 27'rkaj .

=1

and therefore we have

Fact 2.

cos 2‘rrkaj .

ITTi = ety 2 ST =5
i=1 >

Lemma 2.1.
J

, / 1
log |1 — 2| < —Z%cos2ﬂj9+0<ﬁ> (2.1)

j=1
wherep = 1 — % and (2.1) is valid for alb.

Proof. We rely on a calculation that appears in [O], Proposition 1.

Use the inequality[O], (2.4))

1_€i6

1— peie

for 6 2 1. 2.2
<13, or 0 €[0,2r],0< p < (2.2)
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From (2.2)

log|1 — €| <log |1 — pe®| + lo
g | <log |1 — pe”| 811,

Thus (2.1) follows from (2.3) witlp as above.

U
Proposition 2.2. There is a subsdla; . .. a,,} C {1,...,n} of size
n
m = —
2
and
H H |1 - z“’“| ‘ < eevnVlogn)(loglogn) (2.4)
Le=(lz|=1)
k=1

Remark. (2.4) is a slight improvement of the estimate

m
HHu—zaw
k=1

resulting from a construction in [Kol1], p. 162 of a det, . . ., a,, } as above and such that

< ec\/ﬁlogn
Loo(ls=1) ~

ZCOS 2waid > —c/m
k=1
and Lemma 2.1
m J p] m m
log | | [(1—2a)| <= =) cos2mag(j0) +O(—
Il P> )

< C(logJ)y/m + O (%)

< Clogn /n,
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taking.J = m?2.

Proof of Proposition 2.2. Take independent selectofs;);<;-, with values0,1 and mean
E[¢]=1—2. LetF,(0) =2 ., (1 — %) cos 20 + 1 be the Fejer kernel

m n 1
kz:;cos aipl = ;& cos 0 = 5 — = —|— Z & — E[&]) cos £6. (2.5)

By Lemma 2.1 (applies withh = n!?)

m J m )
Z log |1 — e?mar?| < Z Z cos 2mjagd + O (%) (2.6)
k=1

=1 k=1
and we take/ at least: to bound the last term in the right hand side of (2.5)iy. We analyze
the first term. Inserting (2.5) gives the sum of the following expressions ((2.7) and (2.8))

—Z ( w(70) —5) (2.7)

n

ZZ /ﬂ E[&]) cos 2ml306. (2.8)

Jj=1 ¢=1 j

SinceF,(j0) > 0, (2.7)< log J.
Rewrite

(2.8) = — Z(& —E[&]) [Z ? Cos 27?]'69] : (2.9)

=1 j=1
Note that all frequencies in (2.9) are boundediby

Applying the probabilistic Salem-Zygmund inequality [Bdlshows that with large proba-
bility

=

(29) < m[z | if ']’ (2.10)

; 2
Our next task is to evaluate the expressjofi , ‘ Z;-]:1 ’;—J Cos 27rj€9) .

A first observation is that we can assume

1
6] > Ton (2.11)
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since otherwise

4 2
11— e2mion?| < O7q||f]| < 1—75 <1

forall k =1,...,m, and also the left hand side of (2.4) is bounded by

i —1- L
Next, we note that (since= 1 vai

J

J .
P’ , p
— 20| < |log |1l — pe(£0)|| + ——
\Z] 7j0) < [log|1 = pe(t6)]| 7=

< |log |1 — pe(£)|| + 1.

Hence

n

J ; n
Z Z%COSQW]‘MF52}10g|1—pe(€9)|‘2+n. (2.12)
=1 =1

/=1 =
Fix 0 and forl < R < log J define the dyadic set

Sp={1<{0<n:|log|l— pe(th)|| ~ R}.
Thus for/ € S
1€0]] < |1 — pe(€0)| < e=F =: ¢.

Let ¢ € N be the smallest integer withyf|| < 2¢. It follows that[Sk| < ¢ + 1. Assuming

g > R3, one obtains
S |log |1 — pe(t0)||* < (i + 1)32

R3
leSp

with collected contribution (summing over dyad)

~n+ (log J)2. (2.13)

It remains to considet’'s with the property that for some largeandq < R?,

lgf]| < e~°*.
Hence eithef admits a rational approximation
a e—cR
‘9 e <e g< R and (a,q) =1 (2.14)
q q
or (in (2.14) wher = 0), by (2.11)
1
— <0 < et (2.15)
n
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Consider first the case (2.15). Then
ISp| < [{¢=1,....n:||t]| < e B} < nef
and the above estimate still holds.
Assume next that satisfies (2.14). Write

= g o with G = |¢] < e R, (2.16)

First, we consider the cage> -

~ nq'

LetV C {1,...,n} be an interval of size- % so that{/6 : ¢ € V'} consists ofj3-separated

points filling a fraction of|0, 1] (mod 1). Hence

_ 2o b 1 _ 2 201 _
S [log|1 — pe(t)]| "“ﬁq/o lHog |1 — pe(t)||*dt + log?(1 — p)

Lev
<2 +log?J
~ Al 0og
Bq
and
> [log |1 = pe(td)]|” < n+ngBlog’n < n
/=1
unless

cR

qBlog’n > 1, i.e. logn > e or R <loglogn

where we used (2.14). Thus(if2 ;L. (2.12) S n(loglogn)*.

i 1
The next case i§ < 155,

It follows thatforl < ¢ <n

‘w—g—“
q

1
L 9.1
< 100g (2.17)

We obtain

1
> Jlog 1 pe(t0)]|” < n/o [log [1 — pe(t)[|*dt < n
aft
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and 5
Z‘logﬂ—pe (€0) H N_ﬁf }log|1—pe(t)|}2dt
0

qlt

1 12 (2.18)
<= log — ) dt
~qB J ( ©8 t)

< gaog nB)?.

We obtain again a bound(n) unless

[lognf| > \/q
ie.
6_‘/6

g < (2.19)

Thus (2.17) may be replaced by
‘69 - é%‘ <eVifor 1<(<n. (2.20)
For 0 satisfying (2.20) we proceed in a different way. Write
[Tt = ead)] = J] 11 - e(j0)|®
! (2.21)

ST 2]+ )"

J

ﬁ(‘l—e( )‘Jr%)l_” (2.22)

we have

| log(2.21) — log(2.22)| < (2.23)

> (6 mie]) o (1 —<(5)] = )|

i1 q

Recall thaty < R? < (log J)? ~ (logn)3. Thus with high probability we may bound (2.23) by
cv/n y/loglognlog q < c¢y/n(loglogn)3.
Hence
(2.21) < eovnlloglogn)® (9 99,
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Partition{1,...,n} inintervals/ = [rq, (r + 1)q — 1] and estimate for each such interval
1 \1=n
[T (=G 75)
jel q q
LT a 191-%
=4 |:q10 o <‘1_6<Sq>)+ﬁ] (2:24)
P 1 “ S 1_?(1
<ot [l
o L=
The produclﬂg;} \1 — e(g)\ may be evaluated using Lemma 2.1 takihg- ¢>, p = 1 — (11
Thus clearly

implying that

I R EL R
(2.24) < ¢°% (Kef)gq ) . (2.25)
q

Since (2.22) is obtained as product of (2.24), (2.25) ovelitkervals/, we showed that
(2.22) < "8 < cloam)?
Thus the preceding shows thavikatisfies (2.20), then
[T11 - e(awd)| < ecvrtiostoan?”, (2.26)
Going back to (2.10), omitting the case (2.20) estimated226), we obtained the bound

cn(loglogn)? on (2.12) which permits to majorize (2.8) by/n Iog n(log log n) and
[T11 — e(axd)| by ecvrleenloslosn This completes the proof of Proposition 2.2.
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3. Almost full proportion

It was observed in [E-S] that
JirgoM(l,...,n)% (3.1)
exists and lies strictly between 1 and 2.
This fact is in contrast with Proposition 2.2 which gives bsetS C {1,...,n},|S| =< § s.t.
log M(S) < v/n(logn)? loglog n. (3.2)
However

Proposition 3.1. There is a constant > 0 such thatifS C {1,...,n} satisfiedS| > (1—7)n,
then
log M(S) > cn (3.3)

for somec > 0.

Thus (3.3) generalizes (3.1) in some sense, but in view 8j,(8.fails dramatically if we do
not assume — % small enough.

Proof of Proposition 3.1.

It will be convenient to use Fact 2 for an appropriateonvolution, which allow us to esti-
mate the tail contribution in the-summation.

Thus consider

{33 o

jes k=1

R f(jk)
__mgmzz L

k=1 jeS

cos 27k ;0

> —melnz_: Z L €S 27kj0 (3.4)

Yy k) o)
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since we assumed| > (1 — 7)n.

Separating in (3.4) the casks= 1, and2 < k < kg, we write

- (icos%rj@) - i 11— f(j)

o (3.6)
— Z k:) Z (7k) coskag@‘
Taken = F,z(0), R > 1 an appropriate constant af{jz(¢) the Féjer kernel.
Thus "
~ S
FnR(S) =1- ﬁ for |S| < nRk
=0 otherwise
Take# = -2. The first term in (3.6) becomes, since
= 1 1
> cosjr = -Dy(x) — =, where D, (z) = w
— 2 2 sin 5

is the Dirichlet kernel,

l_lsmg—”(n%—%) N 1

2 2 sin i—z 2 sin Z—”
The second term is

B z”: J_ n+l
— nR 2R
The third term becomes
Ll w— gk 3k
X (- ap) oy (37)

k=2 " j=1

By partial summation, the inner sum is bounded by

max COS7T )
J1<min(n, % nk) Z
1 3 k 1
- . D, (_ _) -
<minin ) 12772 ) 72
1 n 1
= 2[sindxk| 2
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Fork < ko = o(n), the first term
1

2k sin —i” ’
n
Hence

N
B7) ==Y o o — logko
k=2 4n

1 2
_— ——1)—1 ko.
251113“(6 08 %0

4n
It follows from the preceding that

2

1
(Q—W—> —logko—njL

4) >+
(34)z+ 6 2R

=cn — log ko
for R a sufficiently large constant.

We bound (3.5) by
nR R
BIz-3 1 T iz-Y Hr-in

k>ko <”R k>ko
In summary, we proved that
C'n ¢

> =N

ko 2

o0 ~ k
B Z Z :u(] ) cos 2 jk i > cn —logky — T(log ko)n -
k 4dn

jes k=1

be choosing firsk, large enough and then assumingufficiently small.

This proves Proposition 3.1.

4. Sets with large arithmetical Diameter
As we pointed out the general lower boubtia4, . . ., a,) > /n remains unimproved. How-
ever Proposition 4.1 stated below shows that in certainscaise can do better.
First, we give the following definition.
Definition. D = {vy,...,v,,} C Z is called dissociated provided the relation
g1+ +emv, =0 with e, =0,1,—1

implies that:y = --- = ¢, = 0.
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We note that Hadamard lacunary sets are dissociated.

Proposition 4.1. Assumes = {a, .. ., a,} contains a dissociated sét of sizem. Then

m%—o(l)

log M(ay, ..., a,) > (4.1)

(logn)?’

Thus (4.1) improves the general lower bound from [E-S] ptedin > (log n)3*=.

Remark. By a result of Pisier [P], our assumption is equivalenttoontaining a Sidon set
of size|A| ~ m. Here ‘Sidon set’ is in the harmonic analysis sense i.e.

H > Xae(nd) HOO > ) |\ forall scalars{), }

neA
with ¢ = ¢(A) to be considered as a constant. (This concept is different the Sidon sets in
combinatorics!).

Dissociated sets are Sidon and conversely, Pisier prowdfth is a finite Sidon set, then
contains a proportional dissociated set.

Proof of Proposition 4.1.

We derive (4.1) from the equivalent statement
m% —o(1)
(log )12

which, since[ log |1 — e(af)| = 0 for a € Z\{0}, is a consequence of the stronger claim that

max (log |1 —e(ar0)| + - - - +log |1 — e(anb)]) > (4.2)

m%—o(l)

[ E]: > (logn)'/2 (4.3)
denoting
F(0) =log |1 — e(arf)| + - - - + log[1 — e(anb)|.
Recall that by Fact 1
=1
() =~ (ko) (4.4)

with

3

f(o) = Z cos(2ma;0).

Jj=1
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We first perform a finite Mobius inversion on (4.4). Recallttha

S {1 if =1
pu(d) = .

dlk,d<r 0 ifl<k <r

d square free

Hence
f1(d) ~ f1(d)
Z F(do) T = ZZ Z cos(2ma;dko) TE
d<r =1 k=1 d<r
square free square free
"L cos( 27ra 00
I PN
HSre (4.5)
- cos(2ma ;00
——0) - L X =D S )
j=1 L>r dlt,d<r
square free
= —f(0) + G(0),
where

B i 3 008(27;'%-&9) { 3 u(d)}-

j=1 I>r dit,d<r
square free

Note also that

> )] =240, (4:6)

dle,d<r
square free

wherew(¢) is the number of distinct prime factors af

Denotem the size of the largest dissociated set containddin. . . , a,, }. Our first task will
be to bound the Fourier transforii:|| ., of G.

Thus givert € Z, we have
A L 850
< — L9 a7, .
Gl <535 (4.7)
We will bound (4.7) by considering dyadic ranges, letting £ > r dyadic

t
J=Jx={j€l,n| : a;/t and — ~ K}.
J
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Thus

heK (4.8)
Assume

e K (4.9)
Our aim is to get a contradiction for appropriate choice.of

At this point, we invoke the following result from [H-T] (sd€ég (1.14)).
Denote

U(x,y) = Hn <z :if p|n, thenp < y}‘
Lemma 4.2. For any0 < a < 1, we have

¥ (z, (logz)/*) < z'=rW for z — oo. (4.10)
It follows from (4.9) that for any fixed > « > 0, we have

1J| > 2 (K, (log K)=).

(4.11)
We make the following construction.

— = p1b1.

Cle

By (4.11), there igj; € J such thatﬁ has a prime divisop; > (log K)é and we write
t

Next, letJ; = {j € J : p1|L }. Hence|Jy| < £ +1 < £« 1l
z P (log K) @
assumey taken much smaller thaéq

— where we
(log K)a —®

It follows that also
1 1
N> (22— ——7F K, (logK)=
NI > (2= s U, (log )2

which permits to introducg, € J\J; and a primep, > (log K)é such thatp2|$. Write
ﬁ = pgbg. Clearlypg 7é P1 andp1 J[ bg.

The contribution of the process is clear. We may introdueenehts

Jioeeoijs € J With s> (log K)a~®
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and prime divisor$5/|ﬁ. Write -~ = pyby such thap, - for s’ < s". Hencep, # py
for s’ # ¢” and )

It g1t

ps 1 bgr for s < s". (4.12)
We claim that the sefa;,, ..., a;, } is dissociated. Otherwise, there is a non-trivial relation
e1a;, +---+esa;, =0 withe, =0,1,—1

which by the preceding translates in

or
ng’ H psnbs// = 0
s’'=1 s//;ésl

Let s; be the smallest’ with £, # 0. Then

s

Z Eg/ H ps//bs// = 0. (413)

s'=s1 s s
s">s1

Since

psl‘ H ps”bs” for S/ > 81,

S//§é8/
3”231
identity (4.13) implies
psl’ H bs”7
s''>s1
contradicting (4.12).
Hence{a,,, ..., a;, } is dissociated and by definition of,
s<m

implying
m > (logK)i_8 and logr < mi-sa.

Thus, by taking

2

logr ~m** (« small enough

we obtain a contradiction under assumption (4.9).
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Hence

K
|JK|<W fOI’K>7“

and summing (4.8) over dyadic rangesfof> r gives the bound

R 1 1
<
Gl < Z (log K)? ~ logr

K>r

dyadic
Consequently
— 1
@5)(1) = —f(t) + <log7’> — _f(t)+o(1)forallt € Z
Since
i) =5
j - 27
we have

—

. 1
(4.5)(j) = —3 + o(1).
Next, let D be a sizen dissociated set ifiay, . . ., a,}. Define
1
p(0) = —=>_ e(jb).
Vi
Also, let®, ¥ be the dual Orliez functions

O(z) = 21/log(2+2) and (z)=e".

It is well known (e.g. Theorem 3.1 in [Rud].) that

el = O(1).

By (4.16)

(5 - o)V < | [ 51| < sl

It remains to bound|(4.5)|| ..

Estimate

/ (4.5)]v/Iog(|(45)] 1 2) db
< Yoo [ uona

>0 2277 < <0’

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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WhereM = {6 : (4.5)(¢) > A} andp is the measure. Using the left hand side of (4.5), the
j-summands is bounded by

2972)|(4.5)[|; < 272 logr || F||;. (4.19)
Also, let W, (u) = e*. Then

F(df
ZI (d )|

d<r

< (log 7)[|F[[pw, < nlogr,

LY1

since| log |1 — €| || v, < oo.
Thus also the bound
p(M) < e T
implying the following bound for thg-summands

j—1
22’

211292 ¢~ wrogr (4.20)

Hence

. . 271
(4.18) < > 27/ min ((log )| Flly, 2% ¢~ 7 ).
J
For2?* < nlogr, we get the contribution
1
(logn)z logr| F|;.

For2?~* > nlogr, we bound by

(nlogr) 18" 4 (nlogr) 2t e=crlogn)’ oy (nlogr)t? He e logr)® =1 .
< O(1).
Hence
|(4.5)l|s < (4.18) < (logn)2m™ | F||; (4.21)

recalling above choice fdog r.

Returning to (4.17), we proved that

1 1 1
(5= o) m*= < logm) |1l

hence

(SIS

IF|ly 2 m3=(logn) 3.

This proves (4.3) and hence Proposition 4.1.
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