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Abstract

Given a smooth integer q, we use existing upper bounds for character sums to
find a lower bound for the size of a multiplicative subgroup of the integers modulo
q which contains the image of an interval of consecutive integers I ⊂ Zq under a
polynomial f ∈ Z[X].

1 Introduction
In this paper we give a result in the spirit of Shparlinski’s theorem, [12, Theorem 7],
through the application of the Graham-Ringrose Theorem as improved by Chang [2]. In
[12] lies an improvement to an earlier result of Shparlinski and Gómez-Pérez, [7, Theorem
7], which discusses the greatest lower bound for the order of a subgroup of a finite field
containing the image of an interval of consecutive integers under a rational function.
There are various bounds for the number of images of consecutive polynomial values
which belong to a given multiplicative subgroup (see [3], [5], and [7]); [12, Theorem 7]
shows that the size of the intersection discussed above is dependent on the size of the
subgroup of the finite field Fp.

Theorem. (Shparlinski) Let f(X) ∈ Fp[X] be a square-free quadratic polynomial. For
any interval I of consecutive integers and a subgroup G of F∗p, we have

|f(I) ∩G| ≤ (1 + |I|3/4p−1/8)|G|1/2po(1),

as |I| → ∞.

While the previous theorem uses a fact about the arithmetic p-norm (see [12, Lemma
5]) which is found using Minkowski’s Second Theorem in [6], we take a different approach
to prove our main result. The following theorem uses the convention that πq(·) is an
operator with functional arguments which evaluates the function modulo q.
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Theorem 1.1. Given an integer m and ε > 0, let f(X) ∈ Z[X] be a monic polynomial
of degree d. For a sufficiently large square-free integer q > q(ε), take I ⊂ Zq to be an
interval of consecutive integers with d < (log |I|)1/8 such that

(1) for all p|q, p < q
1

160d4m2d

(2) log log q > 16d4m2d.
If πqf(I) ⊂ G, for G a subgroup of Z∗q, then |G| ≥ min{|I|m/2, q1−ε} .

Note that for a prime modulus, [12, Theorem 7] is nontrivial if |I| > p1/2; however,
assuming the modulus is smooth, Theorem 1.1 is nontrivial for smaller intervals as well.
Furthermore, we can restate Theorem 1.1 in the form of [12, Theorem 7] as an upper
bound for the number of images of consecutive values which belong to a multiplicative
subgroup of Zq. In the following corollary o(|I|) = ε|I| for any ε > 0 as |I| approaches
infinity.

Corollary 1.2. Given an integer q and a polynomial f(X) ∈ Z[X], let G be a mul-
tiplicative subgroup of Z∗q and take I ⊂ Zq to be an interval of consecutive integers.
Then,

|f(I) ∩G| ≤ |I|
ϕ(q)
|G|+ o(|I|).

These theorems have relevance in polynomial dynamics as well as in the study of
Dirichlet characters. More specifically, [12, Theorem 7] can be generalized in the study
of the frequency of elements in the orbit of iterations of f which belong to a subfield of
the finite field Fqr (see [10] and [11]). Moreover, the bounds above give nontrivial bounds
for the size of a character sum of a polynomial,∣∣∣∣∣∑

x∈I

χ(f(x))

∣∣∣∣∣
as discussed in [4]. While incomplete character sums over an interval are being studied
thoroughly, the notion of character sums with polynomial arguments can be improved
with results such as these.

Before we begin discussing the preparations needed to prove our main result, we list
the notation which will be used throughout the paper.

1. ω(q) is the number of distinct prime divisors of the integer q.

2. V (J) represents the variety, or common zero set, of a set of functions J .

3. πq(·) will be used as an operator with functional arguments which evaluates the
function mod q.

4. E(A1, . . . , Am) = |{(a1, a
′
1, . . . , am, a

′
m) ∈ A2

1 × · · · × A2
m : a1 · · · am = a′1 · · · a′m}| is

the multiplicative energy of m sets.

5. The logarithmic height of a polynomial is the maximum logarithm of the modulus
of the coefficients of the polynomial.
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6. δ, ε, c, and c′ are various constants with δ, ε > 0. Furthermore, the constant p will
always be considered as prime and the constant q will be a composite integer with
any added conditions stated as needed.

7. A = o(B) is equivalent to the statement that |A| ≤ ε|B| for any ε > 0 as the given
parameter tends to infinity.

8. A� B is equivalent to the statement |A| ≤ c|B| for some constant c.

2 Preparations
We now discuss some preparations needed for the proof of the main theorem. First, we
need a sharp arithmetic version of Hilbert’s Effective Nullstellensatz Theorem [9, Theorem
1].

Theorem 2.1. (Krick, Pardo, and Sombra) Let P1, . . . , Pm ∈ Z[X1, . . . , Xn] be polyno-
mials of degree at most D and logarithmic height at most H. If V (P1, . . . , Pm) = ∅ in
Cn, then there exists a positive integer b and polynomials Q1, . . . , Qm ∈ Z[X1, . . . , Xn]
such that

b =
m∑
i=1

QiPi (2.1)

and
log b ≤ 4n(n+ 1)Dn[H + logm+ (n+ 7) log(n+ 1)D]. (2.2)

We will also use the following result on the number of factorizations in a generalized
arithmetic progression [1, Proposition 3].

Theorem 2.2. (Chang) Given integers c0, c1, . . . , cd and J1, . . . Jd ≥ 1 a generalized
arithmetic progression P is

P = {c0 +
d∑
i=1

kici|ki ∈ Z, 0 ≤ ki ≤ Ji}.

Let rh(n) be the number of representations of the integer n as a product of h elements
in P . If J = max

i
Ji, then for all n ∈ Z

rh(n) < eCd.h log J/ log log J

where Cd.h is a constant depending on d and h.

Another tool used in obtaining the lower bound found in this paper will be the im-
provement to the Graham-Ringrose Theorem for character sums [2, Theorem 3′′]. To
discuss [2, Theorem 3′′], we need the notion of an admissible pair.

Definition 2.3. (Chang) Given a prime p and a polynomial f ∈ Z[x], we say p is a good
prime (or f is p-good) if f mod p has a simple root or a simple pole. Moreover, for q̄|qr
such that q̄ > √qr, the pair (f, q̄) is qr-admissible if

p >
√

log qr for all p|q̄
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and ∏
p|q̄

p is good

p >
q̄

qτr
, where τ =

10

log log qr
.

Theorem 2.4. (Chang) Assume q = q1 · · · qr with (qi, qj) = 1 for i 6= j and qr square-free.
Factor χ = χ1 · · ·χr where χi (mod qi) is arbitrary for i < r and primitive for i = r. Let
N < q and assume

(a) for all p|q, p < N1/10;
(b) logN > C log q

log log q
.

Let
f(x) =

∏
j

(x− bj)cj , ci ∈ {−1, 1} for some i, d = deg f =
∑
|cj|.

Suppose that (f, qr) is admissible. Furthermore, assume that
(c) d = deg f < (log qr)

1/8.
Then, ∣∣∣∣∣

N∑
x=1

χ(f(x))

∣∣∣∣∣� Ne−(log qr)1−c/ log log qr .

We would like to point out that in the factorization of q in the previous theorem, one
can assume that up to reordering qi < qj for i < j. It is also important to note that the
assumptions (a) and (b) are not the assumptions of [2, Theorem 3′′] as stated; that is, (a)
and (b) are the stronger assumptions of [2, Theorem 3] as discussed in [2, Remark 3.1].
Moreover, we take a moment to discuss how the assumptions of [2, Theorem 3”] can be
further weakened.

Remark 2.5. In Definition 2.3, the function is required to have a simple root or pole
to ensure that f (mod p) is not an kth power of a polynomial; this assumption allows

for the use of Weil’s estimate on the complete character sum
∣∣∣∣ q∑
x=1

χ(f(x))

∣∣∣∣ where χ is a

multiplicative character of order k > 1. It is possible to change the definition of a good
prime as follows.

Definition 2.6. Given a prime p and a polynomial f ∈ Z[x], we say p is good if f (mod
p) is not an kth power of a polynomial.

Using Definition 2.6 we can remove the assumption that ci ∈ {−1, 1} for some i
in Theorem 2.4 since its primary purpose is to ensure f(x) is not an kth power of a
polynomial. Now since

|{χ : χ is a multiplicative character of order k}| = C(d)

(where C(d) is a constant depending d), we can consider any polynomial in Z[X] and
omit those characters of order k so that the conclusion of [2, Theorem 3′′] still holds.

The following lemmas will be also useful; the first is a result on the multiplicative
energy of several sets which follows from the Cauchy–Schwarz inequality.
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Lemma 2.7. Given subsets A1, . . . , Am of a multiplicative group,

|A1 · · ·Am| ≥
|A1|2 . . . |Am|2

E(A1, . . . , Am)
.

Proof. Notice∑
x∈A1···Am

∣∣{(x1, . . . , xm) ∈ A1 × A2 × · · · × Am : x1x2 · · ·xm = x}
∣∣ ≥ |A1||A2| · · · |Am|.

However by the Cauchy-Schwarz inequality( ∑
x∈A1···Am

∣∣{(x1, . . . , xm) ∈ A1 × A2 × · · · × Am : x1x2 · · · xm = x}
∣∣)2

≤ |A1 · · ·Am|
∑

x∈A1···Am

|{(x1, . . . , xm) ∈ A1 × A2 × · · · × Am : x1x2 · · · xm = x}|2.

However ∑
x∈A1···Am

|{(x1, . . . , xm) ∈ A1 ×A2 × · · · ×Am : x1x2 · · ·xm = x}|2

≤
∑

x∈A1···Am

|{(x1, x
′
1, . . . , xm, x

′
m) ∈ A2

1 × · · · ×A2
m : x1 · · ·xm = x = x′1 · · ·x′m}|

so that
|A1 · · ·Am| ≥

|A1|2 . . . |Am|2

E(A1, . . . , Am)
.

Finally, we give a lower bound on the size of the image of an interval under a polyno-
mial f (mod q).

Lemma 2.8. Given a square-free integer q, an interval of consecutive integers I ⊂ Zq,
and a monic polynomial f of degree d

|πqf(I)| ≥ |I|
dω(q)

. (2.3)

Proof. For each y ∈ Zq, consider

|{x ∈ I : f(x) ≡ y (mod q)}| =
∏
p|q

|{x ∈ I : f(x) ≡ y (mod p)}| ≤ dω(q).

Since |πqf(I)| ≥ |I|
max
y∈Zq

|{x∈I:f(x)≡y (mod q)}| , we have

|πqf(I)| ≥ |I|
dω(q)

as desired.
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3 Proofs
We will prove Theorem 1.1 using two propositions.

Proposition 3.1. Given an integerm, let f(X) = Xd+Cd−1X
d−1+. . .+C1X+C0 ∈ Z[X]

be a monic polynomial of degree d. For a square-free integer q and an interval I ⊂ Zq of
consecutive integers such that

(i) d < (log |I|)1/8

(ii) |I| < q1/16d4m2d .
If πqf(I) ⊂ G, for G a subgroup of Z∗q, then |G| > |I|m/2.

Proof. First take q1|q so that q1 ≥ |I| (and hence |I| = |πq1(I)|), but q1

p
< |I| for some

prime p|q1. For each ordered 2m-tuple, ~h = (h1, . . . , h2m) ∈ I2m, define the polynomial
P~h(~a) ∈ Z[~a] with indeterminates ~a = (a0, . . . , ad−1) by

P~h(~a) :=
m∏
i=1

g(hi)−
2m∏

j=m+1

g(hj)

where g(hk) = hdk +ad−1h
d−1
k + . . .+a0 for 1 ≤ k ≤ 2m. Let ~C = (C0, C1, . . . , Cd−1) ∈ Zd,

then define E = {~h ∈ I2m : P~h(
~C) ≡ 0 (mod q)} and let J be the ideal generated by P~h

for ~h ∈ E. Then by Lemma 2.7,

|G| ≥

∣∣∣∣∣
m∏
i=1

πqf(I)

∣∣∣∣∣ ≥ |πqf(I)|2m

|E|
. (3.1)

Notice that Lemma 2.8 gives, |πq1f(I)| ≥ |I|
dω(q1)

; however since q1 is square-free and
q1

p
< |I|, for q1 sufficiently large

ω(q1) = ω(
q1

p
) + 1 ≤

(
1 + o(1)

) log( q1
p

)

log log( q1
p

)
+ 1 ≤ log |I|

log log |I|
+ 1

so that
|πq1f(I)| ≥ 1

d
|I|1−

log d
log log |I| .

Now assume |G| ≤ |I|m/2. Then (3.1) gives that

|E| ≥ |πq1f(I)|2m

|G|
≥ d−2m|I|

3m
2
− 2m log d

log log |I| >
|I| 5m4

log |I|m4
(3.2)

where the last inequality follows from the fact that (i) gives that d−2m > log |I|−m
4 and

2m log d
log log |I| <

m
4
. However, using Theorem 2.2, for any ~z = (z0, . . . , zd−1) ∈ Cd we have

|{~h ∈ I2m : P~h(~z) = 0}| < |I|m+εd,m (3.3)
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for q sufficiently large. So, (3.2) and (3.3) together give that for each ~z ∈ Cd there exists
~h ∈ E such that P~h(~C) ≡ 0 (mod q), but P~h(~z) 6= 0. Therefore, V (J) = ∅. Thus, by
Theorem 2.1 there exists an integer b with

0 < log b < 4d(d+ 1)md(log |I|d + log |E|+ (d+ 7) log(d+ 1)m) (3.4)

and polynomials Q~h ∈ Z[~a] for all ~h ∈ E such that

b =
∑
~h∈E

Q~hP~h. (3.5)

Note (d+ 7) log(d+ 1)m < d(d+ 1)m log |I| and |E| < |I|2m, so that (3.4) is bounded
by 16d4m2d log |I| giving 0 < b < |I|16d4m2d . Evaluating the sum in (3.5) at ~C gives that
b ≡ 0 (mod q) so that

q ≤ b < |I|16d4m2d

(3.6)

which contradicts (ii).

Remark 3.2. Note that by assuming πq1f(I) ⊂ G for G a subgroup of Z∗q1 where q1 is
as above, Proposition 3.1 holds for wider range of moduli than the smooth q of Theorem
1.1.

Moreover, Proposition 3.1 is a generalization of [8, Lemma 6] with explicit constants
and a square-free modulus; that is, assuming |I| < p(c/m)2d+1 for some absolute constant

c, [8, Lemma 6] gives that |G| > |I|me−c(d,m)
log |I|√
log log |I| .

Proposition 3.3. Given a sufficiently large square-free integer q = q1 . . . qr, take f(X) ∈
Z[X] to be a monic and qr-admissible polynomial of degree d. Let I ⊂ Zq be an interval
of consecutive integers such that

(i) log |I| > log q/ log log q
(ii) for all p|q, p < |I|1/10.

If πqf(I) ⊂ G, for G a subgroup of Z∗q, then |G| ≥ q1−ε provided q > q(d, ε).

Proof. Let S = {χ : χ is a multiplicative character modulo q and χ(a) = 1 for all a ∈
G}. Then,

|S| = ϕ(q)

|G|
. (3.7)

Moreover, since πqf(I) ⊂ G, we have that χ(f(h)) = 1 for all h ∈ I. Thus,∑
h∈I

χ(f(h)) = |I|. (3.8)

Notice that for any χ ∈ S there exists a q′|q such that χ is a primitive character mod q′.
Therefore if |I| ≤ q′, (3.8) is impossible unless assumption (c) of Theorem 2.4 is violated;
that is qr < c(d). Again, up to re-indexing qr > qi for all i; this gives a bound for q

in terms of d so that |S| < c′(d). Thus (3.7) gives |G| > ϕ(q)

c′(d)
which gives |G| > q1−ε

provided q > q(d, ε).
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On the other hand, if |I| > q′, we can separate the character sum in (3.8) as follows;
let I ′ ⊂ I be a complete residue system mod q′ so that using [2, Weil’s Theorem’] we have∣∣∣∣∣∑

h∈I

χ(f(h))

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
x∈I′

χ(f(x)) +
∑
x∈I\I′

χ(f(x))

∣∣∣∣∣∣ < dω(q′)
√
q′ + (N − q′)

which contradicts (3.8) unless
√
q′ ≤ dω(q′). Thus, the characters χ ∈ S which are

primitive for a small q′ can be omitted. That is, if the characters discussed in this
case were a significant portion of the set S, then |S| < c′′(d) giving a bound on |G| as
before.

Moreover, we can state Proposition 3.3 without the mention of an admissible pair.

Proposition 3.4. Given f(X) ∈ Z[X] a monic polynomial of degree d, let q be a square-
free integer and I ⊂ Zq be an interval of consecutive integers such that

(i′) log |I| > log q/ log log q
(ii′) for all p|q, p < |I|1/10

If πqf(I) ⊂ G, for G a subgroup of Z∗q, then |G| ≥ q1−ε provided q > q(d, ε).

Remark 3.5. Proposition 3.4 need not mention f(x) being qr-admissible as is assumed
in Proposition 3.3. Since ∏

p|q
p<
√

log q

p < q1/10

as discussed in [2, Remark 3.1], we can omit the assumption that p >
√

log q. Thus,
after the omission of the characters of order r where d is a multiple of r (as discussed in
Remark 2.5), we have that f(x) is q-admissible.

Proof of Theorem 1.1. We have two cases. If |I| < q1/16d4m2d , we can apply Proposition
3.1. If |I| ≥ q1/16d4m2d , then the assumptions (1) and (2) of Theorem 1.1 give (i′) and (ii′)
of Proposition 3.4 which proves Theorem 1.1.

We conclude with the proof of Corollary 1.2 as stated in the introduction.

Proof of Corollary 1.2. Define I ′ = {x ∈ I : f(x) ∈ G} and let S = {χ :
χ is a character on Z∗q and χ(a) = 1 for all a ∈ G}. Consider∣∣∣∣∣∑

x∈I′

∑
χ∈S

χ(f(x))

∣∣∣∣∣ = |I ′||S|. (3.9)

On the other hand, using I ′(·) as the indicator function for the set I ′ we have∣∣∣∣∣∑
x∈I′

∑
χ∈S

χ(f(x))

∣∣∣∣∣ =

∣∣∣∣∣∑
x∈I

∑
χ∈S

I ′(x)χ(f(x))

∣∣∣∣∣.
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Then the Cauchy–Schwarz inequality gives∣∣∣∣∣∣
∑
x∈I

∑
χ∈S

I ′(x)χ(f(x))

∣∣∣∣∣∣ ≤ |I ′|1/2
(∑
x∈I

∣∣∣∣∣∣
∑
χ∈S

χ(f(x))

∣∣∣∣∣∣
2)1/2

= |I ′|1/2
∑
x∈I

∑
χ∈S

∑
χ′∈S

χ(f(x))χ′(f(x))

= |I ′|1/2
(∑
x∈I

∑
χ=χ′∈S

χ(f(x))χ′(f(x)) +
∑
x∈I

∑
χ,χ′∈S
χ 6=χ′

χ(f(x))χ′(f(x))

)

≤ |I ′|1/2[|I||S|+ (|S|2 − |S|)o(|I|)]1/2.

So after a substitution of (3.9), we have

|I ′||S|2 ≤ |I||S|+ (|S|2 − |S|)o(|I|)

which gives

|I ′| ≤ |I|
|S|

+ o(|I|) =
|I|
ϕ(q)
|G|+ o(|I|) by (3.7).
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