Arithmetic progressions in multiplicative groups of finite fields ∗†

Mei-Chu Chang‡ Department of Mathematics University of California, Riverside mcc@math.ucr.edu

Abstract

Let G be a multiplicative subgroup of the prime field \mathbb{F}_p of size $|G| > p^{1-\kappa}$ and r an arbitrarily fixed positive integer. Assuming $\kappa = \kappa(r) > 0$ and p large enough, it is shown that any proportional subset $A \subset G$ contains non-trivial arithmetic progressions of length r. The main ingredient is the Szemerédi-Green-Tao theorem.

Introduction.

We denote by \mathbb{F}_p the prime field with p elements and \mathbb{F}_p^* its multiplicative group. The main result in this paper is the following.

Theorem 1. Given $r \in \mathbb{Z}^+$, there is some $\kappa = \frac{1}{r^2}$ $\frac{1}{r\,2^{r+1}} > 0$ such that the following holds. Let $\delta > 0$, p a sufficiently large prime and $G < \mathbb{F}_p^*$ a subgroup of size

 $|G| > p^{1-\kappa}.$

Then any subset $A \subset G$ satisfying $|A| > \delta |G|$ contains non-trivial r-progressions.

The proof is based on the extension of Szemerédi's theorem for pseudorandom weights due to Green and Tao, which is also a key ingredient in their

[∗]2010 Mathematics Subject Classification.Primary 11B25.

 \dagger Key words. arithmetic progressions, characters, exponential sums.

[‡]Research partially financed by the NSF Grants DMS 1600154.

proof of arithmetic progressions in the primes. (See [8].) In §.2 we will recall the precise statement of that result and the various underlying concepts.

The next point is that a multiplicative group behaves like a pseudorandom object (for the relevant notaion of pseudo-randomness). The latter fact is established by rather straightforward applications of Weil's theorem for character sums with polynomial argument. As an introductory result, we illustrate its use by proving

Proposition 2. Let $r \in \mathbb{Z}_+$ be fixed, p large enough and $G < \mathbb{F}_p^*$ a multiplicative group of size

$$
|G| > c_r p^{1 - \frac{1}{2r}} \tag{0.1}
$$

Then G contains $c_r \left(\frac{|G|}{p}\right)^r p|G|$ many non-trivial $r+1$ -progressions.

Taking $r = 2$, condition (0.1) becomes

$$
|G| > cp^{\frac{3}{4}} \tag{0.2}
$$

ensuring G to contain non-trivial triplets $a, a + b, a + 2b$ in arithmetic progression. This last result is simple and well-known, but though one could conjecture a condition of the form $|G| > c p^{\frac{1}{2}}$ to suffice, still the best available in this direction. (See [1] for instance.)

Concerning three-term arithmetic progressions in general sets, we recall Sanders' result [19] which provides the strongest form of Roth's theorem to date and, in the setting of subsets of \mathbb{F}_q^n , q fixed, the solution to the cap set problem due to Ellenberg and Gijswijt [11]. In negative direction, Behrend's lower bound of $r_3(n)$ has been slightly improved by Elkin [10]. (See also [3], [6], [16], [17], [18], [21].)

It is also natural to expect that when r is large, a condition of the type $|G| > p^{1-\epsilon_r}$ with $\epsilon_r \to 0$ as $r \to \infty$ should be necessary for Proposition 2 to hold. We are not able to show that and could only establish the following.

Proposition 3. There is a function $\eta_r \to 0$ as $r \to \infty$ and arbitrarily large primes p for which there is a subgroup $G < \mathbb{F}_p^*$ containing no r-progressions and

$$
|G| > p^{\frac{1}{2} - \eta_r}.\tag{0.3}
$$

The argument is closely related to a construction in [4]. We note that a more satisfactory result would be (0.3) with exponent $1 - \eta_r$ but $\frac{1}{2} - \eta_r$ seems the limit of the method.

Related to additive shifts of multiplicative subgroups of prime fields, we should also mention the paper of Shkredov and Vyugin [20], generalizing results of Konyagin, Heath-Brown and Garcia, Voloch. (See [13], [14], [15].)

Notations. We recall that the notation $U = O(V)$ is equivalent to the inequality $|U| \leq cV$ with some constant $c > 0$, while with the notation $U = o(V)$, in the above inequality, the constant c goes to 0. We denote by ht $F(x)$ the *height* of the polynomial $F(x)$, which is the max of the modulus of the coefficients of $F(x)$. For a set G, \mathbb{I}_G is the indicator function of G. By $\mathbb{E}(f \mid x \in S)$, we mean the average of $f(x)$ over $x \in S$. The constant c_r is a constant depending on r and may vary even within the same context.

1 Arithmetic progressions in multiplicative groups.

In this section we will prove Proposition 2.

First we note that the progression $a, a + b, \ldots, a + rb \in G$ is equivalent to that $a \in G$ and $1 + a^{-1}b, \ldots, 1 + ra^{-1}b \in G$. Hence we will analyze

$$
\sum_{x \in \mathbb{F}_p} \mathbb{I}_G(1+x) \mathbb{I}_G(1+2x) \dots \mathbb{I}_G(1+rx) \tag{1.1}
$$

Using the representation

$$
\mathbb{I}_G = \frac{|G|}{p-1} \sum_{\chi \equiv 1 \text{ on } G} \chi,\tag{1.2}
$$

we write

$$
\mathbb{I}_G = \frac{|G|}{p-1} \left(\chi_0 + \sum_{\substack{\chi \neq \chi_0 \\ \chi = 1 \text{ on } G}} \chi \right). \tag{1.3}
$$

So we write (1.1) as

$$
\left(\frac{|G|}{p-1}\right)^r (p+\mathcal{A}),\tag{1.4}
$$

where

$$
|\mathcal{A}| \le \left(\frac{p-1}{|G|}\right)^r \max \left| \sum_{x \in \mathbb{F}_p} \chi_1(1+x) \dots \chi_r(1+rx) \right| \tag{1.5}
$$

with max taken over all r-tuples χ_1, \ldots, χ_r of multiplicative characters which are 1 on G and at least one of them non-trivial.

We now bound the sum in (1.5). For the r-tuple χ_1, \ldots, χ_r obtaining the max, let $I = \{s \in [1, r]: \ \chi_s \neq \chi_0\}$. Assume $\mathcal Y$ generates $\widehat{\mathbb F_p^*}$ and let $\chi = \mathcal Y^{|G|}$. Then $\chi_s = \chi^{j_s}$, where $j_s < \frac{p-1}{|G|}$ $\frac{p-1}{|G|}$. Hence

$$
\sum_{x \in \mathbb{F}_p} \prod_{s \in I} \chi_s(1+sx) = \sum_{x \in \mathbb{F}_p} \mathcal{Y}(f(x))
$$

with

$$
f(x) = \prod_{s \in I} (1 + sx)^{j_s|G|}.
$$

Since $\mathcal Y$ is of order $p-1$ and $f(x)$ is not a $p-1$ -power, Weil's theorem implies

$$
\left| \sum_{x \in \mathbb{F}_p} \mathcal{Y}(f(x)) \right| < |I| \sqrt{p}.\tag{1.6}
$$

Assume $|G| > c_r p^{1-\frac{1}{2r}}$. It follows that (1.4) and hence (1.1) is bounded below by

$$
\left(\frac{|G|}{p-1}\right)^r p - r\sqrt{p} > c_r \left(\frac{|G|}{p-1}\right)^r p. \tag{1.7}
$$

Therefore, G contains at least $c_r \left(\frac{|G|}{p}\right)^r p|G|$ many non-trivial $r+1$ -progressions. **Remark 1.1.** We note that if $G \subset \mathbb{F}_p^*$ is a random set, then the expected size of (1.1) would also be $\left(\frac{|G|}{p-1}\right)^{r} p$. So the above observation indicates a random behavior of sufficiently large multiplicative group in terms of r-progressions. (This point of view will be exploited further in the next section.)

2 Progressions in large subsets of multiplicative groups.

An interesting problem is the following.

How large can $G \subset \mathbb{F}_p^*$ be without containing an r-progression?

In this section we will prove Theorem 1. We will use the Green-Tao extension of Szemerédi's theorem for large subsets of pseudo-random sets. (See Theorem 2.2 in [9].)

Theorem GT. Let $\nu : \mathbb{Z}_N \to \mathbb{R}^+$ be a pseudo-random weight, and let $r \in \mathbb{Z}^+$. Then for any $\delta > 0$, there is $c_r(\delta) > 0$ satisfying the following property. For any $f : \mathbb{Z}_N \to \mathbb{R}$ such that

$$
0 \le f(x) \le \nu(x), \forall x \quad and \quad \mathbb{E}(f \mid \mathbb{Z}_N) \ge \delta,
$$
\n
$$
(2.1)
$$

we have

$$
\mathbb{E}(f(x)f(x+t)\dots f(x+rt) \mid x,t \in \mathbb{Z}_N) \ge c_r(\delta) - o(1). \tag{2.2}
$$

(Note that here the notation E refers to the normalized sum.)

In order to apply this result, one will need to verify that under appropriate assumptions, \mathbb{I}_G for $G \subset \mathbb{F}_p^*$, satisfies the required pseudo-randomness conditions.

We call that ν is a pseudo-random weight if ν satisfies the following two conditions.

(1). Condition on linear forms.

Let m_0, t and $L \in \mathbb{Z}$ be constants depending on r only. Let $m \leq m_0$ be an integer and $\psi_1, \ldots, \psi_m : \mathbb{Z}_N^t \to \mathbb{Z}_N$ be functions of the form

$$
\psi_i(\mathbf{x}) = b_i + \sum_{j=1}^t L_{i,j} x_j,
$$
\n(2.3)

where $\mathbf{x} = (x_1, \ldots, x_t), b_i \in \mathbb{Z}, |L_{i,j}| \leq L$ and the *m* vectors $(L_{i,j})_{1 \leq j \leq t} \in \mathbb{Z}^t$ are pairwisely non-collinear.

Then

$$
\mathbb{E}\big(\nu(\psi_1(\mathbf{x}))\ldots\nu(\psi_m(\mathbf{x}))\big|\,\mathbf{x}\in\mathbb{Z}_N^t\big)=1+o(1). \tag{2.4}
$$

(2). Condition of correlations.

Let $q_0 \in \mathbb{Z}$ be a constant. Then there exists $\tau : \mathbb{Z}_N \to \mathbb{R}^+$ satisfying

$$
\text{for all } \ell \ge 1, \mathbb{E}(\tau^{\ell}(x) \mid x \in \mathbb{Z}_N) = O_{\ell}(1) \tag{2.5}
$$

such that for all $q \leq q_0$ and $h_1, \ldots, h_q \in \mathbb{Z}_N$ (not necessarily distinct), we have

$$
\mathbb{E}\big(\nu(x+h_1)\nu(x+h_2)\ldots\nu(x+h_q)\,|\,x\in\mathbb{Z}_N\big)\leq \sum_{1\leq i\leq j\leq q}\tau(h_i-h_j). \tag{2.6}
$$

Remark 2.1. As Y. Zhao pointed out that in his paper [5] with D. Conlon and J. Fox, they showed that in applying Theorem GT one only needs to verify the m_0 -linear forms condition (with $m_0 = r 2^{r-1}$), and that the correlation condition is actually unnecessary.

Proof of Theorem 1. In our application of Theorem GT, \mathbb{Z}_N will be \mathbb{F}_p with additive structure and $\nu = \frac{p-1}{|G|}$ $\frac{p-1}{|G|} \mathbb{I}_G$. We will verify the condition on linear forms above by using Weil's theorem.

Using the representation (1.3), we have

$$
\nu = \frac{p-1}{|G|} \mathbb{I}_G = \frac{p-1}{|G|} \frac{|G|}{p-1} \sum_{\substack{\chi=1 \text{ on } G}} \chi
$$

= $\chi_0 + \sum_{\substack{\chi \neq \chi_0 \\ \chi=1 \text{ on } G}} \chi.$ (2.7)

In (2.4), the trivial character χ_0 contributes for 1 and the additional contribution may be bounded as in §1 by

$$
\left(\frac{p-1}{|G|}\right)^m p^{-t} \max \left| \sum_{\mathbf{x} \in \mathbb{F}_p^t} \chi_1(\psi_1(\mathbf{x})) \dots \chi_m(\psi_m(\mathbf{x})) \right| \tag{2.8}
$$

with max taken over all m-tuples χ_1, \ldots, χ_m , which are 1 on G and not all χ_0 . For the *m*-tuples χ_1, \ldots, χ_m obtaining the max, let $I = \{s \in [1,m] :$ $\chi_s \neq \chi_0$, hence $\chi_s = \mathcal{Y}^{j_s|G|}$, with $j_s < \frac{p-1}{|G|}$ $\frac{p-1}{|G|}$ for $s \in I$. We obtain

$$
\sum_{\mathbf{x}\in\mathbb{F}_p^t} \chi_1(\psi_1(\mathbf{x}))\dots\chi_m(\psi_m(\mathbf{x})) = \sum_{\mathbf{x}\in\mathbb{F}_p^t} \mathcal{Y}\left(\prod_{s\in I} \psi_s(\mathbf{x})^{j_s|G|}\right) \tag{2.9}
$$

To introduce a new variable z, we perform a shift $x \mapsto x + za$, where $a \in$ $\{1, \ldots, m\}^t$ may be chosen such that

$$
\sum_{j=1}^{t} L_{s,j} a_j \neq 0, \text{ for } s = 1, \dots, m.
$$
 (2.10)

Recall that $|L_{s,j}| \leq L$ and the m vectors $(L_{s,j})_{j=1,\dots,t} \in \mathbb{Z}^t$ are pairwisely non-collinear. Hence we may choose **a** as above to fulfill (2.10) and moreover $\sum_{j=1}^{t} L_{s,j} a_j \not\equiv 0 \pmod{p}$. We estimate (2.9) as

$$
\frac{1}{p} \sum_{\mathbf{x} \in \mathbb{F}_p^t} \left| \sum_{z=0}^{p-1} \mathcal{Y}(f_{\mathbf{x}}(z)) \right|, \tag{2.11}
$$

where

$$
f_{\mathbf{x}}(z) = \prod_{s \in I} \left(\left(\sum_{j} L_{s,j} a_j \right) z + \psi_s(\mathbf{x}) \right)^{j_s|G|}.
$$
 (2.12)

Clearly, $f_{\mathbf{x}}(z)$ will not be a $(p-1)$ -power of a polynomial, if the following expressions

$$
\frac{\psi_s(\mathbf{x})}{\sum_j L_{s,j} a_j}, \quad s \in I \tag{2.13}
$$

are pairwisely distinct.

To estimate the double sum in (2.11), we write $\sum_{\mathbf{x}\in\mathbb{F}_p^t}$ as $\sum^{(1)}$ + $\sum^{(2)}$, where $\sum^{(1)}$ is over those $\mathbf{x} \in \mathbb{F}_p^t$ for which (2.13) are pairwisely distinct and $\sum_{n=1}^{\infty}$ over the other **x**.

By Weil's theorem

$$
\frac{1}{p} \sum^{(1)} \left| \sum_{z=0}^{p-1} \mathcal{Y}(f_{\mathbf{x}}(z)) \right| \le |I| \ p^{t-1} \sqrt{p}.
$$
 (2.14)

For $\sum^{(2)}$ we estimate trivially.

$$
\frac{1}{p}\sum^{(2)}\left|\sum_{z=0}^{p-1}\mathcal{Y}(f_{\mathbf{x}}(z))\right|
$$
\n
$$
\leq \sum_{\substack{s,s'\in I\\s\neq s'}}\left|\left\{\mathbf{x}\in\mathbb{F}_p^t:\frac{\psi_s(\mathbf{x})}{\sum_j L_{s,j}a_j}=\frac{\psi_{s'}(\mathbf{x})}{\sum_j L_{s',j}a_j}\right\}\right|
$$
\n(2.15)

Since $(L_{s,j})_{1\leq j\leq t}$ and $(L_{s',j})_{1\leq j\leq t}$ are not collinear (and bounded), there is some j_0 such that

$$
\frac{L_{s,j_0}}{\sum L_{s,j} a_j} - \frac{L_{s',j_0}}{\sum L_{s',j} a_j} \in \mathbb{F}_p^*.
$$

This shows that (2.15) is bounded by r^2p^{t-1} . Therefore, we proved that (2.11) is bounded by $rp^{t-\frac{1}{2}}$, and (2.8) is bounded by

$$
c_r \frac{(p-1)^m}{|G|^m \sqrt{p}},\tag{2.16}
$$

which is bounded by $p^{-\frac{1}{4}}$, assuming

$$
|G| > p^{1 - \frac{1}{4m_0}}. \quad \Box \tag{2.17}
$$

3 Construction of large multiplicative groups with no *r*-progressions.

In this section we will prove Proposition 3. Our argument is very similar to the proof of Theorem 39 in [4], where it is shown that there is a subset $\Delta \subset \mathcal{P}_T = \{p : p \text{ is a prime, and } p \leq T\}, |\Delta| < \delta \frac{T}{\log T}$ with $\delta = \delta(r) \to 0$ as $r \to \infty$ and such that for any $p \in \mathcal{P}_T \setminus \Delta$ and any $t \in \mathbb{Z}$

$$
\max\left(\operatorname{ord}_p(t+1),\ldots,\operatorname{ord}_p(t+r)\right) > T^{\frac{1}{2}-\delta}.\tag{3.1}
$$

Obviously, (3.1) implies that

$$
\operatorname{ord}_p\langle t+1,\ldots,t+r\rangle > T^{\frac{1}{2}-\delta},\tag{3.2}
$$

which is the only relevant property for us.

As in §1, if $a, a + b, \ldots, a + rb \in G \subset \mathbb{F}_p^*$, and $b \in F_p^*$, then $1 + t, 1 +$ $2t, \ldots, 1 + rt \in G, t \equiv a^{-1}b \pmod{p}$ and hence we obtain $t \in \mathbb{Z}, t \not\equiv 0$ \pmod{p} such that

 $\text{ord}_n\langle 1 + t, \ldots, 1 + rt \rangle \leq |G|.$

Thus our purpose is to ensure that for all $t \neq 0 \pmod{p}$ such that

$$
\operatorname{ord}_p\langle 1+t,\ldots,1+rt\rangle > p^{\frac{1}{2}-\delta},\tag{3.3}
$$

with p such that $p-1$ has a divisor d in the interval $[p^{\frac{1}{2}-\eta}, p^{\frac{1}{2}-\delta}]$. Then the subgroup $G < \mathbb{F}_p^*$ of order d will have no $(r+1)$ -progression. Assuming (3.3) holds for all $p \in \mathcal{P}_T \setminus \Delta$ with $|\Delta| < \delta \frac{T}{\log T}$, it will then suffice (taking $\eta = c\delta$) to invoke

Lemma 3.1. Let notations be as above. Then

$$
\left| \left\{ p \in \mathcal{P}_T : p-1 \text{ has a prime divisor in the interval } [T^{\frac{1}{2}-\eta}, T^{\frac{1}{2}-\frac{\eta}{2}}] \right\} \right| > c\eta \frac{T}{\log T}.
$$
\n(3.4)

Proof. In Bombieri-Vinogradov theorem, taking

$$
Q = T^{\frac{1}{2}} (\log T)^{-10}
$$
 (3.5)

we have

$$
\sum_{q \le Q} \left| \psi(T; q, 1) - \frac{T}{\phi(q)} \right| = O\left(T^{\frac{1}{2}} Q\left(\log T\right)^{5}\right) < c \left(T \left(\log T\right)^{-5},\right) \tag{3.6}
$$

where $\phi(q)$ is the Euler's totient function and

$$
\psi(T; q, 1) = \sum_{\substack{n \leq T \\ n \equiv 1 \mod q}} \Lambda(n),
$$

 $\Lambda(n)$ being the von Mangoldt function. Denote

$$
\Omega = \left\{ q \in \left[T^{\frac{1}{2}-\eta}, T^{\frac{1}{2}-\frac{\eta}{2}} \right] \cap \mathcal{P} : \psi(T; q, 1) < \frac{T}{2\phi(q)} \right\}.
$$

Let $[2^k, 2^{k+1}] \subset [T^{\frac{1}{2}-\eta}, T^{\frac{1}{2}-\frac{\eta}{2}}] := I$. From (3.6) ,

$$
\left| \Omega \cap [2^k, 2^{k+1}] \right| \frac{T}{2^{k+1}} < c \, T \big(\log T \big)^{-5},
$$

hence

$$
\left| \Omega \cap [2^k, 2^{k+1}] \right| < c \frac{2^k}{\left(\log T \right)^5} < \frac{1}{100} \left| \mathcal{P} \cap [2^k, 2^{k+1}] \right|.
$$
\n(3.7)

Clearly, (3.7) and the prime number theorem imply that

$$
\sum_{\substack{q \notin \Omega \\ q \in I \cap \mathcal{P}}} \frac{1}{q} = \sum_{\substack{(\frac{1}{2} - \eta) \log T < k < (\frac{1}{2} - \frac{\eta}{2}) \log T \\ < \sum_{(\frac{1}{2} - \eta) \log T < k < (\frac{1}{2} - \frac{\eta}{2}) \log T}} \frac{1}{2^k} \left| \mathcal{P} \cap [2^k, 2^{k+1}] \right| < 2\eta.
$$

Let $\sigma < 2\eta$ be a parameter (to be specified). From the preceding, there is a subset $S \subset I \cap P$, $S \cap \Omega = \emptyset$, such that

$$
\sigma < \sum_{q \in S} \frac{1}{q} < 2\sigma,\tag{3.8}
$$

and since $S \cap \Omega = \emptyset$, we have for all $q \in S$

$$
|A_q| \ge \frac{T}{2(\log T)q}
$$
, where $A_q := \{p < T : p \equiv 1 \pmod{q}\}$. (3.9)

From the inclusion/exclusion principle and the Brun-Titchmarsh theorem, the left hand side of (3.4) is at least

$$
\left| \bigcup_{q \in S} A_q \right| \ge \sum_{q \in S} |A_q| - \sum_{\substack{q_1, q_2 \in S \\ q_1 \neq q_2}} |A_{q_1 q_2}|
$$
\n
$$
\ge \frac{T}{2 \log T} \sum_{q \in S} \frac{1}{q} - \sum_{\substack{q_1, q_2 \in S \\ q_1 \neq q_2}} \left\{ \frac{2T}{\phi(q_1 q_2) \log \frac{T}{q_1 q_2}} \left(1 + O\left(\frac{1}{\log \frac{T}{q_1 q_2}}\right) \right) \right\}
$$
\n(3.10)

Since $\phi(q_1q_2) = (q_1 - 1)(q_2 - 1)$, and $q_1q_2 \le T^{1-\eta}$ for $q_1 \ne q_2$ in S, (3.10) is bounded below by

$$
\frac{T}{\log T} \left(\frac{1}{2} \sum_{q \in S} \frac{1}{q} - \frac{3}{\eta} \left(\sum_{q \in S} \frac{1}{q} \right)^2 \right)
$$

$$
= \frac{T}{\log T} \left(\frac{\sigma}{2} - \frac{3}{\eta} \sigma^2 \right) > c \eta \frac{T}{\log T}
$$

for some small $c > 0$ and appropriate choice of σ . \Box

Returning to the proof of Theorem 39 in [4], a key ingredient is Lemma 17 (in [4]) depending on a result from [7] on additive relations in multiplicative subgroups of \mathbb{C}^* . Keeping (3.3) in mind, the appropriate variant of Lemma 17 we will need is the following.

Lemma 3.2. Let $z \in \mathbb{C}^*$ and $r \in \mathbb{Z}_+$ be sufficiently large. Consider the set $\mathcal{A} = \{1 + sz : 1 \leq s \leq r\} \subset \mathbb{C}$. Then there is a multiplicative independent subset $\mathcal{A}_0 \subset \mathcal{A}$ of size

$$
|\mathcal{A}_0| > c \log r. \tag{3.11}
$$

The proof is the same as Lemma 17 in [4]. Note that one distinction is that we have to assume $z \neq 0$, which will also lead to a small modification in the proof of Theorem 39 in [4], in order to establish (3.3). Thus

Lemma 3.3. There is a subset $\Delta \subset \mathcal{P}_T$, $|\Delta| = o(\frac{1}{\log n})$ $\frac{T}{\log T}$) such that every $p \in \mathcal{P}_T \setminus \Delta$ has the following property. If $t \in \mathbb{Z}, t \not\equiv 0 \pmod{p}$, then

$$
\operatorname{ord}_p\langle 1+t,\ldots,1+rt\rangle > p^{\frac{1}{2}-\delta},\tag{3.12}
$$

where $\delta = \delta(r)$.

Proof. The basic strategy is the same as that of Theorem 39 in [4].

We fix an integer $r_0 = [\log r]$, let

$$
\delta = \delta(r) = \frac{100}{r_0},\tag{3.13}
$$

and choose $u\in\mathbb{Z}_+$ such that

$$
u^{r_0} = cT^{\frac{1}{2}-\delta} \quad \text{and} \quad \frac{1}{2}T^{\frac{1}{2}-\delta} < u^{r_0} < 2T^{\frac{1}{2}-\delta}.\tag{3.14}
$$

Let $\mathcal E$ be the collection of all subsets $E \subset \{1, \ldots, r\}, |E| = r_0$.

Next, given any two subsets $E_1, E_2 \subset \{1, ..., r\}$, $E_1 \cap E_2 = \emptyset$, $0 < |E_1| +$ $|E_2| \leq r_0$, and exponents $\tilde{u} = (u_s)_{s \in E_1 \cup E_2}$, $1 \leq u_s \leq u$, we introduce the polynomial

$$
F = F_{E_1, E_2, \tilde{u}}(x) = \prod_{s \in E_1} (1 + sx)^{u_s} - \prod_{s \in E_2} (1 + sx)^{u_s} \in \mathbb{Z}[x]. \tag{3.15}
$$

Note that x is always a factor of $F(x)$. Clearly deg $F(x) \le r_0u$, $\text{ht } F(x) \le$ r^{2r_0u} , and there are at most $2^{r_0}\binom{r}{r}$ $\binom{r}{r_0}u^{r_0}$ such polynomials.

Denote by $\mathcal{F} \subset \mathbb{Z}[x]$ the collection of all irreducible factors $f(x) \in \mathbb{Z}[x]$ and $f(x) \neq x$ extracted from all polynomials of the form (3.15). Hence

$$
|\mathcal{F}| \le r_0 2^{r_0} {r \choose r_0} u^{r_0+1}.
$$
\n
$$
(3.16)
$$

Next, if $f, g \in \mathcal{F}, f \nsim g$, (i.e. f and g are not proportional) then the resultant of f, g satisfies

$$
\operatorname{Res}(f,g) \in \mathbb{Z} \setminus \{0\} \quad \text{and} \quad |\operatorname{Res}(f,g)| < r^{2(r_0 u)^2}.\tag{3.17}
$$

From (3.16)

$$
B = \prod_{\substack{f,g \in \mathcal{F} \\ f \neq g}} \text{Res}(f,g) \in \mathbb{Z} \setminus \{0\}
$$
 (3.18)

satisfies

$$
|B| < r^{2r_0^4 \, 4^{r_0} \binom{r}{r_0}^2 u^{2r_0 + 4}} < r^{r^{2r_0} \, u^{2r_0 + 4}}.\tag{3.19}
$$

By (3.14) and (3.13) , for T sufficiently large, we can bound the exponent in (3.19) as

$$
r^{2r_0} u^{2r_0+4} < r^{2r_0} T^{1-2\delta + \frac{2}{r_0}} < T^{1-\delta} = o\bigg(\frac{T}{\log T}\bigg).
$$

Therefore, there is a set $\Delta \subset \mathcal{P}_T$ of primes $p \leq T$, with $|\Delta| = o(\frac{T}{\log T})$ $\frac{T}{\log T}$ such that $(p, B) = 1$ for all $p \in \mathcal{P}_T \setminus \Delta$.

Now, take $p \in \mathcal{P}_T \backslash \Delta$ and suppose there exists some $t \in \mathbb{Z}$, $t \not\equiv 0 \pmod{p}$ such that

$$
\mathrm{ord}_p\langle 1+t,\ldots,1+rt\rangle
$$

Then, for all $E \in \mathcal{E}$, there are $E_1, E_2 \subset E$, $E_1 \cap E_2 = \emptyset$, $|E_1| + |E_2| \ge 1$ and $\tilde{u} = (u_s)_{s \in E_1 \cup E_2}$ such that $F_{E_1, E_2, \tilde{u}}(t) \equiv 0 \pmod{p}$. Hence there is a factor $f_E(x)$ of $F_{E_1,E_2,\tilde{u}}(x)$ such that $f_E(t) \equiv 0 \pmod{p}$. Since $t \not\equiv 0 \pmod{p}$, $f_E(x) \neq x$. For all $E, F \in \mathcal{E}$, since $f_E(x), f_F(x)$ have common root t (mod p)

$$
Res(f_E, f_F) \equiv 0 \pmod{p}.\tag{3.20}
$$

If $f_E \neq cf_F$, then $\text{Res}(f_E, f_F) | B$, contradicting $(B, p) = 1$. Thus $f_E = cf_F$ for all $E, F \in \mathcal{E}$ and hence have a common root $z \in \mathcal{C}^*$. But by Lemma 3.2, there is a set $E \in \mathcal{E}$ such that $\{1 + sz : s \in E\}$ are multiplicatively independent, implying $F_{E_1,E_2,\tilde{u}}(z) \neq 0, f_E(z) \neq 0$, which is a contradiction. \Box

4

Ackonwledgement. The author would like to thank Yufei Zhao for bringing her attention to [5]. The author would also like to thank the referees for careful reading, which improved an earlier version of the paper.

References

- [1] N. Alon, J. Bourgain, Additive Patterns in Multiplicative Subgroups, Geom. Funct. Anal. 24(3), 721-739, (2014).
- [2] M. Bateman and N. Katz, New bounds on cap sets, J. Amer. Math. Soc. $25(2)$, 585-613, (2012) .
- [3] F. A. Behrend, On sets of integers which contain no three terms in arithmetical progression, Proc. Natl. Acad. Sci. USA, 32(12), 331-332, (1946).
- [4] J. Bourgain,M. Z. Garaev, S. V. Konyagin, I. Shparlinski, Multiplicative congruences with variables from short intervals, J. Anal. Math. 124(1), 117-147, (2014).
- [5] D. Conlon, J. Fox, and Y. Zhao, A relative Szemerdi theorem, Geom. Funct. Anal. 25, 733762, (2015).
- [6] E. Croot, V. Lev, and P. P. Pach, *Progression-free sets in* \mathbb{Z}_n^4 are exponentially small, preprint, (2016). arXiv:1605.01506.
- [7] J.-H. Evertse, H. Schlickewei, W. Schmidt, Linear equations in variables which lie in a multiplicative group, Ann. of Math. (2), 155, 807-836, (2002).
- [8] B. Green, T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. (2), 167(2), 481-547, (2008).
- [9] B. Host, *Arithmetic progressions in primes*, Séminaire Bourbaki 47, 229-246 (2004/2005).
- [10] M. Elkin, An improved construction of progression free sets, Israel J. Math. 184, 93-128, (2011).
- [11] J. Ellenberg, D. Gijswijt, On large subsets of \mathbb{F}_q^n with no three-term arithmetic progression, preprint, (2016). arXiv:1605.09223.
- [12] P. Frankl, R. L. Graham, V. Rödl, On Subsets of Abelian Groups with No 3-Term Arithmetic Progression, J. Combin. Theory Ser. A 45, 157-161, (1987).
- [13] A. Garcia, J.F. Voloch, Fermat curves over finite fields, J. Number Theory 30, 345-356, (1988).
- [14] D. R. Heath-Brown, S. Konyagin, New bounds for Gauss sums derived from kth powers, and for Heilbronns exponential sum, Quart. J. Math. 51, 221-235, (2000).
- [15] S. V. Konyagin, Estimates for trigonometric sums and for Gaussian sums, IV International conference Modern problems of number theory and its applications. Part 3, 86-114, (2002).
- [16] R. Meshulam, On subsets of finite abelian groups with no 3-term arithmetic progressions, J. Combin. Theory Ser. A 71(1), 168-172, (1995).
- [17] K. Roth, On certain sets of integers, J. Lond. Math. Soc. (2), 28, 245- 252, (1953).
- [18] R. Salem, D. Spencer, On sets of integers which contain no three in arithmetic progression, Proc. Natl. Acad. Sci. USA, 28, 561-563, (1942).
- [19] T. Sanders, On Roth's theorem on progressions, Ann. of Math. (2), 174 (1), 619-636, (2011).
- [20] I. Shkredov, I. Vyugin, On additive shifts of multiplicative subgroups, Mat. Sb. 203(6), 81-100, (2012).
- $[21]$ E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27, 299-345, (1975).