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In this appendix, we show that a generalized arithmetic progression can-
not contain a large subset of elements which are sufficiently separated and
too close to the unit circle.

Given &, &, ...,& € C, a symmetric generalized arithmetic progression
P of rank r is

P={&%+nm& 4 +n il <M fori=1,...,r}. (1)

We say a set S C C is 0-separated if for any s1,$2 € S, |s1 — s2| > 0, and S
is e-close to the unit circle if for all s € S, 1 —¢ < |s| < 1+e¢.

Precisely, our result is the following
Theorem 1. Given r, there is a constant C, with the following property.
Let P C C be a r-progression as in (1). Let0 < § <1 ande < N~ 3§ . Let
S C P be a subset consisting of elements which are d-separated and e-close

to the unit circle. Then
log M
<00 (€ e )

In this appendix, C, is a constant depending on r and may vary even within

#2010 Mathematics Subject Classification.Primary 11B25.
t Key words. arithmetic progressions, quantitative Nullstellensatz.
fResearch partially financed by the NSF Grants DMS 1600154.



the same context.
We denote the set of the coefficient vectors of S by

£ = {n: (M1, ...ony) €27 : na| < M,‘|£0+Zn,-5i|2— 1( <€}.
=1

Fix m € £. Hence

r

> (i —mi)é

i=1

<2y14¢ forallnef. (2)

Let (£) be the vector space generated by £. We assume dim(E) = r, since
otherwise we may reduce the rank of P without significantly changing the
size of P (see Chapter 3 in [4]). Therefore, we can take r independent vectors
aM ... 7l € £ and use Cramer’s rule to solve &, - - , &, in the following
system of r equations.

(0 — ek -+ (0D = m ), =

(0 —m)&+ -+ (nf) —m,)g, =
where [¢D|,--- || < 2¢/TF¢ < 3.
We obtain a bound
|€1‘7 ceey ‘g’”l S BT!MT_I’ (3>
and hence
&0 < D Iniil + 14 < (3r)riM". (4)

Next, assume that || > 2. Then the separation assumption means that for
any m,n € & with m # n we have | ", (m; —n;)&| > 0. Thus,

)
max{léal, . 6]} > 5 o)

Without loss of generality, assume that the maximum above is attained by

ISt



Lemma 2. There exist zg, 21, . . ., Zp, Wy, W1, - . ., W, € C with z; # 0 such
that for any n € €

<zo + i mzz) (wo + inm@) =1.
i=1 i=1

We next conclude our result using this lemma.

Proof of Theorem 1.

Let A={z+>_niz:net}

Applying Proposition 3 in [2] to the mixed progression

T T
{nozo + nowo + Znizi + Zn;wl : nol, Ing| < 2 and |ny|, |nj| < M},
i—1 i—1

we have
| Al < exp(D; log M/ loglog M),

for some positive constant D,.
We next partition &£ as

&= Ué’a, Whereé’a—{ﬁeé’:zo—%inizi—a}.

acA i=1

Let S be as in Theorem 1, we write

S:{£O+ini§i:n68}:USa, (6)

a€A

where .
So={G+ Y mi&i:n €&}
i=1
Notice that S, C P, :={& + > i n& € P: 20+ >.;_, niz; = a}. The gain
here is that P, is contained in a progression of rank at most r — 1, so by

induction
|Sa| < exp(C_1log M/ loglog M).

It thus follows from (6) that

|S| < exp(C,. log M/ loglog M),
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for some appropriately chosen constant sequence C,., completing the proof.
O

We now prove Lemma 2. We will use the following effective form of
Nullstellensatz [3].
Theorem KPS Let g, f1,...,fs € Zlxy,...,x,| with degg,deg f; < d for
all i, and log(ht(f;)) < H. Then there exist gq,...,9s € Z[x1,...,x,] and
positive integers b, such that

by = Zgifi
i=1

where
I<D= lrg?é{deggi} < dnd

as well as

%1<1a<x{log 0], log(ht(g;))} < 4n(n+ 1)d"[H +log s + (n + 7)dlog(n + 1)].

Here ht(.) is the height function.
Remark. Theorem 1 in [3] is stated for the case that fi,---, fs has no
common zero. However, the standard proof of Nullstellensatz gives the above
statement. (For example, see [1].)

Now define the function P over n € £ as

r r
Pﬁ('z07 Rly+eeyZp, Wo, W1,y . -« 7w1”) = (ZO + anzz> (wO + anwl)
=1 =1

Assume that the claim does not hold, then by Theorem KPS, with n =
2r+2,s= || < (2M)",d =2,H < 2log M we have

bZi = Z PﬁQﬁ, (7>

nee
where b € Z\{0}, Qr € Z[2, ..., 2, Wy, . .., w,| such that
o deg(Qn),l <D <Cy

e the coefficients of Q5 are bounded by M.



Now replacing 2o, ..., 2z and wy, ..., w, by &, ..., & and &, ..., & in (7),
we have

|€1’l < Z‘Pﬁ<€07'"afr‘véTOa"'?gd)‘ |Qﬁ(€0>-"a£h§0a"'7£d)"

nel

By (3), (4), (5), we then have

(5 ! / ~
(27’M> < DM (3rlrM™)P Z |Pa(oy -5 &m 80+, &)

ne&

On the other hand, by definition, | Py (&, ..., &, &, ..., &) < eforanyn € €.

It thus follows that
5\ 5§\ ,
< < MC%e.
<27“M) - <2rM) - ©

However, this is impossible with the choice of € from Theorem 1.
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