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In this appendix, we show that a generalized arithmetic progression can-
not contain a large subset of elements which are sufficiently separated and
too close to the unit circle.

Given ξ0, ξ1, . . . , ξr ∈ C, a symmetric generalized arithmetic progression
P of rank r is

P = {ξ0 + n1ξ1 + · · ·+ nrξr : |ni| < M for i = 1, . . . , r}. (1)

We say a set S ⊂ C is δ-separated if for any s1, s2 ∈ S, |s1 − s2| ≥ δ, and S
is ε-close to the unit circle if for all s ∈ S, 1− ε < |s| < 1 + ε.

Precisely, our result is the following
Theorem 1. Given r, there is a constant Cr with the following property.
Let P ⊂ C be a r-progression as in (1). Let 0 < δ < 1 and ε < N−CrδCr . Let
S ⊂ P be a subset consisting of elements which are δ-separated and ε-close
to the unit circle. Then

|S| < exp

(
Cr

logM

log logM

)
.

In this appendix, Cr is a constant depending on r and may vary even within
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the same context.
We denote the set of the coefficient vectors of S by

E =

{
n̄ = (n1, . . . , nr) ∈ Zr : |ni| < M,

∣∣∣|ξ0 +
r∑

i=1

niξi|2 − 1
∣∣∣ < ε

}
.

Fix m̄ ∈ E . Hence∣∣∣∣ r∑
i=1

(ni −mi)ξi

∣∣∣∣ ≤ 2
√

1 + ε for all n̄ ∈ E . (2)

Let 〈E〉 be the vector space generated by E . We assume dim〈E〉 = r, since
otherwise we may reduce the rank of P without significantly changing the
size of P (see Chapter 3 in [4]). Therefore, we can take r independent vectors
n̄(1), · · · , n̄(r) ∈ E and use Cramer’s rule to solve ξ1, · · · , ξr in the following
system of r equations.

(n
(1)
1 −m1)ξ1+ · · ·+ (n(1)

r −mr)ξr = c(1)

· · ·
· · ·
· · ·

(n
(r)
1 −m1)ξ1+ · · ·+ (n(r)

r −mr)ξr = c(r)

where |c(1)|, · · · , |c(r)| ≤ 2
√

1 + ε < 3.
We obtain a bound

|ξ1|, . . . , |ξr| ≤ 3r!M r−1, (3)

and hence
|ξ0| <

∑
i

|niξi|+ 1 + ε < (3r)r!M r. (4)

Next, assume that || ≥ 2. Then the separation assumption means that for
any m̄, n̄ ∈ E with m̄ 6= n̄ we have |

∑r
i=1(mi − ni)ξi| > δ. Thus,

max{|ξ1|, . . . , |ξr|} >
δ

2rM
. (5)

Without loss of generality, assume that the maximum above is attained by
|ξ1|.
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Lemma 2. There exist z0, z1, . . . , zr, w0, w1, . . . , wr ∈ C with z1 6= 0 such
that for any n̄ ∈ E (

z0 +
r∑

i=1

nizi

)(
w0 +

r∑
i=1

niwi

)
= 1.

We next conclude our result using this lemma.
Proof of Theorem 1.
Let A = {z0 +

∑r
i=1 nizi : n̄ ∈ E}.

Applying Proposition 3 in [2] to the mixed progression

{n0z0 + n0w0 +
r∑

i=1

nizi +
r∑

i=1

n′iwi : |n0|, |n′0| < 2 and |ni|, |n′i| < M},

we have
|A| ≤ exp(Dr logM/ log logM),

for some positive constant Dr.
We next partition E as

E =
⋃
a∈A

Ea, where Ea =
{
n̄ ∈ E : z0 +

r∑
i=1

nizi = a
}
.

Let S be as in Theorem 1, we write

S =
{
ξ0 +

r∑
i=1

niξi : n̄ ∈ E
}

=
⋃
a∈A

Sa, (6)

where

Sa := {ξ0 +
r∑

i=1

niξi : n̄ ∈ Ea}.

Notice that Sa ⊂ Pa := {ξ0 +
∑r

i=1 niξi ∈ P : z0 +
∑r

i=1 nizi = a}. The gain
here is that Pa is contained in a progression of rank at most r − 1, so by
induction

|Sa| ≤ exp(Cr−1 logM/ log logM).

It thus follows from (6) that

|S| ≤ exp(Cr logM/ log logM),
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for some appropriately chosen constant sequence Cr, completing the proof.
�

We now prove Lemma 2. We will use the following effective form of
Nullstellensatz [3].
Theorem KPS Let g, f1, . . . , fs ∈ Z[x1, . . . , xn] with deg g, deg fi ≤ d for
all i, and log(ht(fi)) ≤ H. Then there exist g1, . . . , gs ∈ Z[x1, . . . , xn] and
positive integers b, l such that

b gl =
s∑

i=1

gifi

where
l ≤ D = max

1≤i≤s
{deg gi} ≤ 4ndn

as well as

max
1≤i≤s

{log |b|, log(ht(gi))} ≤ 4n(n+ 1)dn
[
H + log s+ (n+ 7)d log(n+ 1)

]
.

Here ht(.) is the height function.
Remark. Theorem 1 in [3] is stated for the case that f1, · · · , fs has no
common zero. However, the standard proof of Nullstellensatz gives the above
statement. (For example, see [1].)

Now define the function P over n̄ ∈ E as

Pn̄(z0, z1, . . . , zr, w0, w1, . . . , wr) =
(
z0 +

r∑
i=1

nizi
)(
w0 +

r∑
i=1

niwi

)
.

Assume that the claim does not hold, then by Theorem KPS, with n =
2r + 2, s = |E| ≤ (2M)r, d = 2, H ≤ 2 logM we have

bzl1 =
∑
n̄∈E

Pn̄Qn̄, (7)

where b ∈ Z\{0}, Qn̄ ∈ Z[z0, . . . , zr, w0, . . . , wr] such that

• deg(Qn̄), l ≤ D ≤ C ′r

• the coefficients of Qn̄ are bounded by MC′
r .
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Now replacing z0, . . . , zr and w0, . . . , wr by ξ0, . . . , ξr and ξ̄0, . . . , ξ̄r in (7),
we have

|ξ1|l ≤
∑
n̄∈E

|Pn̄(ξ0, . . . , ξr, ξ̄0, . . . , ξ̄d)| |Qn̄(ξ0, . . . , ξr, ξ̄0, . . . , ξ̄d)|.

By (3), (4), (5), we then have(
δ

2rM

)l

≤ DMC′
r(3r!rM r)D

∑
n̄∈E

|Pn̄(ξ0, . . . , ξr, ξ̄0, . . . , ξ̄r)|.

On the other hand, by definition, |Pn̄(ξ0, . . . , ξr, ξ̄0, . . . , ξ̄r)| ≤ ε for any n̄ ∈ E .
It thus follows that (

δ

2rM

)l

≤
(

δ

2rM

)D

≤MC′′
r ε.

However, this is impossible with the choice of ε from Theorem 1.
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