Appendix: Arithmetic progressions in multiplicative groups of finite fields *[†]

Mei-Chu Chang[‡] Department of Mathematics University of California, Riverside mcc@math.ucr.edu

In this appendix, we show that a generalized arithmetic progression cannot contain a large subset of elements which are sufficiently separated and too close to the unit circle.

Given $\xi_0, \xi_1, \ldots, \xi_r \in \mathbb{C}$, a symmetric generalized arithmetic progression P of rank r is

$$P = \{\xi_0 + n_1\xi_1 + \dots + n_r\xi_r : |n_i| < M \text{ for } i = 1, \dots, r\}.$$
 (1)

We say a set $S \subset \mathbb{C}$ is δ -separated if for any $s_1, s_2 \in S$, $|s_1 - s_2| \geq \delta$, and S is ε -close to the unit circle if for all $s \in S$, $1 - \varepsilon < |s| < 1 + \varepsilon$.

Precisely, our result is the following

Theorem 1. Given r, there is a constant C_r with the following property. Let $P \subset \mathbb{C}$ be a r-progression as in (1). Let $0 < \delta < 1$ and $\varepsilon < N^{-C_r} \delta^{C_r}$. Let $S \subset P$ be a subset consisting of elements which are δ -separated and ε -close to the unit circle. Then

$$|S| < \exp\left(C_r \ \frac{\log M}{\log\log M}\right).$$

In this appendix, C_r is a constant depending on r and may vary even within

^{*2010} Mathematics Subject Classification.Primary 11B25.

[†]Key words. arithmetic progressions, quantitative Nullstellensatz.

[‡]Research partially financed by the NSF Grants DMS 1600154.

the same context.

We denote the set of the coefficient vectors of S by

$$\mathcal{E} = \left\{ \bar{n} = (n_1, \dots, n_r) \in \mathbb{Z}^r : |n_i| < M, \left| |\xi_0 + \sum_{i=1}^r n_i \xi_i|^2 - 1 \right| < \varepsilon \right\}.$$

Fix $\bar{m} \in \mathcal{E}$. Hence

$$\left|\sum_{i=1}^{r} (n_i - m_i)\xi_i\right| \le 2\sqrt{1+\varepsilon} \quad \text{for all } \bar{n} \in \mathcal{E}.$$
 (2)

Let $\langle \mathcal{E} \rangle$ be the vector space generated by \mathcal{E} . We assume dim $\langle \mathcal{E} \rangle = r$, since otherwise we may reduce the rank of P without significantly changing the size of P (see Chapter 3 in [4]). Therefore, we can take r independent vectors $\bar{n}^{(1)}, \dots, \bar{n}^{(r)} \in \mathcal{E}$ and use Cramer's rule to solve ξ_1, \dots, ξ_r in the following system of r equations.

$$(n_1^{(1)} - m_1)\xi_1 + \dots + (n_r^{(1)} - m_r)\xi_r = c^{(1)}$$

...
$$(n_1^{(r)} - m_1)\xi_1 + \dots + (n_r^{(r)} - m_r)\xi_r = c^{(r)}$$

where $|c^{(1)}|, \cdots, |c^{(r)}| \le 2\sqrt{1+\varepsilon} < 3$. We obtain a bound

$$|\xi_1|, \dots, |\xi_r| \le 3r! M^{r-1},$$
(3)

and hence

$$|\xi_0| < \sum_i |n_i \xi_i| + 1 + \varepsilon < (3r)r!M^r.$$

$$\tag{4}$$

Next, assume that $|| \geq 2$. Then the separation assumption means that for any $\bar{m}, \bar{n} \in \mathcal{E}$ with $\bar{m} \neq \bar{n}$ we have $|\sum_{i=1}^{r} (m_i - n_i)\xi_i| > \delta$. Thus,

$$\max\{|\xi_1|,\ldots,|\xi_r|\} > \frac{\delta}{2rM}.$$
(5)

Without loss of generality, assume that the maximum above is attained by $|\xi_1|$.

Lemma 2. There exist $z_0, z_1, \ldots, z_r, w_0, w_1, \ldots, w_r \in \mathbb{C}$ with $z_1 \neq 0$ such that for any $\bar{n} \in \mathcal{E}$

$$\left(z_0 + \sum_{i=1}^r n_i z_i\right) \left(w_0 + \sum_{i=1}^r n_i w_i\right) = 1.$$

We next conclude our result using this lemma. Proof of Theorem 1. Let $A = \{z_0 + \sum_{i=1}^r n_i z_i : \bar{n} \in \mathcal{E}\}.$ Applying Proposition 3 in [2] to the mixed progression

$$\{n_0 z_0 + n_0 w_0 + \sum_{i=1}^r n_i z_i + \sum_{i=1}^r n'_i w_i : |n_0|, |n'_0| < 2 \text{ and } |n_i|, |n'_i| < M\},\$$

we have

 $|A| \le \exp(D_r \log M / \log \log M),$

for some positive constant D_r .

We next partition \mathcal{E} as

$$\mathcal{E} = \bigcup_{a \in A} \mathcal{E}_a$$
, where $\mathcal{E}_a = \left\{ \bar{n} \in \mathcal{E} : z_0 + \sum_{i=1}^r n_i z_i = a \right\}$.

Let S be as in Theorem 1, we write

$$S = \left\{\xi_0 + \sum_{i=1}^r n_i \xi_i : \bar{n} \in \mathcal{E}\right\} = \bigcup_{a \in A} S_a,\tag{6}$$

where

$$S_a := \{\xi_0 + \sum_{i=1}^r n_i \xi_i : \bar{n} \in \mathcal{E}_a\}.$$

Notice that $S_a \subset P_a := \{\xi_0 + \sum_{i=1}^r n_i \xi_i \in P : z_0 + \sum_{i=1}^r n_i z_i = a\}$. The gain here is that P_a is contained in a progression of rank at most r - 1, so by induction

 $|S_a| \le \exp(C_{r-1}\log M/\log\log M).$

It thus follows from (6) that

$$|S| \le \exp(C_r \log M / \log \log M),$$

for some appropriately chosen constant sequence C_r , completing the proof. \Box

We now prove Lemma 2. We will use the following effective form of Nullstellensatz [3].

Theorem KPS Let $g, f_1, \ldots, f_s \in \mathbb{Z}[x_1, \ldots, x_n]$ with deg g, deg $f_i \leq d$ for all i, and log(ht(f_i)) $\leq H$. Then there exist $g_1, \ldots, g_s \in \mathbb{Z}[x_1, \ldots, x_n]$ and positive integers b, l such that

$$b g^l = \sum_{i=1}^s g_i f_i$$

where

$$l \le D = \max_{1 \le i \le s} \{\deg g_i\} \le 4nd^n$$

as well as

 $\max_{1 \le i \le s} \{ \log |b|, \log(ht(g_i)) \} \le 4n(n+1)d^n [H + \log s + (n+7)d\log(n+1)].$

Here ht(.) is the height function.

Remark. Theorem 1 in [3] is stated for the case that f_1, \dots, f_s has no common zero. However, the standard proof of Nullstellensatz gives the above statement. (For example, see [1].)

Now define the function P over $\bar{n} \in \mathcal{E}$ as

$$P_{\bar{n}}(z_0, z_1, \dots, z_r, w_0, w_1, \dots, w_r) = \left(z_0 + \sum_{i=1}^r n_i z_i\right) \left(w_0 + \sum_{i=1}^r n_i w_i\right).$$

Assume that the claim does not hold, then by Theorem KPS, with $n = 2r + 2, s = |\mathcal{E}| \le (2M)^r, d = 2, H \le 2 \log M$ we have

$$bz_1^l = \sum_{\bar{n}\in\mathcal{E}} P_{\bar{n}}Q_{\bar{n}},\tag{7}$$

where $b \in \mathbb{Z} \setminus \{0\}, Q_{\bar{n}} \in \mathbb{Z}[z_0, \ldots, z_r, w_0, \ldots, w_r]$ such that

- $\deg(Q_{\bar{n}}), l \leq D \leq C'_r$
- the coefficients of $Q_{\bar{n}}$ are bounded by $M^{C'_r}$.

Now replacing z_0, \ldots, z_r and w_0, \ldots, w_r by ξ_0, \ldots, ξ_r and $\overline{\xi}_0, \ldots, \overline{\xi}_r$ in (7), we have

$$|\xi_1|^l \le \sum_{\bar{n}\in\mathcal{E}} |P_{\bar{n}}(\xi_0,\ldots,\xi_r,\bar{\xi}_0,\ldots,\bar{\xi}_d)| |Q_{\bar{n}}(\xi_0,\ldots,\xi_r,\bar{\xi}_0,\ldots,\bar{\xi}_d)|.$$

By (3), (4), (5), we then have

$$\left(\frac{\delta}{2rM}\right)^{l} \leq DM^{C_{r}'}(3r!rM^{r})^{D}\sum_{\bar{n}\in\mathcal{E}}|P_{\bar{n}}(\xi_{0},\ldots,\xi_{r},\bar{\xi_{0}},\ldots,\bar{\xi_{r}})|.$$

On the other hand, by definition, $|P_{\bar{n}}(\xi_0, \ldots, \xi_r, \bar{\xi_0}, \ldots, \bar{\xi_r})| \leq \varepsilon$ for any $\bar{n} \in \mathcal{E}$. It thus follows that

$$\left(\frac{\delta}{2rM}\right)^l \le \left(\frac{\delta}{2rM}\right)^D \le M^{C_r''}\varepsilon.$$

However, this is impossible with the choice of ε from Theorem 1.

References

- E. Bombieri, J. Bourgain and S. V. Konyagin, Roots of Polynomials in Subgroups of forumla and Applications to Congruences, Int Math Res Notices, 5, 802-834 (2009).
- [2] M.-C. Chang, Factorization in generalized arithmetic progressions and application to the Erdős-Szemerédi sum-product problems, Geom. Funct. Anal. 13 (4), 720-736 (2003).
- [3] T. Krick, L. M. Pardo and M. Sombra, Sharp estimates for the arithmetic Nullstellensatz, Duke Math. J., 109, 521598 (2001).
- [4] T. Tao and V. Vu, Additive Combinatorics, Cambridge Univ. Press, 2006.