ON THE EXPONENTIAL LARGE SIEVE INEQUALITY
FOR SPARSE SEQUENCES MODULO PRIMES
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ABSTRACT. We complement the argument of M. Z. Garaev (2009)
with several other ideas to obtain a stronger version of the large
sieve inequality with sparse exponential sequences of the form A°~.
In particular, we obtain a result which is non-trivial for monoton-
ically increasing sequences S = {s,}*_; provided s, < n2+ol),
whereas the original argument of M. Z. Garaev requires s, <
p8/14+0(1) in the same setting. We also give an application of
our result to arithmetic properties of integers with almost all dig-
its prescribed.

1. INTRODUCTION

The classical large sieve inequality, giving upper bounds on average
values of various exponential and similar Dirichlet polynomials, such

as
2

Q q S 2 Q S
Z Z Z ag exp (2mias/q) and Z Z Z asx(s)| ,
q=1 a=1 s=1 g=1x mod q |s=1
ged(a,q)=1 X prim.

with primitive multiplicative characters y modulo ¢ and arbitrary com-
plex weights {a,}2_,, has proved to be an extremely useful and versatile
tool in analytic number theory and harmonic analysis, see, for exam-
ple, [13,17,18].

Furthermore, if the weights a, are supported only on elements of
some sequence S = {s,}1_,, which naturally occurs in many number
theoretic applications, then the above sums can be written as
2

Q 4 2 Q
(1.1) D0 2 me(sa)| and Y > (Y ()|
q=1 a=1 n<T q=1x mod q [n<T
ged(a,q)=1 X prim.

where v, = a;, and
e,(2) = exp(2miz/q).
2010 Mathematics Subject Classification. 11L07, 11N36.

Key words and phrases. exponential sums, sparse sequences, large sieve.
1



2 M. C. CHANG, B. KERR, AND I. E. SHPARLINSKI

However, the power of general bounds rapidly diminishes when the
sequence S becomes sparse.

Partially motivated by this phenomenon, and partially by applica-
tions to Mersenne numbers, Garaev and Shparlinski [10, Theorem 3.1]
have introduced a modification of the large sieve, for both exponential
and Dirichlet polynomials with arguments that contain exponentials
from extremely sparse sequences.

In particular, in the setting of [10], the arguments of the exponen-
tials and characters appearing in (1.1) contain exponential functions
A*» with elements of S rather than the elements of S themselves. In
the case of exponential polynomials, Garaev [9] has introduced a new
approach, which has led to a stronger version of the the exponential
large sieve inequality, improving some of the results of [10], see also [1,
Lemma 2.11] and [22, Theorem 1] for several other bounds of this type.
Furthermore, stronger versions of the exponential large sieve inequal-
ity for special sequences S, such as T’ consecutive integers or the first
T primes, can also be found in [1,10], with some applications given
in [21].

Here we continue this direction and concentrate on the case of general
sequences S without any arithmetic restriction. We introduce several
new ideas which allow us to improve some results of Garaev [9]. For
example, we make use of the bound of [15, Theorem 5.5] on exponential
sums over small multiplicative subgroups modulo p, which hold for
almost all primes p, see Lemma 3.2. We also make the method more
flexible so it now applies to much sparser sequences S than in [9]. We
believe these ideas may find more applications in similar problems.

More precisely, let us fix some integer A > 2. For each prime number
p, we let ¢, denote the order of A mod p. For real X and A we define
the set

En(X)={p< X : t,=A}
Note that by a result of Erdos and Murty [8], see also (2.8), for A =
X1/2 almost all primes p < X belong to Ea(X).

For integer T' and two sequences of complex weights I' = {~,}1_,
and integers S = {s,}1_, we define the sums
2
WIS, T, X,A) = Z max 2 Yn €p(aN™)

<T

d(a,p)=1
peén(x) & (a;p) e

These sums majorize the ones considered by Garaev [9] where each
term is divided by the divisor function 7(p — 1) of p — 1 . Here we
obtain a new bound of the sums V) (', S; T, X, A) which in particular
improves some bounds of Garaev [9)].
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The argument of Garaev [9] reduces the problem to bounding Gauss
sums for which he uses the bound of Heath-Brown and Konyagin [12],
that is, the admissible pair (2.1), which is defined below. In particular,
for VA(I',S; T, X, X'/2) the result of Garaev [9] is nontrivial provided

(12) S < X15/14+O(1).

Our results by-pass significantly the threshold (1.2) and allow us to
replace 15/14 with any fixed 9 < 2.

Our improvement is based on a modification of the argument of
Garaev [9] which allows us to use the bounds of short sums with expo-
nential functions, given in [15, Theorem 5.5], see also Lemma 3.2 below.
This alone allows us to extend the result of [9] to sparse sequences S,
roughly growing at most s, < n”/%~¢ for any fixed € > 0 in the same
scenario where the result of [9] limits the growth to s, < n'®/"~¢. Fur-
thermore, using bounds of exponential sums over small subgroups of
finite fields, in particular that of Bourgain, Glibichuk and Konyagin [5]
we relax the condition on S to s,, < n¥?°¢.

Using a different argument which combines a bound of Bourgain
and Chang [4] for Gauss sums modulo a product of two primes with
a duality principle for bilinear forms, we obtain another, although less
explicit bound which allows the elements to grow as fast as s, < n?~°.
Furthermore, for this result we do not need to limit the summation to
primes from Ex(X) but can consider all primes from p < X, in which
case we denote
2
WIS, T,X) = max Z Tn €p(aN™)

<T

d(a,p)=1

We also give an application of our new estimate to investigating
arithmetic properties of integers with almost all digits prescribed in
some fixed base. To simplify the exposition, we only consider binary
expansions (and hence we talk about bits rather than binary digits).
Namely, for an integer S > 1, an S-bit integer a and a sequence of
integers S = {s,}1_, with0 < 51 < ... < sy < S, we denote by N(a; S)
the set of S-bit integers z whose bits on all positions j = 1,...,5
(counted from the right) must agree with those of a except maybe
when j € S.

We first recall that Bourgain [2,3] has recently obtained several very
strong results about the distribution of prime numbers among the ele-
ments of A(a; S), see also [11]. However, in the setting of the strongest
result in this direction from [3], the set S of “free” positions has to be
very massive, namely its cardinality has to satisfy T > (1 — k)S for
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some small (and unspecified) absolute constant x > 0. In the case
of square-free numbers instead of prime numbers, a similar result has
been obtained in [6] with any fixed k < 2/5 (one can also find in [6]
some results on the distribution of the value of the Euler function and
quadratic non-residues in N'(a;S)). Here we address a problem at the
other extreme, and relax the strength of arithmetic conditions on the
elements from N(a;S) but instead consider much sparser sets S of
available positions. In particular, we show that the product of the el-
ements from N (a;S) contains significantly more prime divisors than a
typical integer of comparable size.

2. MAIN RESULTS

Throughout the paper, the letter p always denotes a prime number.

As usual A = O(B), A « B, B » A are all equivalent to |A4| <
c|B| for some absolute constant ¢ > 0, whereas A = o(B) means that
A/B — 0.

We say that a pair (o, §) is admissible if for any prime p and any
integer A with ged(\, p) = 1 we have
t

> ey(aX?)

z=1

max

max, <tap6+o(1)
a,p)=

)

as p — 00, where t is the multiplicative order of A modulo p.
Concerning admissible pairs, Korobov [16] has shown that the pair

(o, 8) = (0,1/2),
is admissible. For shorter ranges of ¢, Korobov’s bound has been im-
proved by Heath-Brown and Konyagin [12] who show that the pairs

(2.1) (a,8) = (5/8,1/8),
and
(2.2) (. B) = (3/8,1/4),

are admissible.
More recently Shkredov [19,20] has shown that the pair

(2.3) (o, ) = (1/2,1/6),
is admissible, which improves on the pairs (2.1) and (2.2) in the medium
range of ¢.

Furthermore, the truly remarkable result of Bourgain, Glibichuk and
Konyagin [5] implies that for any ¢ > 0 there is some ¢ > 0 that
depends only on ¢ such that

(2.4) (1 —19,¢9),
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is admissible.
Our first result is as follows.

Theorem 2.1. Suppose that for an admissible pair (o, B) and some
positive numbers n and 9§, we have

B+n _1
2.5 < - —0.
(25) l—a 2
Suppose further that S, T and X are parameters satisfying
(2.6) THHYB=20) 5 g x2n,

Let A > 1 and integer k = 1 satisfy

. ¥ T 1/(3—2a) A
( . ) = SXQU

Then for any sequence of complex numbers T' = {y,}I_, with |v,| < 1
and integers S = {s,}L_, with 0 < 51 < ... < sy < S we have

VA(F7 Sa T7 X7 A)
< (X + TX—(S/(k2+2) + (SQ—QaTX—277) 1/(3*20‘)) TX1+O(1).

k

We note that under (2.6) the condition (2.7) also follows from a
simpler inequality

X < <T‘1/ (3—2a>2A) ’

Considering the strength of Theorem 2.1, we take A = X2 and T =
X'*¢. Using the admissible pair of Heath-Brown and Konyagin (2.1),
we obtain a power saving in Theorem 2.1 provided S < X7/%~¢ im-
proving of Garaev’s range of S < X'»/14=¢ With the same choice of
parameters and using the admissible pair (2.4) of Bourgain, Glibichuk
and Konyagin [5], we obtain a power saving in Theorem 2.1 provided
S < X3/275.

Using a different method we can set A = 1 and also extend the range
of S for which we may obtain a nontrivial bound for V\(I', S; T, X) at
the cost of making the power saving explicit.

Theorem 2.2. There exists some absolute constant p > 0 such that
VA, 8T, X) < (X'7PT? + XPPT%? 4 X3ATT8GHY) XoW),

Comparing the bound of Theorem 2.2 with the trivial bound X772,
we see that it is nontrivial provided

T>X" and S<TX'®
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which on taking T = X'*¢, we obtain a power saving in Theorem 2.2
provided S < T%7=.

For a sequence of points A = {a,}._, we define the discrepancy D
of A by

D = sup M—(b—a) :
o<asb<t| T

where A(a,b) denotes the number of points of A falling in the interval
[a,b] € [0, 1]. Garaev [9] combines his bound for V,(I', S, T, X, A) with
a result of Erdos and Murty [8], which in particular implies that

(2.8) gXl/Z,X = (1 + 0(1)) X — o0,

X
log X’
and the Erdos-Turdn inequality (see for example [7]). This allows
Garaev [9, Section 3] to show that for any € > 0 there is some 6 > 0
such that for almost all primes p < X, the sequence

mod 1} ,

1<n<T

Sn

(2.9 Al\p) = {Ap

with 7' = [X (log X)*"¢], has discrepancy
D < (logT)™°,

provided S < X1/14+0(1) a5 X — o0,
For comparison with our bound, Theorem 2.2 produces the following

result. For any € > 0 and almost all primes p < X, the sequence (2.9)
with T' = [X!*¢] has discrepancy

D<T°,

provided that S < X?7° as X — 0.

We now give an application of Theorem 2.2 to the numbers with
prescribed digits, namely to the integers from the set N (a;S), defined
in Section 1. We denote by w(k) the number of distinct prime divisors
of an integer k£ > 1.

Theorem 2.3. Let us fir some € > 0. For any sequence of integers
S={s,}_, with0<s; <...<sp <S5 with

S g T2_€,
and any S-bit integer a, letting
P(a;S) = H 2,
2eN(a;S)

we have
w(P(a;8)) » T,
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for some 6 > 0 which depends only on €.

Considering Theorem 2.3, we first recall a classic result of Hardy and
Ramanujan, which states that for any function ¢(x) — oo, the number
of positive integers n < x such that

lw(n) —loglogn| > ¥ (n)(loglogn)
is o(z), see, for example [13, Corollary 1.4]. Since we have
275 « P(a;:8) « 2°°5,
an application of Theorem 2.3 gives
w(P(a;S)) = (loglog P(a; 8))'**,

for some 6 > 0. In particular, the above inequality implies that the
product P(a;S) has a much larger number of prime factors than one
usually expects from an integer of similar size.

1/2
)

3. PRELIMINARY RESULTS

We recall that A « B and A = O(B) are both equivalent to the
inequality |A| < ¢B for some constant ¢, which throughout the pa-
per may depend on ¢ and occasionally, where obvious, on the integer
parameter k > 1.

We alslo use X* to indicate that the summation is taken over a
reduced residue system. That is, for any function ¢ and integer k, we

have
k

Srvle = Y W)
cmod k c=1
ged(c,k)=1

We need the following simplified form of the large sieve inequality,
see [13, Theorem 7.11].

Lemma 3.1. For any K > 1 and increasing sequence of integers S =
{s,}1_, with max,s s = S, we have

N

k<K cmod k
The following is [15, Theorem 5.5].

Lemma 3.2. For each integer t and prime { = 1 mod t we fix some
element g0 of multiplicative order t modulo . Then, for any fized
integer k = 2 and an arbitrary U > 1, the bound

t—1

Z e(agy;,)

=0

2

Z Yner(es,)| « (K*+ S)T.

n<T

max « OV (VR L R,

(a,0)=1
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holds for all primes ¢ = 1 mod t except at most U/logU of them.

Lemma 3.3. Let A be a fized integer. For any Z > 0 we have
#{p prime : ord,\ < Z } « Z*.
Proof. If ord, A = y then \Y —1 = 0 mod p. This implies that

#{p prime : ordp/\<Z}<w< 1_[ ()\Z—l)),

1<z<Z

where as before, w(k) denotes the number of distinct prime divisors of
an integer £k > 1. Hence,

#{p prime : ord, A < Z } « log H (N —1) <log </\ZQ/2> « 72,
1<2<Z

which gives the desired result. O
The following is a special case of [4, Corollary 4.2].
Lemma 3.4. Let p; and py be primes and let H be a subgroup of Zy,
where ¢ = p1po such that
#{H mod p,} = ¢°, v=12
for some fixed 6 > 0. Then
< (#H)'7,

max

Z e,(ah)

heH
for some o > 0 which depends only on 6 > 0.

4. PROOF OF THEOREM 2.1

4.1. Initial tranformations. Let

op(a) = Z Tn €p(aX’).

n<T
It is also convenient to define a, as any integer a € {1,...,p — 1} with
(4.1) lop(ap)] = max |op(a)l,
ged(a,p)=1

so that
WILST, X, A) = > op(ay)].
pe€a(X)
However, it is more convenient to work with the sums where each term
is divided by the divisor function 7(p — 1). We define

1
|Jp(a>|2 )

WA(F7S;T7 X7 A) = Z N
petatn) TP 1)
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and note the inequality 7(n) = n°®) implies that
VAL, ST, X, A) < WA(T, 8; T, X, A) X
Hence it is enough to prove
W)\(F7 8; Ta X7 A)
4.9 Slfl/(SfQQ)Tl/(?)fZa) T
(42) < <X +

1+o0(1)
X 21/(3—2a) + Xa/(k2+2)> X

where «, 3,9, 7 satisfy (2.5) and («, 3) is an admissible pair.

Fix some p < X and consider o,(a,). We split s, into arithmetic
progressions mod t,. Using the orthogonality of exponential functions,
we obtain

op(ap) = Z Z Vo €p(apA™)

n<T
sn_ac mod t,

tp tp

= — Z Z Z Vn €1, (b(sn — 7)) ep(apA”),

px 1b=1n<T

and hence

op(ay) = 2 Z Z Z Yo €, (b(sn — x)) ep(apA”)

ty ditpr=1  b=1  n<T
ged(b,ty)=d

_ —Z Z S S e alb(sn — 7)) ep(a\).

ty dltp =1 bmod (t,/d) n<T

Let £ > 0 be a real parameter to be chosen later. We set

D, = &t,,
and partition summation over d according to D,,. This gives
(4.3) lop(ap)] < lopa(ap)] + [op2(ap)l,

where

(4.4) op1(ap) = Z Z 2 Z’Vnetp/d — 1)) ey(apA’),

ty dlt, ==1bmod (tp/d) n<T
d<D,

and

O'pg ap = Z 2 Z Z Tn et,,/d ))ep(ap)‘z)-

ty dlty, *=1bmod (tp/d) n<T
d>D,
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The equation (4.3) implies that

|0p(ap)|2 < opa (ap)|2 + |Up72(ap)|2>

which on averaging over p < X gives

(45) W/\(F,S;T, X, A) & Y1+ 22,
where
1
2y = Z 7_(p—_1)|0p,1(ap)|2a
(4.6) pe€a(X)
| 22 = Z ﬁkfpﬂ(ap)ﬁ
peea(x) P

4.2. The sum ¥;. To bound ¥; we use the argument of Garaev |9,
Theorem 3.1]. Fix some p < X and consider o,;(a,). From (4.4) and
the Cauchy-Schwarz inequality

|01 (ay)] Z Z SN e a(b(s, — 7)) ep(ap\?)

tp dity, ©=1bmod (tp/d) n<T
d<D,

ZZ 22 meuyalblsn =)

d|tp *=1|bmod (tp/d) n<T
d<D,

Expanding the square and interchanging summation gives

S

ty dltp b1,b2 mod (t,/d)
d<D,

|Up,1(ap

tp
D VT, tsa(bisn, — basn,) > ey a(a(bs — by)).

n1,ne<T =1

By the orthogonality of exponential functions, the inner sum vanishes
unless b; = by. Hence

‘O.p, (ap < Z Z Z 7”177@ etp/d(b<snl Snz))
dlt, bmod (tp/d) n1,n2<T
d<D,

-1 Y

d|t, bmod (t,/d)
d<D,

2

Y

Z Tn etp/d<b3n)

n<T
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where we have used the inequality

T(tp) < 7(p - 1),
since t, | (p — 1). Summing over p < X we see that

SDIDIDN

p<X dlt, bmod (tp/d)
d<D,

2

Z Y €t,/d(bSn)

n<T

We define the sequence of numbers X; for 1 < j < J, where

log(X/A)
4.7 J=|—-"F""
(47) [ log 2
by
(4.8) X = A, X, = min{2X,_4, X}, 2<j < J,
and partition the set of primes p < X into the sets
Writing
2
Jj = Z Z Z Z Tn etp/d(bsn> y
PER; dltp bmod (tp/d) In<T
d<D,
we have
J

(410) 21 < Z 217]'.

=1
For each integer r, we define the set Q(r) by

(4.11) Or)={p< X : t,=r},
so that, replacing t, with r for p € Q(r), we obtain

Sy XX X X

2

Z Tn er/d(bsn>

X;j<r<2X; peQ(r) dlr bmod (r/d) |n<T
d<D,
2
= X #AM Y X |3 wmewalbsa)
Xj<r<2X dlr bmod (r/d) [n<T
d<D,

For each prime p € Q(r) we have r | (p—1) and hence for X; < r < 2X;
we also have

#Q(r) < é < % and D, < 2¢(X;.



12 M. C. CHANG, B. KERR, AND I. E. SHPARLINSKI

This implies that

217]' < % Z Z Z* Z Tn er/d<b5n)

J X;<r<2X; dlr  bmod (r/d) |n<T
d<2€X;

=5 NP M W IS

J d<26X; X;<r<2X; bmod (r/d) |n<T
d|r

and hence

X
(4.12) Diy < > Fi(d),

where F);(d) is given by

Fyd)= ) N

Xj/d<m<2X;/d b mod m

Z Y €m (bSn)

n<T

An application of Lemma 3.1 gives

which combined with (4.12) implies that

X; d?

J d<2¢X;

X X7 X
) (—+S>T<< e (X7 +26X;9) T,
and hence by (4.10)

(4.13) ZJ]

><|><

Xf +EX;9) T « X (X +£Slog X)T.

4.3. The sum ¥,. Fix some p < X and consider 0,5(a,). For each
value of d in the outermost summation we split summation over x into
arithmetic progressions mod ¢,/d. Recalling that 0, 2(a,) is given by

opa(ay) = Z Z Z Z Vn €4,/d(b(8n — ) € (A7),

ty ditp, ©=1 bmod (tp/d) n<T
d>D,
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tp/d

mala) = B Y Y

P dlt, y=1bmod (tp/d)
d>Dy

d
Z Tn etp/d(b(sn — y)) Z e, (ap)\y)\ztp/d) 7
n<T z=1

and hence

tp/d

lopa(ay,)] < Z Z Z* Z Yo €t,/a(b(Sn — Y))

ty dlty y=1|bmod (tp/d) n<T
d>Dy

X

d
Z e (ap)\y)\””/d)
z=1

| told

<M NN S e lbls. )

d|tp Py 1 b mod (tp/d) n<T

d>Dy
d
% Z e, (fd,p)\th/d) ,
z=1
where f,;, is chosen to satisfy
d d
)\Zt”/ d max e, (aN*/?)] .
Z_: fd gcd(a,p)=1 ;_1 p( )
Let
1 tp/d tp/d
U(p7 d) = t_ Z Z Z Tn etp/d(b(sn - y)) )
P y=1 b=1 n<T
ged(b,tp/d)=1
so that

(4.14) |op2(ap)| < Z

d|tp
d>D,

d
Z /\ztp/d
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We consider bounding the terms U(p,d). By the Cauchy-Schwarz in-
equality

1 tp/d tp/d
U(p,d)* < e > Z S e, alblsn — 9)
Py= n
vt gcd(btp/d) st
1 tp/d
- % Z Z /ynlinz etp/d(blsnl - 628712)
P 1<ny,na<T by,ba=1

ged(b1bo,tp/d)=1
tp/d

X 2 e, /a(y(b1 — b2)).

Using the orthogonality of exponential functions again, we see that the
last sums vanishes unless b; = by. This gives

tp/d
1 < _
U<p> d>2 < ﬁ 2 Z Y1V ng etp/d(b<snl - 5712))'
1<ny,no<T b=1

ged(btp/d)=1

After rearranging and extending the summation over b to the complete
residue system modulo ¢,/d, we derive

tp/d
1 _
U(pv d)2 < 2 Z Z V1 Vny etp/d(b(snl - 8712))

b=1 1<ni,n2 <T
ged(b,ty/d)=1

1 t,/d
=5 2

b=1
ged(btp/d)=1

2

Z Tn etp/d(bsn)

1<n<T

tp/d 2
< %Z S e albsa)| %V(tp/d),
b=1|1<n<T
where for an integer r > 1 we define
(4.15) V(r) = #{(n1,n2) € [, T]* : s,, = s,, mod r}.
Substituting this in (4.14) gives
d
opa(ay)| < ) | V(1) 2, @ (fapA™")
dlt, z=1

d>Dy,
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Summing over p < X gives

d

Z €p (fdvp)‘th/d)

z=1

tp 1/2
2 < Z)m de (tp/d)

pe€a (X dltp
d>D)

which by the Cauchy-Schwarz inequality implies that

d
5, < Z tpT(tp) Z p/d 2 fdp)\ztp/d
petato) TP G =1
d>D,
d 2
Z Z V (ty/d) Z ©p (fd,p)‘th/d)
PegA(X) dltp z=1

d>D,

At this point our strategy is to rearrange summation so we may apply
Lemma 3.2. We define the sequence X; as in (4.8), we let Q(r) be
given by (4.11) and for each integer r we define the following subsets

Si(r) of Q(r)
Si(ry=1{p : 2 <p<2*andt, =1}
Writing

2271'7]‘ = Z Z Z V T‘/d

Xj<r<Xji1 peSi(r) dir
d>Dy

2

Z & (fapX™"")

)

the above implies that

To further transform the sums Y, ;, define the numbers Z; by
(4.16) Zj = £X;, g=1...,J
so that

22%]’ 3¢ X] Z Z Z V T/d

X;<r<Xjy1peSi(r) dr
d>Z;

2

Z ( )\zr/d)
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After interchanging summation, we arrive at

Egﬂ'd‘ < Xj Z % 2 vV (T’/d)

Zj<d§Xj+1 XjéTSXjJrl
d|r
(4.17) d )
5 [ 6 (a9
peSi(r) |z=1

Let p be a parameter to be chosen later. We now partition summa-
tion over ¢ and j in X5 as follows

(4.18) Yo < X5+ X3,

where

l\’ N

=1

J J
Z Z EQJ‘J‘ and 222 = Z Z EQ,i,j-
X, <2 : . p

To estimate X5, we first fix some j with X; < 2. Considering the
inner summation over p, we partition S;(r) according to Lemma 3.2.
Let

9i(1-1/(k*+2))
r1=2/(k2+2) °

Ul(r) =

and for integer k we define the sets Si(l)(r) and Sl@)(r) by
Si(l)(r) = {p eSi(r) -

i )\zr/d
8P (r) = mw>m

Lemma 3.2 implies that

< 42/ <d*1/’“ + Ul-(v")’l/k2> }

Ui(r)
log U;(r)

Considering Sfl)(r) and using the fact that r | p — 1 for p € §;(r) gives

(4.19) 28V < £8(r) « 2,

r
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which implies that

2

d
Z Z fd,p)\zr/d
peS;(r) [2=1
2z‘(1+1/k2) ) U~(7’)
d2 e« d—2/k : —2/k P\t )
3 ( . ( + Ui(r) )+ Tog UA(7)

Recalling the choice of U;(r) we see that

d Zr/d 2 d29i(1-1/(K*+2))  2-2/k9i(1+1/k?)
; NE Z fdp)‘ « r1—2/(k2+2) + r )
peSi(r) [2=1
which on assuming that
(4.20) X <A,
simplifies to
d 2 ; 2
d22z(1—1/(k +2))
zr/d e
(4.21) Z Z (fap DRy ey
S z=1

Hence considering Yy ; j, we have

. 1 V (r/d)
- 9i(1-1/(k*+2)) il N
Yo K X2 Z Z r1-2/(k2+2)
Zj<d<Xj+1 strng+1
dlr

i(1-1/(k2+2)) I V()
« X;2 Z J2—2/(+2) Z r1-2/(k2+2)°
Zj<dSXj+1 Xj/dS’r‘<Xj+1/d

after the change of variable r — dr. Writing

V(r)
W;(d) = 2 r1-2/(k2+2)
Xj/dSTéXj+1/d
the above implies
o 9i(1-1/(k%+2)) VVJ(d)
(4-22) 22717] « XJ2 Z d2—2/(k*+2)"

Zj<dSXj+1
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Considering the sum W;(d) and recalling the definition of V() given
by (4.15), we have

1
Wid) = )] 2w

Xj/dﬁTSXjJrl/d 1<ni,no<T
Sny=8ny mod r

d 1-2/(k%+2)
& (Z) 2 Z 1.

1<ni,no<T Xj/dST<Xj+1/d
Snq=Sny mod r

Considering the last sum on the right, we have
TX/
Z Z 1« ] + Z Z 1.

1<ni,ne<T Xj/dST’éXj+1/d 1<ni<no<T Xj/d<T$Xj+1/d
Snq=Sny mod T Sny=Sny mod r

Since the term

2 b
Xjld<r<Xji1/d
Snq=Sny mod T

is bounded by the number of divisors of s,, — s,,, we see that

Z 1 =50,

Xj/d<r<X;i1/d

Sny=8ny mod r
and hence

X.
4.2 1 23 g
(4.23) Z Z < < g + TS ) :

1<nine<T X;/d<r<Xjy1/d
Snq=Sngy mod T

d 1-2/(k2+2) X
(d) < | + L 7sW) T
mw=(g) ()

J

which gives

Substituting the above into (4.22) we get

24+2) 5i(1-1/(k2+2)) 1
ZQJJ' ¢ X1+2/(k * 2 T —-
’ Zj<<;xj+1 @

4 XY R+ 9i(1-1/(K+2)) 2 go(1) Z 1
J )

Zj<d<Xj+1
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which simplifies to
X 12/ (K2 42)9i(1-1/(k2+2)) T

Shij < 7 T X212 2 g )0l
J

on recalling the choice of Z; given by (4.16).
We now assume that

1
(4.24) =

Without loss of generality, we can also assume that S = XU and
thus (SX)°M = XM Hence, the above bounds further simplify to

S < T2X7 (K2 4+2) 9i(1-1/(k?+2)) yo(1)

Summing over ¢ and j with X; < 2% we arrive at
J
< 2 yro(l 2/(k*42) 5i(1—1/ (k242
Ty <X Y X 9i(1-1/(K*+2))
i=1j:X;<20
and hence
(4.25) S5 < T2 x 1-(1-2p)/(K*+2) xro(1)

We next consider ¥.5. We begin our treatment of 35 in a similar
fashion to X5. In particular, we use (4.17) and the assumption that
(e, B) is admissible to obtain

A o 1
(4.26) Yoy <20, M #S(r) ) 5V (r/d),
X;<r<X d|r
d>Zj
as ¢ — 0.
Using (4.19) and then rearranging the order of summation, the above
reduces to

, 1
22,1’73' < 9i(14+2B+0(1)) Z Z @V (T/d)

X;<r<Xj1 dr
d>Zj

< 2i(1+2,3+0(1)) Z d3}2aVVj(d)a

Zj<dSXj+1

where

Wi = > V).

Xj/dSTSXjJrl/d
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We see from the definition (4.15) that

X,
wa@- % % as(Ferst)n
1<n1,n2<TXj/d<r<Xj+1/d
Sny=Sny mod r

and hence

. 1 1
2271'7]_ < 21(1+2,3+0(1))T Xj Z pTEon + TSO(l) Z d?)fm

Zj<d$X]'+1 Zj<d$X]'+1
. X. T So()
i(14+28+0(1 J
< 2il+2B+o(1)) (Z?‘Zo‘ + 25_2“ _

Since obviously S < X9 we can replace both 2°® and S°M) with
X°W. Recalling the choice of Z; and the assumption (4.24), we get

2i(1+25)T 2i(1+26)T2

o(1)

(' +T) XM <

22 i \j < S T e
5T o (l—a)
g21-0) X

_o) v2(1-a)
§21-e) X7

This implies that

1 J 2i(1+2,6’)
Y2 < T2Xx°W
2 £20-a) ; S x2(1-a)
(4.27) JEPSAGSE T
X 1+2(B+n—p(1—a))
2 o(1)
<T £2(1-a) X7

Substituting the bounds (4.25) and (4.27) in (4.18), we see that

4 28 E < 1 X2(,8*P(1*a)) T2X1+0(1)
(4.28) 2 S | e T £2(1-0) ‘

4.4. Concluding the proof. Substituting (4.13) and (4.28) in (4.5),
gives
W)\(F> S; Ta X7 A)
T T X 2(B—p(1—a)) -
o(1)
< (X +£5+ =20 74D + g2 > TX )

Let n > 0 be a parameter and make the substitution

_ B+
1—a
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The above transforms into
W)\(F7 87 T; X7 A)

T T 14+0(1)
< (X*+€S+ Xuxﬁmvu(mAW+m'*gﬂ*ﬂtY%)CFX '

T 1/(3—2a)
- (sT) >

to balance the second and fourth terms. This gives
W)\<Fa 37 T) X7 A)
1-1/(3—2a) 1 /(3—2cx)
< < X S T T

Next we chooise

_l’_

1+o0(1)
X2n/(3=2a) X(12(ﬁ+n)/(1@))/(k2+2)) X ’

We now note that the assumption (2.5) implies that
W/\(Fa Sa Ta X7 A)
2—20 —2n\ 1/(3—20) T 14o(1)
<<X+(S TX %) +Eﬁ@z5)TX .

which is the desired bound.
Finally, to complete the proof, it remains to note that (4.20) is sat-
isfied by the assumption (2.7) and (4.24) is satisfied by (2.6).

5. PROOF OF THEOREM 2.2

5.1. Initial tranformations. As before, for each prime p we define
the number a, by (4.1). Taking Z = X* in Lemma 3.3 and recalling
that ¢, denotes the order of A mod p, we have

Vi(D,8: T, X) < X272 £ (D, S; T, X, X1/4)
(5-1) = XT3 oy(a))
PEE 174 (X)
We define the sequence of numbers X, as in (4.8) with A = X4,
We also define the sets R; as in (4.9) for j = 1,...,J with J given

by (4.7).
Hence, partitioning summation over p in (5.1) according to R; gives,

J
VA(D, ST, X) « X272+ 3 W,

j=1

where

W; = Z ‘Op(ap)|2-

pER]‘
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We define the number Y by
X3/451/4
-
and let I be the largest integer j with X; < Y (since S > T we

obviously have Y > X%* > X'/ 50 I is correctly defined).
We now further partition the summation over j and re-write (5.1) as

(5.2)

(5.3) VZ(D,8:T,X) < X'V2T? 4 WS + W2,
where
I J
(5.4) WS=>W, and WZ= > W,
j=1 j=I+1

5.2. The sum W<. We fix some j with X"* < X; <Y. Considering
W;, we define the sets

(5.5) Vi(r) ={peR; : t, =r},

so that

(5.6) W= >, U
Xj<TS2Xj

where Uj, is given by
2
Ujr = Z |op(ap)|” -
peV;(r)
For each p € V;(r) we define the complex number ¢;,, by

ap(ap)

(S lrnan?)

Cirp =

so that

(57) Z |Cj,T7p|2 =1,

peV;(r)

Z Z CjrpYn €p(apA™"),

peV;(r) 1sn<T

and writing

we see that

(5.8) Uz = U2,

We have
= 2 2 by (7)¢jrp €p(apA”),

o<z<r pEV )
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where

(5.9) be@) =" >

1<n<T
Sp=x mod r

and hence by the Cauchy-Schwarz inequality

UL < X0 b@)F X0 | D) crrpen(a\?)

o<z<r 0<z<r |peV;(r)
Expanding the square and interchanging summation gives

UL Y @E Y el

O<z<r p1,p2€V; (1)

Z €p1po ((ap P2 — ap,p1)A")

o<z<r

Y

which implies that

ULP < 30 be@F ) Il

Oo<sz<r peV;(r)
2 x
+ Z ’br(l')’ Z ‘ijleijpQ’( ma))il Z €pipo (a)‘ ) :
o<sz<r p1,p2€V; (1) @P1p2)= o<sz<r
P1#D2
Since
tpl = tm =T,
the set

H={X X modpp : 0<z<r},

*

oup, and from the inequalities

r> XV > (]91]?2)1/87

we see that the conditions of Lemma 3.4 are satisfied. An application
of Lemma 3.4 gives

U <r 20 1@ Y i

is a subgroup of Z

2

o<sz<r pEV]'(T‘)
2
+ ) @ DS lesl | 7
o<z<r pEV]’(T)

which by the Cauchy-Schwarz inequality implies that

UnP < D5 1@ D) legral (r + V()P ),

o<sz<r peV;(r)
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and hence by (5.7)
UEP < D) [be(@)P (r o+ [Vi(r)r'=e).

o<z<r
Since
X
(5.10) Vil <=
we get
(5.11) U* P < (r—i— 5) D b))
. ]7,’,, ~ rg T .
o<z<r

Recalling (5.9) and the assumption each |v,| < 1, we see that

D@ = Y T Y, 1=V,

o<z<r 1<ni,no<T o<z<r
Sny =T mod r
Sny=x mod r

where V' (r) is defined by (4.15). By (5.11) we have
X
2
sk <ve) (r+ ).

X
\Uj-| <V(r) (’I“ + ﬁ) )

Combining the above with (5.6) gives

(5.12) W< > V() (X +§Q).

Xj <T‘<2Xj

and hence by (5.8)

As in the proof of Theorem 2.1, see (4.23), we have

Z V(r) « X;T + Z Z 1

Xj<T‘S2Xj 1<n1,n2<T Xj<TS2Xj
ni1#ng Sny=Sny mod r

< (X; + TSN < T2

where we have used the assumption S < 7? and T > X as otherwise
Theorem 2.2 is trivial. Substituting the above into (5.12) gives

X
W; < (X + ﬁ) e,

and hence by (5.4)
(5.13) WS < (Y + XXfQ) T2+ol) < (y 4 Xl—g/4) 2+0(1)
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5.3. The sum W=. We fix some j with Y < X; < X and arrange W;
as follows

W; = Z ‘JP(GP)F <T Z op(ap)]

pGR]' pER]'

and hence there exists some sequence of complex numbers c;, with
|cjp| = 1 such that

Sn
W; <T Z Z CjpYn €p(apA™).
pGRj 1<n<T

An application of the Cauchy-Schwarz inequality gives
2

VVJ‘2 <T° Z Z Cjp€p(apA™)

1<n<T |peR;

Since the sequence s, is increasing and bounded by S, we see that
2 2

3
W2 <T? Z Z cipep(ap\’)| « % Z Z cipep(apA )|,

1<s<S |peR; —S5<r,s<5 |pER;

so that writing

the above implies
(5.14) W< —W,;.

Considering W, expanding the square and interchanging summation
gives

W< )]

P1,p2€R;

< 52|R]| + Z Z

p1,p2€R; —5S<r<S
P1#Pp2

Z ep1p2((ap1p2 - apzpl)Ar+8>

—S<r,s<S

bl

Z €1 (Cpyps AT

—S<s<S

for some integers ay,,, with ged(ay,p,, p1p2) = 1. By (5.5) and (5.10)

Ril= > Wil <X,

Xj <7’$2Xj
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and hence
(515) Wj < S2X + Z Z(pl,p2>.
P1,P2€R;
P1#p2
where

Z €11 (Cpyps AT

—S<s<S

Z(p1,p2) = Z

—S<r<S

Considering Z(p1, p2), by the Cauchy-Schwarz inequality, we have
2

Z(p1,p2)? « S Z Z €p1ps (Apips A"A°)

—S<r<S |-S<s<S
2
S S
«S(1+ ord—()\) Z Z €pipo (ap1p2U/\ )
P1p2 u mod p1p2 |—S<s<S
Now, since
2
S
Z Z €p1ps (Ap1pa UA”)
u mod p1p2 |—S<s<S
S S
= Z Z €p1ps (Apipa (A — A7)
—5<s1,52<S u mod p1p2
S
< ppoS (1 + ﬁ s
or plpl( )
we see that

S\ s\
Z(prp)? <« pimS (14 —"——) < X8 (14— .
(p17p2) < pip2 ( + Ordp1p1 ()\)) ( " 0rdp1p2<>‘))

Since 1, ty, = X;, we have

ordy, p, (A) = lem(ty, , tp,) = tpitps > X: |
ng(tplﬂ tpg) ng(pl —_ 1’p2 — 1)

which implies

ged(pr — 1, po — 1)S>2

Z(p1,p2)* < X252 (1 + e
J

which after substituting the above in (5.15) gives

XS?
W, « SPX + XS Y 1+ v > ged(pr— Lpa — ).
p1,p2€R; J - p1,p2€R;

P1#DP2 P1#p2
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We have
Z 1 <|R;> « X7,
P1,P2€R;
P1#p2
and

Z ng(pl - 17p2 - 1) « Z ng(ajlaxQ)

P1,P2€R; 1<z <xo<X

P17#P2
— Z d Z 1 « X2,
1<d<X 1<zi<wze<X/d
(z1,22)=1
so that
52X3+o(1)
W, « S°X + 5X% + ———.
Xj
Combining the above with (5.14) gives
3+0(1) 3
W? « SXT? + X°T° + a—
Xj
which simplifies to
51/2

ij < X3/2T3/2 (1 + T) Xo(l),

J

since we may assume S < X2t°W. By (5.4) we have

51/2
(5.16) W2 « X327372 (1 + 7) X,

5.4. Concluding the proof. Substituing (5.13) and (5.16) in (5.3)
we derive

V)\ (Fa 87 T? X)
51/2
S X'VPT? 4 (Y 4+ X'70) T2 4 X332 (1 + 7) X,
Recalling the choice of Y in (5.2) the above simplifies to
V)\ (Fa 87 Ta X)
< (X1/2T2 + Xl—g/4T2 +X3/2T3/2 + X3/4T7/8sl/4) ){'0(1)7

and the result follows with p = /4 (as clearly o < 1 and thus p < 1/2)
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6. PROOF OF THEOREM 2.3

First we note that without loss of generality we may assume the
binary digits of a are zeros on all positions j € S.

For a prime p, let N,(a;S) be the number of z € N'(a;S) with p | 2
One can easily see that N,(a;S) is the number of solutions to the
congruence

T
a—i—Eans"EOmodp, d,e{0,1}, n=1,...,T.

n=1

We now proceed similarly to the proof of [15, Theorem 18.1]. Using
the orthogonality of exponential functions, we write

Ny(a;S) = lpz_: Z e, (b (i d,2°" + a))

= (d1 ..... dT)E{O ].}T

T
=2Tpt 4 = Z Z e, (b <2 d;2°" + a))
1 (di,...,dr) 6{0 137 n=1
1

::2Tp_1+-%28 @xab)[1(14-ep(ufn».

b=1
Therefore,
(61) ‘Nn,p(a) - 2Tp_1‘ < Qp7
where
T
0= o [T+ )

Using [15, Equation (18.2)] we write

(6.2) Qp < exp (O(M,log(T/M, + 1)),
where
M, = ma e, (a\™)|.
p gcd(b,p))(=1 T; A )

Now, by Theorem 2.2 if we fix some ¢y > 0, then there is some k > 0
such that if

X =7V0+0) A =XY2 and S< X%,

2 TQXl—n.

peEa(X)

then we have
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Since S < T?7¢, to satisfy the above conditions, it is enough to define
£o by the equation

2 — o

1+ ¢eg

=2—¢

or, more explicitely,
€

3—c¢

Combining this with (2.8), we see that for all but o(X/log X) primes
p < X we have M, < TX —#/3_ For each of these primes p, a combi-
nation of (6.1) and (6.2) implies that N,(a;S) > 0 (provided that p is
large enough), which concludes the proof.

o =

7. POSSIBLE IMPROVEMENTS

We note that one can get an improvement of Theorem 2.1 by using
a combination of different admissible pairs depending on the range of
d in our threatement of the sum (4.17) in and thus making the choice
of @ and f in (4.26) dependent on ¢ and j.

In particular, one can use the admissible pairs (2.1), (2.2), (2.3)
and (2.4) as well the admissible pairs given by Konyagin [14] and
Shteinikov [23] for small values of d in (4.17).
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