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This is the origin of paper ‘On a Question of Davenport and Lewis on Character
Sums and Primitive Roots in Finite Fields’. There is still a little to be typed.

Abstract Let A ⊂ Fp with |A| > p2/5+ε and |A + A| < C0|A|. We give explicit
constants k = k(C0, ε) and κ = κ(C0, ε) such that |Ak| > κp. The tools we use are
Garaev’s sum-product estimate, Freiman’s Theorem and a variant of Burgess’ method.
As a by-product, we also obtain similar result for proper generalized progression in Fp.

§0. Introduction.

Let A be a subset of Fp. The sum set and the k-fold product set of A are

A + A = {a + b : a, b ∈ A}

and
Ak = A · · ·A = {a1 · · · ak : a1, · · · , ak ∈ A},

respectively. We give explicit bounds on k and κ such that for a large set A, the size of
the k-fold product set is at least κp. The bounds depend on the size and the doubling
constant of A. More precisely, we prove the following theorem.

Theorem 1. Let A be a subset of Fp satisfying the following properties

(i) |A + A| < C0|A|
(ii) |A| > p2/5+ε.

Then there are constants k = k(C0, ε) ∈ Z+ and κ = κ(C0, ε) such that

|Ak| > κp.
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Explicit bounds on k and κ are in Remarks 5 and 6.

It is possible that the conclusion of Theorem 1 holds under assumption (i) and the
much weaker hypothesis that |A| > pε, for any given ε > 0. But even if A is an
interval I ⊂ [1, p), with |I| > pε, it seems unknown whether |Ik| > cp for appropriate
k = k(ε), unless I is of the form [1, a] with a > pε. (One may then proceed by
simple arithmetical considerations.) We would also like to point out that by Burgess’
estimate, assuming |I| > p

1
4+ε, one gets Ik ⊃ F∗p for k > k(ε). If moreover, I is of the

form [1, a], the condition that a > p
1

4
√

e
+ε suffices. It is not obvious to what extent

that Burgess’s method may be generalized to sets other than intervals. In this paper,
we consider the case of sets A with small doubling |A + A| < c|A|. This situation
was also considered in [HIS] and we significantly improved their result by involving
several additional ingredients. Under the assumption that |A + A| < c|A| Freiman’s
theorem is applicable and essentially reduces the issue to higher dimensional arithmetic
progressions. However, in order to carry out Burgess’ amplification argument, we also
reply on recent quantitative versions of the general sum-product theorem in Fp. (See
[G], [KS].) In this context, let us bring up the following question

Question. Fix d and let P be a generalized d-dimensional arithmetic progression in
Fp. Assume that |P| < √

p. Is it true that |PP| À |P|2−ε for all ε > 0?

From the result in [KS], we know that |PP| À |P| 54−ε as well as the corresponding
statemnet for multiplicative energy. This allows us to obtain the following variant of
Burgess’ inequality.

Theorem 2. Fix d and let P be a proper generalized d-dimensional progression in Fp

with |P| > p
2
5+ε. Then for some τ = τ(ε, d)

max
ψ

∣∣∣
∑

x∈P
ψ(x)

∣∣∣ < p−τ |P|,

where ψ runs over nontrivial multiplicative characters.

Note We use An for both the n-fold product set and n-fold Cartesian product when
there is no ambiguity.

§1. A consequence of Garaev’s sum-product estimate.

We will follow the argument in [KS], where the authors improved Garaev’s estimate
of a lower bound on |A + A| + |AA| from 15

14 to 14
13 for A ⊂ Fp with |A| < p1/2.

Specifically, we will use the following estimate.
(
See (2.5)−ε in [KS].

)
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Proposition KS. [KS] Let A ⊂ Fp with |A| < p
1
2 . If there exist b0 ∈ A, A1 ⊂ A and

N ∈ Z+ satisfying
|aA ∩ b0A| ∼ N for every a ∈ A1, (1.1)

then
|A1|3N4|A|3 . |A + A|9. (1.2)

Let the multiplicative energy of A be

E(A) = |{(a1.a2, a3, a4) ∈ A4 : a1a2 = a3a4}|.

(See [TV].) The following is a consequence of Proposition KS.

Lemma 3. Let A ⊂ Fp with |A| < p
1
2 . Then

c|A + A| |A|2 > E(A)4.

Proof. We write E(A) as
E(A) =

∑

a,b∈A

|aA ∩ bA|.

Take b0 ∈ A with ∑

a∈A

|aA ∩ b0A| ≥ E(A)
|A| . (1.3)

We decompose A into level sets

As = {a ∈ A : 2s−1 ≤ |aA ∩ b0A| < 2s},

where 0 ≤ s ≤ log2 |A|.
Thus by (1.3) ∑

s

2s |As| ≥ E(A)
|A| . (1.4)

For j ∈ Z+, let
sj = max{s : sj−1 ≤ |As| < 2j}.

Clearly, ∑
s

2s |As| ∼
∑

j

2sj 2j . (1.5)
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Also, we have

∑

j

2sj 2j ≤ (
max

j
2sj 2

3
4 j

) log2 |A|∑

j=0

2
j
4 ≤ max

s
2s |As| 34 |A| 14 . (1.6)

Combining (1.4), (1.5) and (1.6), we have

max
s

16s |As|3 & E(A)4

|A|5 . (1.7)

Now for s = 0, · · · , log2 |A|, applying Proposition KS with N = 2s and A1 = As,
we have

|As|316s |A|3 . |A + A|9. (1.8)

Combined with (1.7), this gives

E(A)4

|A|2 . |A + A|9. ¤

§2. The proof of Theorem 1.

By Freiman’s Theorem [C], under assumption (i), there is a proper generalized
d-dimensional progression P such that A ⊂ P and

d < C0 (2.1)

log
|P|
|A| < C1 = C2

0 (log C0)3. (2.2)

Write
P = ξ + I`1ξ1 + · · ·+ I`d

ξd,

where ξ, ξ1, · · · , ξd ∈ Fp, and I`j = {0, 1, · · · , `j − 1} with `1 ≥ `2 · · · ≥ `d and

`1`2 · · · `d = |P|. (2.3)

Let
δ =

ε

d
, (2.4)

and let d ≥ d′ ≥ 1 characterized by the property that

`i ≥ pδ, if i ≤ d′
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`i < pδ, if i > d′. (2.5)

Denote
m =

[
p

δ
2
]
,

mi =
[
p−

δ
2 `i

]
, for i ≤ d′,

and
Q = Im1ξ1 + · · ·+ Imd′ ξd′ . (2.6)

Hence by (2.5),

|Q| ≥ p−
δ
2 d′

d′∏
`i > p−

δ
2 d′−δ(d−d′)|P| > p−dδ|P| (2.7)

and
Im Q ⊂ I`1ξ1 + · · ·+ I`d′ ξd′ ⊂ P − ξ. (2.8)

Consider the map

φ : Im ×Q× (P − P + ξ) −→ Fp

(z, x, y) 7→ y + zx.

We denote by ν the image measure on Fp of the normalized counting measure on
Im ×Q× (P − P + ξ) under φ. Thus for t ∈ Fp

ν(t) = ν({t}) =
1

|Im| |Q| |P − P|
∣∣{(z, x, y) ∈ Im×Q×(P−P+ξ) : t = y+zx}

∣∣. (2.9)

Define
ν1(t) = ν(t) for t ∈ F∗p, and ν1(0) = 0. (2.10)

We may assume A ⊂ F∗p.
Similarly, we define ν2(t) = ν(t) for t ∈ A, and ν2(t) = 0 for t ∈ Fp \A.

Since for t ∈ A and any z ∈ Im, x ∈ Q, we have t− zx ∈ A− Im Q ⊂ P −P + ξ by
(2.8). It follows that

ν(t) = ν1(t) ≥ 1
|P − P| for t ∈ A.

Therefore, by (2.2)

ν(A) = ν1(A) ≥ |A|
|P − P| > e−C1−d. (2.11)
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We denote the multiplicative convolution of two functions f and g on F∗p by

(f ⊗ g)(x) =
∑

y∈F∗p
f(xy−1)g(y).

Also, we denote further the k-fold multiplicative convolution of νi by ν
(k)
i for i = 1, 2.

In the next section we will prove the following proposition.

Proposition 4. Let A ⊂ Fp with |A| > p
2
5+ε and let ν1 be defined as in (2.1)-(2.10).

Then there exists k = k(ε, C0) such that

ν
(k)
1 (x) ≤ 2

p

for all x ∈ F∗p.

Remark 5. As indicated in (3.16), we can take k = 16C0
ε2 .

Proposition 4 implies

ν
(k)
2 (x) ≤ 2

p
.

Hence
ν

(k)
2 (x) ≤ 2

p
χ

Ak
. (2.12)

Therefore, by (2.12)

2
p
|Ak| ≥

∑

x∈F∗p
ν

(k)
2 (x) =

( ∑

x∈F∗p
ν2(x)

)k = ν(A)k > e−(C1+d)k

and hence
|Ak| > e−(C1+C0)kp, (2.12)

which proves the Theorem.

Remark 6. Combining (2.2), (2.12) and Remark 5, we have an explicit bound on κ
in our theorem

κ > e−16C2
0

(
C0(log C0)

3+1
)
/ε2

.

§3 The proof of Proposition 4.
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Let ψ be a multiplicative character mod p and let f be a function on F∗p. Then

f(x) =
1

p− 1

∑

ψ

f̂(ψ)ψ(x),

where
f̂(ψ) =

∑

x∈F∗p
f(x)ψ(x).

Also
(f ⊗ g)̂ (ψ) = f̂(ψ)ĝ(ψ).

Hence

ν
(k)
1 (x) =

1
p− 1

∑

ψ

ν̂1(ψ)kψ(x)

=
1

p− 1
ν1(F∗p)k +

1
p− 1

∑

ψ nontrivial

ν̂1(ψ)kψ(x).

Therefore,

ν
(k)
1 (x) <

1
p− 1

+ max
ψ nontrivial

|ν̂1(ψ)|k.

To prove Proposition 4, it suffices to show that for some k

max
ψ nontrivial

|ν̂1(ψ)|k <
1
p

.

This will follow from that
max

ψ nontrivial
|ν̂1(ψ)| < p−τ (3.1)

for some τ = τ(ε, C0) > 0.

By (2.9), estimate (3.1) is equivalent to

∣∣∣
∑

z∈Im,x∈Q
y∈P−P+ξ

ψ(y + zx)
∣∣∣ < p−τ |Im| |Q| |P − P|. (3.2)

The following is a version of Proposition 4 with slightly general setting.
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Proposition 4’. Let Im = {1, · · · ,m}, ψ be a multiplicative character and Q and
R be two progressions in Fp with length bounded by p

1
2 and dimension bounded by d.

Then for any q ∈ Z+,

∣∣∣
∑

z∈Im,x∈Q
y∈R

ψ(y + zx)
∣∣∣ < c

d
q (|Q| |R|)1− 5

16q (q
√

m + mp
1
4q ).

Proof. We will adapt the method of Burgess’ estimate. By the Hölder’s inequality,

∣∣∣
∑

z∈Im,x∈Q
y∈R

ψ(y + zx)
∣∣∣ ≤

∑

x∈Q
y∈R

∣∣∣
∑

z∈Im

ψ(y + zx)
∣∣∣

≤ |Q|1− 1
q |R|1− 1

q

( ∑

x∈Q
y∈R

∣∣∣
∑

z∈Im

ψ(
y

x
+ z)

∣∣∣
q) 1

q

. (3.3)

We denote by η the image measure on Fp of the normalized counting measure on
Q×R under the map (x, y) 7→ y

x ,

η(t) = η({t}) =
1

|Q| |R|
∣∣{(x, y) ∈ Q×R : t =

y

x
}∣∣.

Thus, by Cauchy-Schwarz inequality the bound in (3.3) is

|Q| |R|
( ∑

t∈Fp

η(t)
∣∣∣

∑

z∈Im

ψ(t + z)
∣∣∣
q
) 1

q

≤ |Q| |R|
( ∑

t∈Fp

η(t)2
) 1

2q

( ∑

t∈Fp

∣∣ ∑

z∈Im

ψ(t + z)
∣∣2q

) 1
2q

. (3.4)

To obtain an upper bound on
∑

η(t)2 in (3.4), we will use Cauchy-Schwarz inequal-
ity and express the upper bound by the multiplicative energies of Q and R.
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|Q|2|R|2
∑

η(t)2

=
∣∣∣
{

(x1, x2, y1, y2) ∈ Q2 ×R2 :
y1

x1
=

y2

x2

}∣∣∣

=
∣∣∣
{

(x1, x2, y1, y2) ∈ Q2 ×R2 :
y1

y2
=

x1

x2

}∣∣∣

=
∑

t

∣∣∣
{

(x1, x2) ∈ Q2 :
x1

x2
= t

}∣∣∣
∣∣∣
{

(y1, y2) ∈ R2 :
y1

y2
= t

}∣∣∣

≤
( ∑

t

∣∣∣
{

(x1, x2) ∈ Q2 :
x1

x2
= t

}∣∣∣
2
) 1

2
( ∑

t

∣∣∣
{

(y1, y2) ∈ R2 :
y1

y2
= t

}∣∣∣
2
) 1

2

= E(Q)
1
2 E(R)

1
2 . (3.5)

We apply Lemma 3 to Q and R. Since Q,R are progressions,

E(Q)4 < c|Q+Q|9|Q|2 < cd|Q|11, (3.6)

E(R)4 < cd|R|11. (3.7)

Substituting (3.6) and (3.7) in (3.5) gives

∑
η(t)2 < cd|Q|− 5

8 |R|− 5
8 . (3.8)

Now we estimate the character sum in (3.4). First, observe that

∑

t∈Fp

∣∣ ∑

z∈Im

ψ(t + z)
∣∣2q =

∑

z1,··· ,z2q∈Im

∑

t∈Fp

ψ

(
(t + z1) · · · (t + zq)

(t + zq+1) · · · (t + z2q)

)
. (3.9)

By Weil’s estimate [W] (see also Theorem 11.24 in [IK])
∣∣∣∣
∑

t∈Fp

ψ

(
(t + z1) · · · (t + zq)

(t + zq+1) · · · (t + z2q)

)∣∣∣∣ < 2q
√

p , (3.10)

unless there exists 1 ≤ i ≤ 2q such that zi 6= zj for all j 6= i.

Therefore
|
∑

t∈Fp

∣∣ ∑

z∈Im

ψ(t + z)
∣∣2q ≤ q2qmq + 2qm2q √p. (3.11)
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The proposition is proved by putting (3.3), (3.4), (3.8) and (3.11) together. ¤

Returning to the proof of Proposition 4.

Assuming that |A| = p2/5+ε (which we may), it follows in particular, from (2.2) and
(2.6) that |P − P| ∼ |P| ∼ |A| < p1/2 and |Q| < p1/2

We apply Proposition to the case of which R = P − P + ξ. By (2.7), we have

∣∣∣
∑

z∈Im,x∈Q
y∈P−P+ξ

ψ(y + zx)
∣∣∣

< cd|Q| |P| |P|− 5
16q |Q|− 5

16q (q
√

m + mp
1
4q )

< cd|P| |Q| m
(

q
1√
m

(p
5
8 dδ

|P| 54
) 1

2q

+
(p1+ 5

4 dδ

|P| 52
) 1

4q

)

< cd|P| |Q| m
(√

q p
1
2q (− 1

2− 5
4 ε+ 5

8 dδ)− δ
4 + p−

5
8q (ε− dδ

2

)
. (3.12)

The last inequality is because |P| ≥ |A| = p2/5+ε and m =
[
p

δ
2
]
.

Finally, we choose our parameters.

Take
δ =

ε

d
(3.13)

q =
[5d

ε

]
. (3.14)

Then (3.12) implies (3.2) with

τ =
ε2

16d
>

ε2

16C0
. (3.15)

This completes the proof of the Theorem. Moreover, since in (3.1), k ∼ 1
τ , we have

k <
16C0

ε2
. (3.16)
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