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Abstract

We establish new estimates on short character sums for arbitrary composite
moduli with small prime factors. Our main result improves on the Graham-
Ringrose bound for square free moduli and also on the result due to Gallagher
and Iwaniec when the core q′ =

∏
p|q p of the modulus q satisfies log q′ ∼ log q.

Some applications to zero free regions of Dirichlet L-functions and the Pólya
and Vinogradov inequalities are indicated.

Introduction.

In this paper we will discuss short character sums for moduli with small prime
factors. In particular, we will revisit the arguments of Graham-Ringrose and
Postnikov. Our main result is an estimate valid for general moduli, which
improves on the known estimates in certain situations.

It is well known that non-trivial estimates on short character sums are im-
portant to many number theoretical issues. In particular, they are relevant in
establishing density free regions for the corresponding Dirichlet L-functions.

More specifically, we prove the following.

Let χ be a primitive multiplicative character to the modulus q, and let
p be the largest prime divisor of q, q′ =

∏
p|q p and K = log q

log q′
. Let I be an

interval of size |I| = N . We will denote various constants by C.
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Theorem 5. Assume q > N > pC and

logN > (log q)
9
10 + C

log q′

log log q′
log 2K (1)

Then ∣∣∑
x∈I

χ(x)
∣∣ < Ne−

√
logN . (2)

Note that assumption (1) of Theorem 5 is implied by the stronger and
friendlier assumption

logN > C
(

log p+
log q

log log q

)
. (3)

Assumption (3) is weaker than Graham-Ringrose’s condition

logN > C
(

log p +
log q√

log log q

)
.

(The Graham-Ringrose estimate was established only for square free moduli.)
Also, condition (1) is weaker than Postnikov-Gallagher-Iwaniec’s assumption

logN � log q′ + (log q)
2
3

+ε in certain cases, namely when log q′ becomes
comparable with log q.

Many techniques used in the paper are just elaborations of known argu-
ments. What differs from methods previously used on similar problems is the
use of a (new) mixed character sum estimate in conjunction with Postnikov’s
argument for powerful moduli, whose usual treatment exploits Vinogradov’s
exponential sum estimate at the end. This allows us to combine efficiently
the methods introduced by Graham-Ringrose and Postnikov and obtain non-
trivial bounds under less restrictive conditions for a large class of moduli.

Next, we turn to some (routine) consequences of Theorem 5.

Theorem 8. Let M = (log q)
9
10 + log q′

log log q′
log 2K + log p. Then∣∣∣∑

n<x

χ(n)
∣∣∣� √q√log q

√
M.
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If q is square free, then the bound in Theorem 8 is

√
q

(
log q√

log log q
+
√

log q
√

log p

)
.

It gives an improvement on Goldmakher’s result. (See [G], Theorem 1.)

Theorem 5 implies the following zero-free regions for the corresponding
Dirichlet L-functions.

Theorem 11. Let

θ = cmin
( 1

log p
,

log log q′

(log q′) log 2K
,

1

(log qT )9/10

)
.

Then the Dirichlet L-function L(s, χ) =
∑

n χ(n)n−s, s = ρ+ it has no zeros
in ρ > 1− θ, |t| < T except for possible Siegel zeros.

In certain ranges, this improves upon Iwaniec’s condition [ I ]

θ = min

{
c

1

(log qT )
2
3 (log log qT )

1
3

,
1

log q′

}
.

Using the zero-free region above and the result from [HB2] on the effect of
a possible Siegel zero, we obtain the following. (cf. the discussion in [HB1])

Corollary 12. Assume q satisfies that log p = o(log q) for p|q. If (a, q) = 1,

then there is a prime P ≡ a(mod q) such that P < q
12
5

+O(1).

Notation and Convention.

1. e(θ) = e2πiθ, ep(θ) = e( θ
p
).

2. ω(q) = the number of prime divisors of q.

3. τ(q) = the number of divisors of q.

4. q′ =
∏

p|q
p, the core of q.

5. When there is no ambiguity, p ε = [p ε] ∈ Z.

6. Modulus p (or q) is always sufficiently large.

7. For polynomials f(x) and g(x), the degree of f(x)
g(x)

is deg f(x)+deg g(x).

8. c, C = various constants.
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1 Mixed character sums.

The following theorem is from [C1] for prime modulus.

Theorem 1. Let P (x) ∈ R[X] be an arbitrary polynomial of degree d ≥ 1, p
a sufficiently large prime, I ⊂ [1, p] an interval of size

|I| > p
1
4

+κ (1.1)

(for some κ > 0) and χ a nontrivial multiplicative character (mod p). Then∣∣∣∑
n∈I

χ(n)eiP (n)
∣∣∣ < |I| p−c κ2d−2

. (1.2)

In the proof of Theorem 1, the assumption p being prime is only used
in order to apply Weil’s bound on complete exponential sums. (For Weil’s
bound, see Theorem 11.23 in [IK])

Let f ∈ Z[x] be a polynomial of degree d and let χ be a multiplicative
character (mod q) and of order r > 1.

Weil’s Theorem. Let q = p be prime. Suppose f(mod p) is not a r-th
power. Then we have ∣∣∣ p∑

x=1

χ(f(x))
∣∣∣ ≤ d

√
p.

For q = p1 · · · pk square free, since |
∑q

x=1 χ(f(x))| ≤
∏k

i=1 |
∑pi

x=1 χi(f(x))|,
where χi is a multiplicative character (mod pi), we have the following version
of Weil’s estimate.

Weil’s Theorem’. Let q be square free and let q1|q be such that for any
prime p|q1, f(mod p) has a simple root or a simple pole. Then∣∣∣ q∑

x=1

χ(f(x))
∣∣∣ ≤ d ω(q1) q

√
q1

.

Therefore, we have the following.
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Theorem 1’. Let P (x) ∈ R[X] be an arbitrary polynomial of degree d ≥ 1,
q ∈ Z square free and sufficiently large, I ⊂ [1, q] an interval of size

|I| > q
1
4

+κ (1.3)

(for some κ > 0) and χ a nontrivial multiplicative character (mod q). Then∣∣∣∑
n∈I

χ(n)eiP (n)
∣∣∣ < |I| q−cκ2d−2

τ(q)4(log d)d−2

. (1.4)

2 Postnikov’s Theorem.

An immediate application is obtained by combining Theorem 1’ with Post-
nikov’s method (See [P], [Ga], [ I ], and [IK] §12.6).

Postnikov’s Theorem. Let χ be a primitive multiplicative character (mod q),
q = qm0 . Then

χ(1 + q0u) = eq
(
F (q0u)).

Here F (x) ∈ Z[X] is a polynomial of the form

F (x) = BD
(
x− x2

2
+ · · · ± xm

′

m′

)
(2.1)

with
D =

∏
k≤m′

(k,q0)=1

k, m′ = 2m

and B ∈ Z, (B, q0) = 1 .

Remark. In [IK] the above theorem was proved for χ(1 + q′u) = eq(F (q′u)),
where q′ =

∏
p|q p is the core of q. That argument works verbatim for our

case.

Theorem 2. Let q = qm0 q1 with (q0, q1) = 1 and q1 square free.

Assume I ⊂ [1, q] an interval of size

|I| > q0q
1
4

+κ

1 . (2.2)
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Let χ be a multiplicative character (mod q) of the form

χ = χ0χ1

with χ0(mod qm0 ) arbitrary and χ1(mod q1) primitive. Then∣∣∣∑
n∈I

χ(n)
∣∣∣� |I|q−cκ2m−2

1 τ(q1)c(logm)m−2

. (2.3)

Proof. For a ∈ [1, q0], (a, q0) = 1 fixed, using Postnikov’s Theorem, we write

χ0(a+ q0x) = χ0(a)χ0(1 + q0āx) = χ0(a)eqm0
(
F (q0āx)

)
, (2.4)

where
aā = 1 (mod qm0 ).

Hence ∣∣∣∑
n∈I

χ(n)
∣∣∣ ≤ ∑

(a,q0)=1

∣∣∣ ∑
a+q0x∈I

eqm0
(
F (q0āx)

)
χ1(a+ q0x)

∣∣∣. (2.5)

Writing χ1(a+ q0x) = χ1(q0)χ1(aq̄0 + x), q0q̄0 ≡ 1(mod q1), the inner sum in

(2.5) is a sum over an interval J = Ja of size∼ |I|
q0

and Theorem 1’ applies.

3 Graham-Ringrose Theorem.

As a warm up, in this section we will reproduce Graham-Ringrose’s argument.
With some careful counting of the bad set, we are able to improve their
condition on the size of the interval from q1/

√
log log q to qC/ log log q.

Theorem 3. Let q ∈ Z be square free, χ a primitive multiplicative character
(mod q), and N < q. Assume

1. For all p|q, p < N
1
10 .

2. logN > C log q
log log q

.
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Then ∣∣∣ N∑
x=1

χ(x)
∣∣∣ < Ne−

√
logN .

We will prove the following stronger and more technically stated theorem.

Theorem 3’ Assume q = q1 . . . qr with (qi, qj) = 1 for i 6= j, and qr square
free. Factor

χ = χ1 . . . χr,

where χi(mod qi) is arbitrary for i < r, and primitive for i = r. We further
assume

(i). For all p|qr, p >
√

log q.

(ii). For all i, qi < N
1
3 .

(iii). r < c log log q.

Then ∣∣∣ N∑
x=1

χ(x)
∣∣∣ < Ne−

√
log qr .

Remark 3.1. To see that Theorem 3’ implies Theorem 3, we write

q = p̄1 · · · p̄` · p1 · p2 · · · ,
where

p̄1, . . . , p̄` <
√

log q, and p1 > p2 > · · · ≥
√

log q.

Hence ∏̀
i=1

p̄i < e
√

log q < q
1
10 . (3.1)

Let qr =
∏k

i=1 pi such that k is the maximum subject to the condition

that qr < N
1
3

Therefore, p1qr > N
1
3 . By (1), qr > N

1
3
− 1

10 > N
1
5 .

We repeat this process on
q

qr
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to get qr−1 such that N
1
3 > qr−1 > N

1
5 . Then, we repeat it on q

qrqr−1
etc.

After re-indexing, we have

qr, qr−1, . . . , q2 > N
1
5 .

Hence q >
(
N

1
5

)r−1
, which together with (2) give (iii). �

Under the assumption of Theorem 3’, we give the following

Definition. For q̄|qr satisfying q̄ >
√
qr, and f ∈ Z[x] of degree d, the pair

(f, q̄) is called admissible if∏
p|q̄

f mod p satisfies (*)

p >
q̄

qτr
, where τ =

10

log log qr
,

and (*) means

(*) (The polynomial) has a simple root or a simple pole.

Remark 3.2. If (f, q̄) is admissible, χ primitive mod q̄ and

log d <
1

τ
=

log log qr
10

(3.2)

then ∣∣∣∣∣
q̄∑

x=1

χ(f(x))

∣∣∣∣∣ < (q̄)
7
10 q

3
10
τ

r .

Proof of Remark 3.2. We say p is good, if f mod p satisfies (*). For p|q̄|qr,
assumption (i) implies that p >

√
log q. In particular, (3.2) implies

p1/5 > (log q)1/10 > d. (3.3)

Weil’s estimate gives ∣∣∣∣∣
q̄∑

x=1

χ(f(x))

∣∣∣∣∣ < q̄
√
q1

d ω(q1) (3.4)

8



where q1 is the product of the good primes p. Using (3.3), we bound the
character sum above by

q̄
∏
p|q1

d
√
p
< q̄

∏
p|q1

p−3/10 = q̄q
−3/10
1 .

Since (f, q̄) is admissible, we have∣∣∣∣∣
q̄∑

x=1

χ(f(x))

∣∣∣∣∣ < q̄q
− 3

10
1 < (q̄)

7
10 q

3
10
τ

r .

Proof of Theorem 3’. Take M =
[√
N
]
. Shifting the interval [1, N ] by yqi

for any 1 ≤ y ≤M , we get∣∣∣ n∑
x=1

χ(x) −
n∑
x=1

χ(x+ yq1)
∣∣∣ ≤ 2yq1 .Mq1.

Averaging over the shifts gives

1

N

∣∣∣ N∑
x=1

χ(x)
∣∣∣ ≤ 1

NM

N∑
x=1

∣∣∣ M∑
y=1

χ(x+ yq1)
∣∣∣+O

(
Mq1

N

)
. (3.5)

Let
χ′1 = χ2 · · ·χr.

Using the q1-periodicity of χ1 and Cauchy-Schwarz on the double sum in
(3.5), we have

1

NM

N∑
x=1

∣∣∣ M∑
y=1

χ(x+ yq1)
∣∣∣ ≤ [ 1

NM2

M∑
y, y′=1

∣∣∣ N∑
x=1

χ′1

(
x+ q1y

x+ q1y′

) ∣∣∣ ]1/2

. (3.6)

For given (y, y′), we consider

fy,y′(x) =
x+ q1y

x+ q1y′

and distinguish among the pairs (fy,y′ , qr) by whether or not they are admis-
sible. Note that if (fy,y′ , qr) is not admissible, then the product of bad prime
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factors of qr is at least qτr . We will estimate the size of the set of bad (y, y′)
and use trivial bound for the inner sum in (3.6).∣∣∣{(y, y′) ∈ [1,M ]2 : (fy,y′ , qr) is not admissible

}∣∣∣
≤
∑
Q|qr
Q>qτr

∣∣∣{(y, y′) ∈ [1,M ]2 : Q| y − y′
}∣∣∣

≤
∑
Q|qr
Q>qτr

M2

Q
< 2ω(qr)

M2

qτr
< M2q

− 7
log logM

r = M2q
− 7

10
τ

r .

(3.7)

(For the second inequality, we note that M > Q.)

Hence (3.6) is bounded by

q
− 7

20
τ

r +
∣∣∣ 1

N

N∑
x=1

χ′1(f1(x))
∣∣∣ 12 , (3.8)

where f1 is the fy,y′ with the maximal character sum among all admissible
pairs. i.e. ∣∣ N∑

x=1

χ′1(f1(x))
∣∣ = max

fy,y′

(fy,y′ ,qr) admissible

∣∣∣∣ N∑
x=1

χ′1(fy,y′(x))

∣∣∣∣ . (3.9)

Thus, there exists q̄1|qr, q̄1 > q1−τ
r and for any p|q̄1, f1 mod p has property

(*).

We will use induction to bound the second term in (3.8). After s steps,
we reduce the problem to bounding the character sum

1

N

∣∣∣ N∑
x=1

χ′s(fs(x))
∣∣∣, (3.10)

where χ′s = χs+1 · · ·χr, fs ∈ Z[x] with deg fs = 2s. Since (fs, q̄s−1) is admis-
sible, there is q̄s|qr such that q̄s > q1−sτ

r and ∀p|q̄s is good.

As before, the qs+1-periodicity of χs+1 and Cauchy-Schwarz give a bound
on (3.10) by [

1

NM2

M∑
y, y′=1

∣∣∣ N∑
x=1

χ′s+1

(
fs(x+ qs+1y)

fs(x+ qs+1y′)

) ∣∣∣ ]1/2

. (3.11)
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Set

fs+1(x) =
fs(x+ qs+1y)

fs(x+ qs+1y′)
,

where (y, y′) is chosen as in (3.9), such that the inner character sum in (3.11)
is the maximum.

We want to bound the set of bad (y, y′). For p|q̄s,

fs(x) = (x− a)±1
∏
j

(x− bj)cj , where a 6= bj. mod p

Hence

fs+1(x) =

(
x+ qs+1y − a
x+ qs+1y′ − a

)±1∏
j

(
x+ qs+1y − bj
x+ qs+1y′ − bj

)cj
.

For y 6= y′ mod p, if a− qs+1y is not a simple root or pole, then

a− qs+1y = bj − qs+1y
′, mod p

for some j. Therefore,∣∣∣{(y, y′) ∈ [1,M ]2 : (fy,y′ , q̄s) is not admissible
}∣∣∣

≤
∑
Q|q̄s
Q>qτr

∣∣∣{(y, y′) ∈ [1,M ]2 : ∀p|Q, fy,y′ mod p satisfies (*)
}∣∣∣

≤
∑
Q|q̄s
Q>qτr

M2

Q

(
2s
)ω(Q)

= M2
∑
Q|q̄s
Q>qτr

(
2s
)ω(Q)

Q
.

(3.12)

By assumptions (i) and (iii),(
2s
)ω(Q)

Q
≤
∏
p|Q

2r

p
<
∏
p|Q

1
√
p

=
1√
Q
< q

− τ
2

r , (3.13)

and (3.12) is bounded by

M2 2ω(qr)

q
τ/2
r

< M2q−τ/5r .
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At the last step, we are bounding∣∣∣ N∑
x=1

χr(fr−1(x))
∣∣∣, (3.14)

where fr−1 ∈ Z[x] with deg fr−1 = 2r−1 and there is q̄r−1|qr such that q̄r−1 >

q
1−(r−1)τ
r >

√
q
r

and ∀p|q̄r−1 is good. In particular, (fr−1, q̄r−1) is admissible

and Remark 3.2 applies. (Recall that qr < N1/3.) Hence, we have∣∣∣ N∑
x=1

χr(fr−1(x))
∣∣∣ < Nq̄

− 1
4

r−1 < Nq
− 1

8
r ,

and we reach the final bound

1

N

∣∣∣ N∑
x=1

χ(x)
∣∣∣ . (q−τ/5r

)1/2r−1

+
(
q−1/8
r

)1/2r−1

. q
− 2

log log qr
· 1

2c log log qr
r

= e−
log qr

log log qr(log qr)c

< e−
√

log qr

The proof of Theorem 3’ also gives an argument for the following theorem.

Theorem 3” Assume q = q1 . . . qr with (qi, qj) = 1 for i 6= j, and qr square
free. Factor χ = χ1 . . . χr, where χi(mod qi) is arbitrary for i < r, and
primitive for i = r.
We further assume

(i). For all p|qr, p >
√

log q.

(ii). For all i, qi < N1/3.

(iii). r < c log log q.
Let

f(x) =
∏
j

(x− bj)cj , c1 = ±1, d = deg f =
∑
|cj|.

Suppose that (f, qr) is admissible (as defined after the statement of Theorem
3’). Furthermore, assume
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(iv). d = deg f <
(

log qr
) 1

8 .

Then ∣∣∣ N∑
x=1

χ(f(x))
∣∣∣ < Ne−

√
log qr .

Remark 3.3. To modify the proof of Theorem 3’, one only needs to multiply
M2

Q
by dω(Q) in (3.7) and replaced 2s (respectively, 2r) by 2s−1d (resp. 2r−1d)

in (3.12) (resp. (3.13)). Assumptions (i) and (iii) imply 2r < p1/4, while
assumptions (i) and (iv) imply d < p1/4.

4 Graham-Ringrose for mixed character sums.

The technique used to prove Theorem 1’ may be combined with the method
of Graham-Ringrose for Theorem 3’ to bound short mixed character sums
with highly composite modulus (see also [IK] p. 330–334).

Let q = q1 . . . qr with (qi, qj) = 1 for i 6= j, and qr square free, such that
(i) and (iii) of Theorem 3’ hold .

Let
χ = χ1 . . . χr,

where χi(mod qi) is arbitrary for i < r, and primitive for i = r.

Let I ⊂ [1, q] be an interval of size N < q, and let f(x) = αdx
d+· · ·+α0 ∈

R[x] be an arbitrary polynomial of degree d.

Assuming (ii) of Theorem 3’ and an appropriate assumption on d, we
establish a bound on ∑

x∈I

χ(x)eif(x). (4.1)

The case f = 0 corresponds to Theorem 3’. The main idea to bound
(4.1) is as follows. First, we repeat part of the proof of Theorem 1 in order
to remove the factor eif(x) at the cost of obtaining a character sum with
polynomial argument. Next, we invoke Theorem 3” to estimate these sums.

Write q = q1Q1 with Q1 = q2 . . . qr, and denote Y1 = χ2 . . . χr.
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Choose M ∈ Z such that

M ·max qi < N, and M <
√
N. (4.2)

Using shifted product method as in (3.5), we have∑
x∈I

χ(x)eif(x) =
1

M

∑
x∈I

0≤y<M

χ(x+ q1y)eif(x+q1y) +O(q1M), (4.3)

1

M

∣∣∣ ∑
x∈I

0≤y<M

χ(x+ q1y)eif(x+q1y)
∣∣∣ =

1

M

∣∣∣ ∑
x∈I

0≤y<M

χ1(x)Y1(x+ q1y)eif(x+q1y)
∣∣∣

≤ 1

M

∑
x∈I

∣∣∣ ∑
0≤y<M

Y1(x+ q1y)eif(x+q1y)
∣∣∣.
(4.4)

Next, we write

f(x+ q1y) = f0(x) + f1(x)y + · · ·+ fd(x)yd.

Fix θ = θ(q) > 0 and subdivide Td+1 in cells Uα = B
(
ξα,

θ
Md

)
⊂ Td+1.

Denote

Ωα = {x ∈ I :
(
f0(x), . . . , fd(x)

)
∈ Uα mod 1}.

Hence, for x ∈ Ωα

f(x+ q1y) = ξα,0 + ξα,1y + · · ·+ ξα,dy
d +O(θ)

eif(x+q1y) = ei(ξα,0+···+ξα,dyd) +O(θ) (4.5)

The number of cells is

∼
(Md

θ

)d+1

. (4.6)

Substituting (4.5) in (4.4) gives

1

M

∑
x∈I

∣∣∣ ∑
0≤y<M

Y1(x+ q1y)eif(x+q1y)
∣∣∣

=
1

M

∑
α

∑
x∈Ωα

∣∣∣ ∑
0≤y≤M

Cα(y)Y1(x+ q1y)
∣∣∣+O(θN),

(4.7)
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where |Cα(y)| = 1.

Next, applying Hölder to the triple sum in (4.7) with k ∈ Z+, we have∑
α

∑
x∈Ωα

∣∣∣ ∑
0≤y≤M

Cα(y)Y1(x+q1y)
∣∣∣ ≤ N1− 1

2k

(∑
α

∑
x∈I

∣∣∣ ∑
0≤y≤M

Cα(y)Y1(x+q1y)
∣∣∣2k) 1

2k
.

Therefore, up to an error of O(θN), (4.7) is bounded by

N

[
1

NM2k

(
Md

θ

)d+1 ∑
0≤y1,...y2k<M

∣∣∣∑
x∈I

Y1

( (x+ q1y1) · · · (x+ q1yk)

(x+ q1yk+1) · · · (x+ q1y2k)

)∣∣∣] 1
2k

= N

(
Md

θ

) d+1
2k
[

1

NM2k

∑
0≤y1,...,y2k<M

∣∣∣∑
x∈I

Y1

(
Ry1,...,y2k(x)

)∣∣∣] 1
2k

, (4.8)

where

Ry1,...,y2k(x) =
(x+ q1y1) · · · (x+ q1yk)

(x+ q1yk+1) · · · (x+ q1y2k)
.

To bound the double sum in (4.8), we apply Theorem 3” with f(x) =
Ry1,...,y2k(x) for those tuplets (y1, . . . , y2k) ∈ {0, . . . ,M − 1}2k for which
(Ry1,...,y2k , qr) is admissible. For the other tuplets, we use the trivial bound.
If (Ry1,...,y2k , qr) is not admissible, then there is a divisor Q|qr, Q > qτr , such
that for each p|Q, the set {πp(y1), · · · , πp(y2k)} has at most k elements. Here
πp is the natural projection from Z to Z/pZ. We distinguish the tuplets
(y1, . . . , y2k) in the following contributions.

(a). Suppose that there is p|Q with p >
√
M .

Then the number of p-bad tuplets (y1, . . . , y2k) is bounded by(
2k
k

)
Mkkk

(
1 +

M

p

)k
< (4k)kM

3
2
k,

and summing over the prime divisors of qr gives

ω(qr)(4k)kM
3
2
k < M

7
4
k, (4.9)

provided
k < M

1
5 , (4.10)
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and
log qr < M. (4.11)

(b). Suppose Q > M and p ≤
√
M for each p|Q.

TakeQ1|Q such that
√
M < Q1 < M . The number of tuplets (y1, . . . , y2k)

that are p-bad for each p|Q1 is at most(M
Q1

)2k ∏
p|Q1

(
2k
k

)
pk kk

<
(M
Q1

)2k ∏
p|Q1

(4kp)k < (ck)kω(Q1)M
2k

Qk
1

<
M2k

Q
k
3
1

< M
11
6
k,

provided
k < min

p|qr
p

1
3 . (4.12)

Summing over all Q1 as above gives the contribution

M
11
6
k+1 < M

15
8
k. (4.13)

(c). Suppose qτr < Q < M .

The number of tuplets (y1, . . . , y2k) that are p-bad for all p|Q is at most

M2k/Q
k
3 and summation over these Q gives the contribution

2ω(qr)
M2k

Q
k
3

<
M2k

qr
1
4
kτ
. (4.14)

Hence, in summary, the number of (y1, . . . , y2k) for which (Ry1,...,y2k , qr) is
not admissible is at most

M2k(M− k
8 + q

− 1
4
kτ

r ).

From (4.3)-(4.4) and (4.7)-(4.8) we obtain the estimate

∑
x∈I

χ(x)eif(x) < N

(
Md

θ

) d+1
2k [

M− k
8 + q

− 1
4
kτ

r + e−
√

log qr
] 1

2k

16



using Theorem 3” for the contribution of good tuplets (y1, . . . , y2k). Here we
need to assume

2k <
(

log qr
) 1

8 , (4.15)

which also implies (4.10) and (4.12), under assumption (i) and if (4.11) holds.

Take θ = 1
M

, k = 50d2, assuming

d <
1

10

(
log qr

) 1
16
, (4.16)

(which implies (4.15),) then∑
x∈I

χ(x)eif(x) < NM
(d+1)2

2k

(
M− 1

16 + e−
√

log qr
2k

)
< N

(
M− 1

20 +

(
M (d+1)2

e
√

log qr

) 1
100d2

)
.

Choose

M =
[

exp
( √log qr

2(d+ 1)2

) ]
.

(So (4.11) is also satisfied.) We have∑
x∈I

χ(x)eif(x) < Ne−
√

log qr

200d2 .

Thus we proved

Theorem 4. Assume q = q1 . . . qr with (qi, qj) = 1 for i 6= j, and qr square
free. Factor χ = χ1 . . . χr, where χi(mod qi) is arbitrary for i < r, and
primitive for i = r.

We further assume

(i). For all p|qr, p >
√

log q.

(ii). For all i, qi < N1/3.

(iii). r < c log log q.

Let f(x) ∈ R[x] be an arbitrary polynomial of degree d. Assume

d <
1

10

(
log qr

) 1
16
.

17



Then ∣∣∣∑
n∈I

eif(n)χ(n)
∣∣∣ < CNe−

√
log qr

200d2 , (4.17)

where I is an interval of size N .

Combined with Postnikov (as in the proof of Theorem 2), Theorem 4 then
implies

Theorem 4’ Suppose q = q0 . . . qr with (qi, qj) = 1 for i 6= j, and qr square
free. Assume q̄0|q0 and q0|(q̄0)m for some m ∈ Z+, and

m <
1

20

(
log qr

) 1
16
.

Factor χ = χ0 . . . χr, where χi(mod qi) is arbitrary for i < r, and primitive
for i = r.

We further assume

(i). For all p|qr, p >
√

log q.

(ii). For all i, qi <
(
N/q̄0

)1/3
.

(iii). r < c log log q.

Then ∣∣∣∑
n∈I

χ(n)
∣∣∣ < CNe−

√
log qr

800m2 , (4.18)

where I is an interval of size N .

Note that for Theorem 4’ to provide a nontrivial estimate, we should
assume at least

r . log log qr

and
logm . log log qr.

5 The main theorem.

Theorem 4’ as a consequence of Theorem 4 was stated mainly for expository
reason. (cf. Proposition 7.) Our goal is to develop this approach further in
order to prove the following stronger result.

18



Theorem 5. Assume N satisfies

q > N > max
p|q

p103 (5.1)

and

logN > (log q)1−c + C log
(

2
log q

log q′

) log q′

log log q
, (5.2)

where C, c > 0 are some constants, and q′ =
∏

p|q
p.

Let χ be primitive (mod q) and I an interval of size N . Then∣∣∣∑
x∈I

χ(x)
∣∣∣ < Ne−

√
logN . (5.3)

We will prove Theorem 5 in the next section. In this section, we will set
up the proof and discuss the implication of assumption (5.2).

Claim. We may assume the following

(1.) q′ > N
1

100

(5.4)
(2.) q = Q qr = Q1 · · ·Qr−1 qr, where (Qi, Qj) = (Qi, qr) = 1,

r = 1 + 10

[
logQ′

logN

]
, (5.5)

and
qr = qm0 , q0 square free (5.6)

with

e(logN)
3
4 < q0 < N

1
10 , (5.7)

m ≤ (logN)3κ, (5.8)

where κ > 0 a sufficiently small constant (e.g. ∼ 10−3). Also, the core of Qs

satisfies
Q′s < N

1
5 for s = 1, . . . , r − 1. (5.9)

(3.) There exist q1, · · · , qr−1, (qi, qj) = (qi, qr) = 1,

max
i
qi < N1/2, (5.10)

19



such that
q = Q1 · · ·Qr−1qr | qm1

1 · · · q
mr−1

r−1 qr, (5.11)

with

ms = 10

[
logQs

logN

]
. (5.12)

Proof of Claim.

The validity of Assumption (1) follows from Theorem 12.16 in [IK], which
gives a bound ∣∣∣∑

x∈I

χ(x)
∣∣∣ < Cr log log rN

1− c
r2 log r (5.13)

with r = log q
logN

, assuming that q′100 < N . This gives a nontrivial result

provided logN & (log q)
3
4

+ε.

To see Assumption (2), we first note that∏
νp>(logN)3κ

p < q(logN)−3κ

< e(logN)1−κ < q′
1

100 , (5.14)

where νp is the exponent of p in the prime factorization of q.

From
(logN)3κ∏
m=1

( ∏
νp=m

p
)
> q′

99
100 ,

there exists m ≤ (logN)3κ such that∏
νp=m

p > (q′)
1
2

(logN)−3κ

> e
1

200
(logN)1−3κ

> e(logN)
3
4 .

Therefore, there exists qr satisfies (5.6)-(5.8).

Write q = Q qr, and

Q =
∏

pνii , where υi := νpi and ν1 ≥ ν2 ≥ · · · .

Let Q′ =
∏

νi≥1 pi and factor

Q′ = Q′1 · · ·Q′r−1 such that Q′s < N
1
5 and r = 1 + 10

[
logQ′

logN

]
.
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For each s, define Qs =
∏

p|Q′s
p νp and qs =

∏
p|Q′s

p ν̄p as follows

ν̄p =

{[ νp
ms

]
+ 1, if νp > ms

1, otherwise
(5.15)

Denote

ms = 10
logQs

logN
.

It follows that Qs|(qs)ms and qs < Q′sQ
2
ms
s < N

1
2 , which are (5.10)-(5.11).

Remark 5.1. Assumption (5.2) can be reformulated as

(
3

log q

log q′N

)10 logNq′
logN

< (logN)c. (5.16)

Remark 5.2. Using (5.4), (5.16) and the inequality of arithmetic and geo-
metric means, one can show that

r−1∏
i=1

mi <
(

log q0

) 1
75 . (5.17)

Remark 5.3. It is easy to check that (5.2) and (5.7) imply

r < 10−3 log log q0. (5.18)

Remark 5.4. If log q′ ≤ logN , (5.16) becomes

logN > (log q)1−c,

which is similar to Theorem 12 in [IK].

Remark 5.5. If q = q′ (i.e. q is square free), condition (5.16) becomes

log q

log log q
< c logN.

This is slightly better than Corollary 12.15 in [IK] and essentially optimal in
view of the Graham-Ringrose argument.
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6 The proof of Theorem 5.

The proof will use the technique from the previous sections. The following
lemma is the technical part of the inductive step.

Lemma 6. Assume

(a). q = qm1 q
′, where q′ = q′′qr, with q1, q

′′, qr mutually coprime.

(b). χ = χ1χ
′, with χ1(mod qm1 ) and χ′(mod q′).

(c). f(x) =

β∏
α=1

(x−aα)dα , d =
∑
|dα|, with aα ∈ Z distinct and dα ∈ Z\{0}.

(d). q̄|qr such that for each p|q̄, p >
√

log q and f mod p satisfies (∗) (i.e.
has a simple zero or a simple pole).

(e). I an interval of length N , q2
1 < N < q, 1440 ·m2d < (logN)

1
10 .

(f). M ∈ Z, logN + log q̄ < M < N
1
10 , M < q̄ τ .

Then

1

N

∣∣∣∑
x∈I

χ
(
f(x)

)∣∣∣ < M−1/12 +M
1
60

∣∣∣ 1

N

∑
x∈I

χ′
(
f1(x)

)∣∣∣ 1
60m2

, (6.1)

where f1(x) is of the form

f1(x) =

∏k
ν=1 f(x+ q1tν)∏2k

ν=k+1 f(x+ q1tν)
=

β′∏
α′=1

(x− bα′)dα′ (6.2)

with bα′ , dα′ ∈ Z, 2k = 60m2 and

d1 :=
∑
| dα′ |≤ 60 d m2. (6.3)

Furthermore, (f1, q̄) is admissible.

Proof. Take t ∈ [1,M ]. Clearly,

χ
(
f(x+ tq1)

)
= χ1

(
f(x)

)
χ1

(
1 +

f(x+ tq1)− f(x)

f(x)

)
χ′
(
f(x+ tq1)

)
. (6.4)
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Hence, as in the proof of Theorem 2,

χ
(
f(x+ tq1)

)
= χ1

(
f(x)

)
χ′
(
f(x+ tq1)

)
eqm1

(m−1∑
j=1

Qj(x) qj1 t
j
)
, (6.5)

where

Qj(x) =
1

j!

dj

dtj

{
F
(f(x+ t)− f(x)

f(x)

)}∣∣∣
t=0

(6.6)

with

F (x) =
2m∑
s=1

(−1)s−1 1

s
xs (up to a factor). (6.7)

By the same technique as used in the proof of Theorem 4 (See (4.3)-(4.8)),
after averaging and summing over t ∈M and x ∈ I, we remove the last factor
in (6.5). Thus, our goal is to show that after t = (t1, · · · , t2k) ∈ [1,M ]2k is
chosen for (6.2) such that f1 maximizes the character sum in (6.1) among all
admissible (f1, q̄), the first term in (6.1) accounts for those t for which f1 is
not q̄-admissible. The zeros or poles of f1(x) are of the form

bα′ = aα − tνq1 with tν ∈ [1,M ]. (6.8)

Here, while applying Hölder, we take k ∈ Z+ satisfying

48kd <
(

logN
) 1

10 and k > 30 (6.9)

To count the set of bad t, we fix p|q̄. By assumption on f1, we may also
assume d1 = 1 and a1 6= aα (mod p) for any α > 1. Recalling (6.8), assume
that none of the a1 − tνq1, 1 ≤ ν ≤ 2k, is simple (mod p). This means that
for each ν there is a pair (α(ν), σ(ν)) in {1, . . . , β} × {1, . . . , 2k} such that
α(ν) 6= 1, σ(ν) 6= ν and

a1 − tνq1 ≡ aα(ν) − tσ(ν)q1 (mod p). (6.10)

The important point is that σ(ν) 6= ν for all ν, by assumption on a1. One
may therefore obtain a subset S ⊂ {1, . . . , 2k} with |S| = k such that there
exists S1 ⊂ S with |S1| = k

2
and

S1 = {ν ∈ S : σ(ν) /∈ S1} (6.11)
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(The existence of S and S1 satisfying this property is justified in Fact 6.1
following the proof of this lemma.)

Specifying the values of tν′ for those ν ′ ∈ K \ S1, equations (6.10) will
determine the remaining values, after specification of α(ν) and σ(ν). An easy
count shows that∣∣{πp(t) : f1(mod p) does not satisfy (*) }

∣∣
≤
(

2k
k

) (
k
k
2

)(
3

2
k

) k
2
(
β

2

) k
2 (
M ∧ p

) 3k
2 < (48kd)

k
2

(
M ∧ p

) 3k
2 .

(6.12)

The first factor counts the number of sets S, the second the number of sets
S1, and the third and the forth the numbers of maps σ|S1 and α|S1 .

Applying assumptions (d)-(f) to (6.12), we obtain∣∣{πp(t) : f1(mod p) does not satisfy (*) }
∣∣ < (M ∧ p) 8

5
k
. (6.13)

If (f1, q̄) is not admissible, there is some Q|q̄, Q > qτr > q̄ τ such that for
each p|Q, f1 is p-bad. As in the proof of Theorem 4, we distinguish several
cases.

(a). There is p|Q with p > M .

Hence,
∣∣{t ∈ [1,M ]2k : f1 is p-bad }

∣∣ < M
8
5
k and summing over p gives

the contribution M
8
5
k log q̄.

(a′).
√
M < max

p|Q
p < M.

Then ∣∣{t ∈ [1,M ]2k : f1 is p-bad }
∣∣

≤
(M
p

+ 1
)2k∣∣{πp(t) : f1 is p-bad }

∣∣
≤
(M
p

+ 1
)2k

p
8
5
k < M2k

( p
32

)− 2
5
k

< (4M)
9
5
k.

Summing over p gives the contribution (4M)
9
5
k log q̄.

(b). max
p|Q

p ≤
√
M and Q > M.
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Take Q1|Q such that
√
M < Q1 < M . Then∣∣{t ∈ [1,M ]2k : f1 is p-bad for each p|Q1}

∣∣
≤
(M
Q1

+ 1
)2k∣∣{πQ1(t) : f1 is p-bad for each p|Q1}

∣∣
≤
(M
Q1

+ 1
)2k ∏

p|Q1

p
8
5
k < M2k

(Q1

32

)− 1
5
k

< (4M)
9
5
k.

Summing over Q1 gives the contribution (4M)
9
5
k+1.

Summing up cases (a)-(b) and recalling assumption (f), we conclude that∣∣{t ∈ [1,M ]2k : (f1, q̄) is not admissible }
∣∣

< M2k
(
M− k

6 + q̄
−τk
5

) (6.14)

Taking d = m− 1 in (4.8), by assumption (f), we show that

1

N

∣∣∣∑
x∈I

χ
(
f(x)

)∣∣∣
< O(θ) +O

(q1M

N

)
+

[
M− k

6 +
(Mm−1

θ

)m 1

N

∣∣∣∑
x∈I

χ′
(
f1(x)

)∣∣∣] 1
2k

.

(6.15)

We obtain (6.1) by letting θ = 1
M

in (6.15). �

Fact 6.1. Let K = {1, · · · , 2k} and σ : K → K be a function such that
σ(ν) 6= ν for all ν ∈ K. Then there exist subsets S1 ⊂ S ⊂ K with |S1| =
k
2
, |S| = k and σ(ν) 6∈ S1 for any ν ∈ S1.

Proof. Since the subset of elements of K with more than one pre-image of σ
has size ≤ k, there exist S ⊂ K with |S| = k, and every ν ∈ S has at most one
pre-image. Therefore, σ−1 makes sense on S. To construct S1 ⊂ S, we choose
νi for S1 inductively, such that νi 6∈ {ν1, . . . , νi−1, σ(ν1), . . . , σ(νi−1), σ−1(ν1),
. . . , σ−1(νi−1)} and σ(νi) 6∈ S1. �

Proof of Theorem 5.

Choose a sequence M1 < M2 < · · · < Mr−1 of M values and iterate (6.1)
in Lemma 6.
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Since ∏
p<
√

log q

p < e
√

log q,

we use trivial bound for small p and we may assume Assumption (d). In
order to satisfy Assumption (e), we assume

1440 · 60r−1

r∏
i=1

(m2
i ) <

(
logN

) 1
10 , (6.16)

which follows from (5.17) and (5.18).

By (6.1) and iteration, 1
N

∣∣∑N
x=1 χ(x)

∣∣ is bounded by

M
− 1

12
1 +M

1
60

1 M
− 1

12·60m2
1

2 +M
1
60

1 M

1

602m2
1

2 M
− 1

12·602m2
1
m2

2
3 + · · ·

+M
1
60

1 M

1

602m2
1

2 · · ·M
1

60r−2m2
1
···m2

r−3

r−2 M
− 1

12·60r−2m2
1
···m2

r−2

r−1

+M
1
60

1 M

1

602m2
1

2 · · ·M
1

60r−1m2
1
···m2

r−2

r−1 S
1

60r−1m2
1
···m2

r−1 ,

(6.17)

where S is of the form

S =
1

N

∣∣∣ N∑
x=1

χr(g(x))
∣∣∣, (6.18)

with χr primitive modulo qr, and

g(x) =

β∏
α=1

(x− aα)dα , aα, dα ∈ Z,

d =
∑
| dα |< 60rm2

1 . . .m
2
r, (6.19)

and (g, q̄) admissible for some q̄|qr, q̄ >
√
qr.

Take Ms, for s = 1, · · · , r − 1 such that

M
− 1

12
1 =M−1

M
1
60

1 M

1

602m2
1

2 · · ·M
1

60s−1m2
1
···m2

s−2

s−1 M
− 1

12·60s−1m2
1
···m2

s−1
s =M

− 1
12

1

(6.20)

to ensure that each of the r − 1 fist terms in (6.17) is bounded by 1
M

.
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One checks recursively that

Ms < M6s−1·12sm2
1···m2

s−1 (6.21)

and hence (6.17) implies

1

N

∣∣ N∑
x=1

χ(x)
∣∣ < r − 1

M
+M ( 6

5
)r−1−1S

1

60r−1m2
1
···m2

r−1 . (6.22)

In order to satisfy the last condition in Assumption (f) of Lemma 6, we
impose

M (6·12)rm2
1···m2

r−1 < qτr = q
10

log log qr
r . (6.23)

The above holds, if we take

M = e(log qr)9/10 , (6.24)

and assume
r−1∑
i=1

logmi <
1

40
log log qr. (6.25)

(Clearly, this follows from (5.17).)

We will prove the theorem by distinguishing two cases in the next section.

7 The two cases.

To finish the proof of Theorem 5, we need to bound S in (6.22).

Case 1. m = 1.

Since (g, q̄) is admissible and q̄ is square free, S may be bounded by
Remark 3.2.

S < q̄ −
3
10 q

3
10
τ

r < q
− 1

7
r , (7.1)

and by (6.22)

1

N

∣∣ N∑
x=1

χ(x)
∣∣ < r − 1

M
+M ( 6

5
)r−1−1q

− 1

7·60r−1m2
1
···m2

r−1
r <

r

M
. (7.2)
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The last inequality is by Remark 5.2 and (6.23).

Now we obtain (5.3) by combining (6.24), (7.2) and (5.18). �

We state the above case as a proposition for its own interest.

Proposition 7. Assume q = qm1
1 . . . q

mr−1

r−1 qr with (qi, qj) = 1 for i 6= j, qr
square free and

r−1∏
i=1

mi <
(

log qr

) 1
75
. (7.3)

Factor χ = χ1 . . . χr, where χi(mod qmii ) is arbitrary for i < r, and primitive
for i = r.

We further assume

(i). For all p|qr, p >
√

log q.

(ii). For all i, q2
i < N < q.

(iii). r < 10−3 log log qr.

Then ∣∣∣∑
x∈I

χ(x)
∣∣∣ < Ne−(log qr)4/5 , (7.4)

where I is an interval of size N .

Case 2. m > 1.

In this situation, we follow the analysis in the proof of Lemma 6. (Par-
ticularly, see (6.4)-(6.7).) To bound S in (6.17), We will use Postnikov and
Vinogradov rather than Weil. Recall

S =
1

N

∣∣∣ N∑
n=1

χr(f(n))
∣∣∣,

with χr primitive modulo qr, and

f(x) =

β∏
α=1

(x− aα)dα with d =< 60rm2
1 . . .m

2
r.
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Write n ∈ [1, N ] as n = x + tq0, with 1 ≤ x ≤ q0 and 1 ≤ t ≤ N
q0

. Then

as in (6.4) and (6.6),

N · S =

q0∑
x=1

N/q0∑
t=1

χr
(
f(x)

)
eqm0

(m−1∑
j=1

Qj(x)qj0t
j
)

≤
q0∑
x=1

∣∣∣N/q0∑
t=1

eqm0

(m−1∑
j=1

Qj(x)qj0t
j
)∣∣∣.

(7.5)

We assume that f(x) satisfies the following property.

For each prime divisor p of q0, there is α such that |dα| = 1 and
∏

β 6=α(aα−aβ)
relative prime to p.

This will provide some information on the coefficients Qj in (6.5). Assume
α = 1 in f(x) and aα = 0 (which we may). Thus 0 is a simple zero or pole
of f ; replacing f by 1

f
(which we may by replacement of χ by χ̄), we can

assume
f(x) = xg(x) = x

∏
aα 6=0

(x− aα)dα mod p (7.6)

with g(0) defined and non-vanishing (mod p).

From (6.6), (6.7), and (7.6), we have

j!Qj(x) =
∑
s

(−1)s−1 1

s(xg(x))s
dj

dtj
[(

(x+ t)g(x+ t)− xg(x)
)s]∣∣∣

t=0
. (7.7)

Clearly only the terms s ≤ j contribute and Qj has a pole at 0 of order j,

C ·Qj(x) =
1

xj
+
Aj(x)

Bj(x)
(7.8)

with Aj(x), Bj(x) ∈ Z[X] and Bj(x) = xkB̂j(x), k < j, B̂j(0) 6= 0 and hence

B̂j(0) 6= 0(mod p) (7.9)

since Bj(x) is a product of monomials of the form x−aα and aα 6= 0(mod p)
for α 6= 1. Thus

C ·Qj(x) =
Pj(x)

xjB̂j(x)
(7.10)
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where Pj(x) ∈ Z[X] is of degree at most dj, Pj(0) 6= 0 (mod p). It follows
that ∣∣{1 ≤ x ≤ p : Qj(x) ≡ 0 (mod p)}

∣∣ ≤ dj. (7.11)

and ∣∣{1 ≤ x ≤ q0 : Qj(x) ≡ 0 (mod q̄0)}
∣∣ ≤ (dj)ω(q̄0) q0

q̄0

. (7.12)

whenever q̄0|q0. Taking j = m − 1 and fixing x, we will apply Vinogradov’s
lemma ([Ga], Lemma 4) to bound

∣∣∣N/q0∑
t=1

eqm0

(m−1∑
j=1

Qj(x)qj0t
j
)∣∣∣.

Lemma (Vinogradov). Let f(t) = a1t+ · · ·+ akt
k ∈ R[t], k ≥ 2 and P ∈ Z+

large.
Assume ak rational, ak = a

b
, (a, b) = 1 such that

2 < P ≤ b ≤ P k−1 (7.13)

Then ∣∣∣∑
n∈I

e(f(n))
∣∣∣ < Ck(log k)2P

1− c
k2 log k (7.14)

for any interval I of size P (c, C are constants).

Write Qm−1(x) ≡ q̄0ā ∈ Z(mod qm0
0 ), q̄0|q0 and (ā, q0) = 1.

If q̄0 ≤
√
q0, then the coefficient of tm−1 in (7.5) is am−1 = Qm−1(x)

qm0
qm−1

0 =
ā
¯̄q0
, with ¯̄q0 = q0

q̄0
>
√
q0.

Applying (7.14) with P = q0 gives

∣∣∣N/q0∑
t=1

eqm0

(m−1∑
j=1

Qj(x)qj0t
j
)∣∣∣ < N Cm(logm)2q

− c
m2(logm)

0 . (7.15)

It remains to estimate the contribution of those 1 ≤ x ≤ q0 such that Qj(x) ≡
0 in Z/q̄0Z for some q̄0 >

√
q0. This number is by (7.12) at most∑

q̄0|q0
q̄0>
√
q0

(dm)ω(q̄0) q0

q̄0

< 2ω(q0)(dm)ω(q0)√q0 < (2dm)
2 log q0
log logN

√
q0 (7.16)
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since all prime divisors of q0 are at least (logN)
1
2 . Note that the degree d of

f(x) is bounded by (6.19). Applying (5.8) and (5.17), we have

dm < 60r
(

log qr
) 2

75
(

logN
)3κ

<
(

logN
)15κ

. (7.17)

In particular, (7.17) will ensure that (7.16) is bounded by q
3/4
0 and hence

∣∣∣ N∑
x=1

χ(f(x))
∣∣∣ < Cm(logm)2q

− c
m2(logm)

0 N. (7.18)

This gives a bound on S in (6.22). �

8 Applications.

Following Goldmakher’s argument [G] (based on work of Granville and Soundarara-
jan [GS]), and applying Theorem 5 instead of the character sum estimates
developed by Graham-Ringrose [GR] and Iwaniec [ I ], we obtain the following
improvement of the Pólya and Vinogradov bound.

Theorem 8. Let χ be a multiplicative character with modulus q, and let
p be the largest prime divisor of q, q′ =

∏
p|q p and K = log q

log q′
. Let M =

(log q)
9
10 + (log 2K) log q′

log log q′
+ log p. Then∣∣∣∑

n<x

χ(n)
∣∣∣� √q√log q

√
M. (8.1)

Remark 8.1. If q is square free, then the bound in (8.1) becomes

√
q

{√
log q

√
log p+

log q√
log log q

}
.

This slightly improves on the corollary to Theorem 1 in Goldmakher’s paper
[G].

Repeating the argument in deducing Theorem 4 from Theorem 3, we
obtain the following mixed character sum estimate from the proof of Theorem
5.
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Theorem 9. Under the assumptions of Theorem 5,∣∣∣∑
x∈I

χ(x)eif(x)
∣∣∣ < Ne−

√
logN (8.2)

for f(x) ∈ R[X] of degree at most (logN)c.

Corollary 10. Assume N satisfies

q > N > max
p|q

p103

and q satisfies

logN > (log qT )1−c + C log
(

2
log q

log q′

) log q′

log log q
. (8.3)

Then for χ non-principal, we have∣∣∣∑
n∈I

χ(n)nit
∣∣∣ < Ne−

√
logN (8.4)

Following [Ga] and [ I ], (See in particular, Lemma 11 in [ I ]), this implies

Theorem 11. Let χ be a non-principal character (mod q), p the largest
prime divisor of q and q′ =

∏
p|q p.

Let

θ = cmin
( 1

log p
,

log log q

(log q′)(log 2 log q
log q′

)
.

1

(log qT )1−c′

)
. (8.5)

If L(s, χ), s = ρ + it, has a zero for ρ > 1 − θ, |t| < T , it has to be unique,
simple and real. Moreover χ is real.

It follows in particular that θ · logQT →∞, if log p
log q
→ 0.

This allows us to state Corollary 12.
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