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Abstract. We introduce several new methods to obtain upper
bounds on the number of solutions of the congruences

f(x) ≡ y (mod p) and f(x) ≡ y2 (mod p),

with a prime p and a polynomial f , where (x, y) belongs to an
arbitrary square with side length M . We give two applications
of these results to counting hyperelliptic curves in isomorphism
classes modulo p and to the diameter of partial trajectories of a
polynomial dynamical system modulo p.

1. Introduction

1.1. Motivation. Studying the distribution of integer and rational
points on curves, and more general on algebraic varieties that belong to
a given box is a classical topic in analytic number theory. For the case
of plane curves with integer coefficients, essentially the best possible
results are due to Bombieri and Pila [6, 32, 33]. Furthermore, recently
remarkable progress has been made in the case of hypersurfaces and
varieties over the rationals, see the surveys [8, 21, 36] as well as the
original works [27, 28, 34].

Significantly less is known about the distribution of points in boxes
on curves and varieties in finite fields. For reasonably large boxes,
bounds on exponential sums, that in turn are based on deep methods
of algebraic geometry, lead to asymptotic formulas for the number of
such points, see [17, 18, 26]. Certainly when the size of the box is
decreasing then beyond a certain threshold no asymptotic formula is
possible (in fact the expected number of points can be less than 1). In
particular, for such a small box only one can expect to derive upper
bounds on the number of points on curves that hit it. This question
has recently been introduced in [13], where a series of general results
has been obtained (we also mention the work [9, 12, 42], where this
question has been studied for some very special curves).
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In the present paper we introduce new ideas and make significant
advances in this direction. We find connections between the problem
of distribution of points in small boxes on modular curves with some
delicate combinations of results from geometry of numbers, Diophan-
tine approximation theory, the Vinogradov mean value theorem and
the Weyl method.

Note that in the case of curves modulo p it is not quite clear what one
can expect as an “optimal” result (in contrast to the case of estimating
integer points in boxes on plane curves over Q). Yet in some parameter
ranges our results are the best possible and can be considered as modulo
p analogue of the results of Bombieri and Pila [6, 32, 33].

Although our results are related to classical problems, here we also
give two further applications:

First of all, we study the distribution of isomorphism classes of hy-
perelliptic curves of genus g ≥ 1 in some families of curves associated
with polynomials with coefficients in a small box. In the case of elliptic
curves this question has been studied in [14]. Here we improve some
of the results of [14] and also use new methods to study the case of
g ≥ 2. Surprisingly enough, in the case of the genus g ≥ 2 we obtain
estimates and use methods that do not apply to elliptic curves (that
is, to g = 1).

Second, we consider polynomial dynamical systems and study for
how long a particular trajectory of such a system can be “locked”
in a given box. In particular, we extend and improve several results
of [10, 11, 13, 19].

1.2. Basic definitions and problem formulation. For a prime p,
let Fp denote the finite field of p elements, which we assume to be
represented by the set {0, 1, . . . , p− 1}.

Let f ∈ Fp[X] be a polynomial of degree m ≥ 2. Then for 1 ≤M < p
we define Jf (M ;R, S) as the number of solutions to the congruence

y ≡ f(x) (mod p), (x, y) ∈ [R + 1, R +M ]× [S + 1, S +M ].

This quantity has been the primal object of study in [13]. Here we
consider a substantially more complicated case.

Given a polynomial f ∈ Fp[X] of degree m ≥ 3, and a positive
integer M < p, we define by If (M ;R, S) the number of solutions to
the congruence

(1) y2 ≡ f(x) (mod p),

with

(2) (x, y) ∈ [R + 1, R +M ]× [S + 1, S +M ].
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If the polynomial y2 − f(x) is absolutely irreducible, it is known from
the Weil bounds that

(3) If (M ;R, S) =
M2

p
+O(p1/2(log p)2),

where the implied constant depends only on m, see [37, 41]. It is clear
that the main term is dominated by the error term for M ≤ p3/4 log p,
and for M ≤ p1/2(log p)2 the result becomes weaker than the trivial
upper bound If (M ;R, S) ≤ 2M . Here we use a different approach and
give a nontrivial estimate of If (M ;R, S) for M < p1/3−ε when m ≥ 3.
In particular, in the case m = 3 our result improves on the range of M
the bound obtained in [14].

Furthermore, we also obtain a new bound on Jf (M ;R, S) which
improves that of [13].

We also mention that nontrivial bounds on the number of solutions
(x, y) to the congruences

xy ≡ a (mod p),

and

y ≡ ϑx (mod p),

satisfying (2), have been given in [9] with further improvements in [12].
Similar results for the congruence

Q(x, y) ≡ 0 (mod p),

whereQ(x, y) is an absolutely irreducible quadratic form with a nonzero
discriminant, can be found in [42].

1.3. General notation. Throughout the paper, any implied constants
in the symbols O, � and � may occasionally depend, where obvious,
on the degree of polynomial f ∈ Fp[X], on the genus g and the real
positive parameters ε and δ, and are absolute otherwise. We recall that
the notations U = O(V ), U � V and V � U are all equivalent to the
statement that |U | ≤ cV holds with some constant c > 0.

The letters, h,m, n, r, s in both upper and lower case, always denote
integer numbers.

2. Main Results

2.1. Points on curves in small boxes. We combine ideas from [12,
13, 14] with some new ideas and derive the following results.
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Theorem 1. Uniformly over all polynomials f ∈ Fp[X] of degree
deg f = 3 and 1 ≤M < p, we have

If (M ;R, S) < M1/3+o(1) +
M5/3+o(1)

p1/6
,

as M →∞.

One of the implications of Theorem 1 is that for elliptic curves, that
is, when the polynomial f in (1) if cubic, the bound If (M ;R, S) <
M1/3+o(1) holds for M � p1/8, while [14, Theorem 5.1] guarantees this
bound only for M � p1/9. The range in which we have If (M ;R, S) <
M1/3+o(1) is of interest as this bound is essentially the best possible. In
fact it is easy to see that for any positive M < p and, say f(X) = Xm,
examining the points (x, y) = (tm, t2), 1 ≤ t ≤M1/m, we conclude that

If (M ; 0, 0)�M1/m.

We also note that when deg f = 3, our upper bounds for If (M ;R, S)
imply the same bounds for N(H;B) in the case of elliptic curves.

Further, when M < p1/4−ε for some ε > 0, Theorem 1 guarantees a
nontrivial bound If (M ;R, S) � M1−δ with some δ > 0 that depends
only on ε, improving upon the range M < p1/5−ε obtained in [14].
However, using a new approach, we obtain the following bound which
is nontrivial in the range M < p1/3−ε.

Theorem 2. Uniformly over all polynomials f ∈ Fp[X] of degree
deg f = 3 and M ≥ 1, we have

If (M ;R, S) ≤M1/3+o(1) +

(
M3

p

)1/16

M1+o(1).

The proof of Theorem 2 is based on combinations of results from the
geometry of numbers, the current state of art on Vinogradov’s mean
value theorem due to Wooley [39, 40] and the Diophantine approxima-
tion theory. Our use of the geometry of numbers is close to the ideas
of the work Bourgain et. al. [7],

The combination of Theorems 1 and 2 gives the following estimate:

Corollary 3. Uniformly over all polynomials f ∈ Fp[X] of degree
deg f = 3 and 1 ≤M < p, we have

If (M ;R, S) < M1+o(1)

 M−2/3, if M < p1/8,
(M4/p)1/6, if p1/8 ≤M < p5/23,
(M3/p)1/16, if p5/23 ≤M < p1/3,

as M →∞.
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Our next result shows that when deg f ≥ 4 we also have a nontrivial
bound for If (M ;R, S) in the range M < p1/3−ε.

To formulate our result, we define Jk,m(H) as the number of solu-
tions of the system of m diophantine equations in 2k integral variables
x1, . . . , x2k:  xm1 + . . .+ xmk = xmk+1 + . . . xm2k,

. . .
x1 + . . .+ xk = xk+1 + . . . x2k,

1 ≤ x1, . . . , x2k ≤ H.

(4)

We also define κ(m) to be the smallest integer κ such that for any
integer k ≥ κ there exists a constant C(k,m) depending only on k and
m and such that

(5) Jk,m(H) ≤ C(k,m)H2k−m(m+1)/2+o(1),

as H →∞. Note that by a recent result of Wooley [40, Theorem 1.1],
that improves the previous estimate of [39], we have κ(m) ≤ m2 − 1
for any m ≥ 3.

Theorem 4. Uniformly over all polynomials f ∈ Fp[X] of degree
deg f = m ≥ 4 and 1 ≤M < p, we have

If (M ;R, S) ≤M(M3/p)1/2κ(m)+o(1) +M1−(m−3)/2κ(m)+o(1),

as M →∞.

In particular, for any ε > 0, there exists δ > 0 that depends only on
ε and deg f such that if M < p1/3−ε and deg f ≥ 4, then If (M ;R, S)�
M1−δ.

2.2. Polynomial values in small boxes. We also prove a new esti-
mate on Jf (M ;R, S).

Theorem 5. Let f ∈ Fp[X] be a polynomial of degree m ≥ 2. Then
for 1 ≤M < p we have

Jf (M ;R, S)� M2

p
+M1−1/2m−1

po(1)

as p→∞.

We remark that for large values of m some bounds of [13], obtained
by a different method, are better than Theorem 5. However for small
values of m (for example, for m = 2, 3) Theorem 5 gives stronger
estimates.
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3. Applications

3.1. Isomorphism classes of hyperelliptic curves in thin fam-
ilies. A special case of the equation (1) are hyperelliptic curves over
Fp. The problem of concentration of points on hyperelliptic curves and
polynomial maps is connected with some problems on isomorphisms
that preserve hyperelliptic curves. Let g be a fixed positive integer
constant. We always assume that p is large enough so, in particular,
we have gcd(p, 2(2g+ 1)) = 1. Any hyperelliptic curve can be given by
a non-singular Weierstrass equation:

Ha : Y 2 = X2g+1 + a2g−1X
2g−1 + . . .+ a1X + a0,

where a = (a0, . . . , a2g−1) ∈ F2g
p (we recall that the non-singularity con-

dition is equivalent to non-vanishing of the discriminant of the poly-
nomial X2g+1 + a2g−1X

2g−1 + . . . + a1X + a0). We refer to [1] for a
background on hyperelliptic curves and their applications.

It follows from a more general result of Lockhart [25, Proposition 1.2]
that isomorphisms that preserve hyperelliptic curves given by Weier-
strass equations are all of the form (x, y) → (α2x, α2g+1y) for some
α ∈ F∗p, see also [23, Section 3]. Thus Ha is isomorphic to Hb, which
we denote as Ha ∼ Hb, if there exists α ∈ F∗p such that

(6) ai ≡ α4g+2−2ibi (mod p), i = 0, . . . , 2g − 1.

It is known (see [23, 30]) that the number of non isomorphic hyperel-
liptic curves of genus g over Fp is 2p2g−1 +O(gp2g−2). We address here
the problem of estimating from below, the number of non-isomorphic
hyperelliptic curves of genus g over Fp, Ha, when a = (a0, . . . , a2g−1)
belongs to a small 2g-dimensional cube

(7) B = [R0 + 1, R0 +M ]× . . .× [R2g−1 + 1, R2g−1 +M ]

with some integers Rj, M satisfying 0 ≤ Rj < Rj + M < p, j =
0, . . . , 2g − 1.

In particular, we note that all components of a vector a ∈ B are
non-zero modulo p. Our methods below work without this restriction
as well, however they somewhat lose their efficiency.

We also give an upper bound for the number

(8) N(H;B) = #{a = (a0, . . . , a2g−1) ∈ B : Ha ∼ H}
of hyperelliptic curves Ha with a ∈ B that are isomorphic to a given
curve H.

In particular, our estimates extend and improve some of the results
of [14] where this problem has been investigated for elliptic curves (that
is, for g = 1).
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First we observe that for large cubes one easily derives from the Weil
bound (see [22, Chapter 11]) an asymptotic formula

N(H;B) =
M2g

p2g−1
+O(p1/2(log p)2g)

(see also the proof of [22, Theorem 21.4]). So we have an asymptotic
formula for N(H;B) as long as M ≥ p1−1/(4g)+ε for any fixed ε > 0.

However, here we are mostly interested in small values of M .
We note that we always have the trivial upper bound

N(H;B) ≤ 2M.

To see this, let H = Hb, b = (b0, . . . , b2g−1) ∈ F2g
p , be given by a

Weierstrass equation. We observe that if Ha ∼ H and H = Hb, where
b = (b0, . . . , b2g−1) ∈ F2g

p then a2g−1 can take at most M values in F∗p,
and each a2g−1 determines two possible values for α2 in (6).

It is also useful to remark that one can not expect to get a general
bound stronger than

N(H;B) = O(M1/(2g+1)).

To see this we consider the set Q of quadratic residues modulo p in
the interval [1,M1/(2g+1)]. It is well-known that for almost all primes p
(that is, for all except a set of relative density zero) we have

#Q ∼ 0.5M1/(2g+1).

For example, this follows from a bound of Heath-Brown [20, Theorem 1]
on average values of sums of real characters.

Consider now the set

A = {α ∈ Fp : α2 ∈ Q},
the curve H : Y 2 = X2g+1 +X2g−1 +X2g−2 + . . .+X + 1 and the 2g-
dimensional cube B = [1,M ]2g. It is clear that (α4, α6, . . . , α4g+2) ∈ B
for all α ∈ A. On the other hand #A = 2#Q ∼M1/(2g+1).

We now turn to estimates on N(H;B) given by (8). A simple ob-
servation shows that in the case of hyperelliptic curves with g ≥ 2 the
quantity N(H;B) is closely related to the problem of concentration of
points of a quadratic polynomial map. Then one can apply the general
result of [13] and get a nontrivial upper bound for N(H;B) for any
range of M . However, here we use a different approach and we obtain
a better bound.

Using (6), we derive from Theorem 5 and the bound of [13]

Jf (M ;R, S)�M1/m+o(1)

that holds for M ≤ p2/(m
2+3), the following consequence
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Theorem 6. For any hyperelliptic curve H of genus g ≥ 2 over Fp
and cube B given by (7) with 1 ≤M < p, we have

N(H;B)� M2

p
+M1/2+o(1).

Furthermore, as we have mentioned above, when g = 1 the problem
of estimating N(H;B) is equivalent to estimating the concentration of
points on certain curves of degree 3 (which are singular and thus are
not elliptic curves) and Theorem 1 applies in this case. Using the idea
of the proof of Theorem 1, we establish the following result which is
valid for any hyperelliptic curve.

Theorem 7. For any hyperelliptic curve H of genus g ≥ 1 over Fp, any
cube B given by (7) with 1 ≤M < p and any odd integer h ∈ [3, 2g+1],
we have

N(H;B) <
(
M1/h +M

(
M4/p

)2/h(h+1)
)
M o(1),

as M →∞.

We observe that if M < p1/(2g
2+2g+4) then, taking h = 2g + 1 in

Theorem 7, we obtain the estimate N(H;B) ≤ M1/(2g+1)+o(1) which,
as we have seen, is sharp up to the o(1) term.

LetH (B) be a collection of representatives of all isomorphism classes
of hyperelliptic curves Ha, a ∈ B, where B is a 2g-dimensional cube
of side length M . In [14] the lower bound #H (B)� min{p,M2+o(1)}
has been obtained for elliptic curves (that is, for g = 1). We extend
this result to g ≥ 2. Certainly the upper bounds of our theorems lead
to a lower bound on #H (B). However, using a different approach we
obtain a near optimal bound for #H (B).

Theorem 8. For g ≥ 1 and any cube B given by (7) with and 1 ≤
M < p, we have

#H (B)� min{p2g−1,M2g+o(1)},
as M →∞. Furthermore, if g ≥ 2 the o(1) term can be removed when
M > p1/(2g).

3.2. Diameter of polynomial dynamical systems. Results about
concentration of points on curves are also closely related to the ques-
tion about the diameter of partial trajectories of polynomial dynam-
ical systems. Namely, given a polynomial f ∈ Fp[X] and an element
u0 ∈ Fp, we consider the sequence of elements of Fp generated by itera-
tions un = f(un−1), n = 0, 1, . . .. Clearly the sequence un is eventually
periodic. In particular, let Tf,u0 be the full trajectory length, that is,
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the smallest integer t such that ut = us for some s < t. The study of
the diameter

Df,u0(N) = max
0≤k,m≤N−1

|uk − um|

has been initiated in [19] and then continued in [10, 11, 13]. In partic-
ular, it follows from [19, Theorem 6] that for any fixed ε, for Tf,u0 ≥
N ≥ p1/2+ε we have the asymptotically best possible bound

Df,u0(N) = p1+o(1)

as p→∞. For smaller values of N a series of lower bounds on Df,u0(N)
is given in [10, 11, 13].

One easily derives from Theorem 5 the following estimate, which
improves several previous results to intermediate values of N (and is
especially effective for small values of m).

Corollary 9. For any polynomial f ∈ Fp[X] of degree m ≥ 2 and
positive integer N ≤ Tf,u0, we have

Df,u0(N)� min{N1/2p1/2, N1+1/(2m−1−1)po(1)},

as p→∞.

On the other hand, we remark that our method and results do not
affect the superpolynomial lower bounds of [10, 11] that hold for small
values of N .

4. Preparations

4.1. Uniform distribution and exponential sums. The following
result is well-known and can be found, for example, in [29, Chapter 1,
Theorem 1] (which is a more precise form of the celebrated Erdős–
Turán inequality).

Lemma 10. Let γ1, . . . , γM be a sequence of M points of the unit inter-
val [0, 1]. Then for any integer K ≥ 1, and an interval [α, β] ⊆ [0, 1],
we have

#{n = 1, . . . ,M : γn ∈ [α, β]} −M(β − α)

� M

K
+

K∑
k=1

(
1

K
+ min{β − α, 1/k}

) ∣∣∣∣∣
M∑
n=1

exp(2πikγn)

∣∣∣∣∣ .
To use Lemma 10 we also need an estimate on exponential sums with

polynomials, which is essentially due to Weyl, see [22, Proposition 8.2].
Let ‖ξ‖ = min{|ξ − k| : k ∈ Z} denote the distance between a real

ξ and the closest integer.
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Lemma 11. Let f(X) ∈ R[X] be a polynomial of degree m ≥ 2 with
the leading coefficient ϑ 6= 0. Then∣∣∣∣∣
M∑
n=1

exp(2πif(n))

∣∣∣∣∣
�M1−m/2m−1

 ∑
−M<`1,...,`m−1<M

min{M, ‖ϑm!`1 . . . `m−1‖−1}

21−m

.

4.2. Integer points on curves and varieties. We also need the
following estimate of Bombieri and Pila [6] on the number of integral
points on polynomial curves.

Lemma 12. Let C be an absolutely irreducible curve of degree d ≥ 2
and H ≥ exp(d6). Then the number of integral points on C and inside of
a square [0, H]× [0, H] does not exceed H1/d exp(12

√
d logH log logH).

The following statement is a particular case of a more general result
of Wooley [40, Theorem 1.1].

Lemma 13. The number of solutions of the system of diophantine
equations

xj1 + . . .+ xj8 = xj9 + . . .+ xj16, j = 1, 2, 3

in integers xi with |xi| ≤M , i = 1, . . . , 16, is at most M10+o(1).

Proof. Writing xi = Xi −M − 1 with a positive integer Xi ≤ 2M + 1,
i = 1, . . . , 16, after some trivial algebraic transformation we see that
the number of solutions to the above equation is equal to J8,3(2M +1).
Since by the result of Wooley [40, Theorem 1.1] we have κ(3) ≤ 8, the
bound (5) applies with H = 2M + 1. ut

We note that Lemma 13 can be formulated in a more general form
with κ(3) instead of 8 variables on each side, but this generalization
(assuming possible improvements of the bound κ(3) ≤ 8) does not
affect our main results.

4.3. Congruences with many solutions. The following result is
used in the proofs of Theorems 1 and 7.

Lemma 14. Let f, g ∈ Fp[X] be two polynomials of degrees n and
m such that m - n. Assume that the integers x1, . . . , xn are pairwise
distinct modulo p and y1, . . . , yn are arbitrary integers. Then the con-
gruence

(9) f(x) ≡ g(y) (mod p), 0 ≤ x, y < p,
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has at most mn solutions with

(10) det


xn xn−1 . . . x y
xn1 xn−11 . . . x1 y1

. . .
xnn xn−1n . . . xn yn

 ≡ 0 (mod p).

Proof. Since

det

xn1 xn−11 . . . x1
. . .

xnn xn−1n . . . xn

 = x1 . . . xn
∏

1≤i<j≤n

(xi − xj) 6≡ 0 (mod p),

we deduce that, for any x and y, the last column in (10) is a unique
modulo p linear combination of the previous columns. In particular,
for every solution (x, y) to (9) and (10) we have y ≡ h(x) (mod p) for
some nontrivial polynomial h(X) ∈ Fp[X] that does not depend on x
and y.

Now we insert this into (9). We observe that now the right hand side
of (9), that is g(h(x)), is a nontrivial polynomial of degree m deg h.
Thus, the congruence (9) is a nontrivial polynomial congruence of de-
gree d with n ≤ d ≤ mn. Therefore, it has at most mn solutions
modulo p. ut

4.4. Symmetric multiplicative congruences. For given positive
integers i, j, we define Ti,j(R, S;M) as the number of solutions to the
congruence

rivj ≡ uisj (mod p)

with (r, s), (u, v) ∈ [R + 1, R +M ]× [S + 1, S +M ].
It has been shown in [14, Theorem 4.1] that for a positive M < p we

have

(11) Ti,j(R, S;M) = d
M4

p− 1
+O

(
M2po(1)

)
as M → ∞, where d = gcd(i, j, p − 1). We need a slight modification
of that statement, where po(1) is replaced by M o(1).

Lemma 15. For any prime p and any integers M,R, S with

R, S ≥ 0, M ≥ 1 and R +M,S +M < p

we have,

Ti,j(R, S;M) = d
M4

p− 1
+O

(
M2+o(1)

)
as M →∞, where d = gcd(i, j, p−1) and the implied constant depends
only on i and j.



12 M.-C. CHANG ETAL.

Proof. We note that for M ≥ p1/2 the result follows from (11). For
M < p1/2, the result is equivalent to the upper bound Ti,j(R, S;M) ≤
M2+o(1) since the implied constant is allowed to depend on d.

As in the proof of [14, Theorem 4.1], using the orthogonality of
multiplicative characters, we write

Ti,j(R, S;M) =
R+M∑

r,u=R+1

R+M∑
s,v=S+1

1

p− 1

∑
χ∈X

χ
(
(r/u)i(v/s)j

)
=

1

p− 1

∑
χ∈X

∣∣∣∣∣
R+M∑
r=R+1

χi(r)

∣∣∣∣∣
2 ∣∣∣∣∣

S+M∑
s=S+1

χj(s)

∣∣∣∣∣
2

.

We estimate the contribution to the above sum from at most i +
j characters χ with χi = χ0 or χj = χ0, where χ0 is the principal
character, as O(M4/p) = O

(
M2+o(1)

)
.

The rest of the sum can also be estimated as O
(
M2+o(1)

)
by follow-

ing exactly the same argument as in [14, Theorem 4.1] and using [14,
Lemma 2.2]. ut

4.5. Background on geometry of numbers. We recall that a lat-
tice in Rn is an additive subgroup of Rn generated by n linearly in-
dependent vectors. Let D be a symmetric convex body, that is, D is
a compact convex subset of Rn with non-empty interior that is cen-
trally symmetric with respect to 0. Then, for a lattice in Γ ⊆ Rn and
i = 1, . . . , n, the i-th successive minimum λi(D,Γ) of the set D with
respect to the lattice Γ is defined as the minimal number λ such that
the set λD contains i linearly independent vectors of the lattice Γ. In
particular λ1(D,Γ) ≤ . . . ≤ λn(D,Γ). We recall the following result
given in [3, Proposition 2.1] (see also [35, Exercise 3.5.6] for a simplified
form that is still enough for our purposes).

Lemma 16. We have,

#(D ∩ Γ) ≤
n∏
i=1

(
2i

λi(D,Γ)
+ 1

)
.

Using that

2i

λi(D,Γ)
+ 1 ≤ (2i+ 1) max

{
1

λi(D,Γ)
, 1

}
and denoting, as usual, by (2n + 1)!! the product of all odd positive
numbers up to 2n+ 1, we derive:
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Corollary 17. We have,

n∏
i=1

min{λi(D,Γ), 1} ≤ (2n+ 1)!!(#(D ∩ Γ))−1.

5. Proofs

5.1. Proof of Theorem 1. For the sake of brevity, in this section we
denote I = If (M ;R, S). We can assume that I is large. We fix some
integer L with

(12) 1 ≤ L ≤ 0.01I,

to be chosen later. By the pigeonhole principle, there exists Q such
that the congruence

y2 ≡ f(x) (mod p), Q+ 1 ≤ x ≤ Q+M/L, S + 1 ≤ y ≤ S +M,

has at least I/L solutions. We can split the interval [Q+ 1, Q+M/L]
into k0 = dI/(30L)e intervals of length not greater than 30M/I. Since
there are at most two solutions to the above congruence with the same
value of x, and since we have at least I/L > 20k0 solutions in total,
from the pigeonhole principle it follows that there exists an interval
of length 30M/I containing at least 10 pairwise distinct values of x.
Let x0 be the first of these values and let (x0, y0) be the corresponding
solution. It is clear that I/L is bounded by the number of solutions of

(y0 + y)2 ≡ f(x0 + x) (mod p),

−M/L ≤ x ≤M/L, −M ≤ y ≤M,

which is equivalent to

y2 ≡ c3x
3 + c2x

2 + c1x+ c0y (mod p),

−M/L ≤ x ≤M/L, −M ≤ y ≤M,
(13)

with (c3, p) = 1. Besides, there are at least 10 solutions (x, y) with
x pairwise distinct and such that 0 ≤ x ≤ 30M/I. From these 10
values we fix 3 solutions (x1, y1), (x2, y2), (x3, y3) and rewrite the con-
gruence (13) in the matrix form

(14)


x3 x2 x y
x33 x23 x3 y3
x32 x22 x2 y2
x31 x21 x1 y1



c3
c2
c1
c0

 ≡

y2

y23
y22
y21

 (mod p).
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By Lemma 14, we know that at most 6 pairs (x, y), with x pairwise
distinct, satisfy both the congruence (14) and the congruence∣∣∣∣∣∣∣∣

x3 x2 x y
x33 x23 x3 y3
x32 x22 x2 y2
x31 x21 x1 y1

∣∣∣∣∣∣∣∣ ≡ 0 (mod p).

Since there are at least 10 solutions to (14), for one of them, say (x4, y4),
we have

∆ =

∣∣∣∣∣∣∣∣
x34 x24 x4 y4
x33 x23 x3 y3
x32 x22 x2 y2
x31 x21 x1 y1

∣∣∣∣∣∣∣∣ 6≡ 0 (mod p).

Note that 1 ≤ |∆| � (M/I)6M . Now we solve the system of con-
gruences

(15)


x34 x24 x4 y4
x33 x23 x3 y3
x32 x22 x2 y2
x31 x21 x1 y1



c3
c2
c1
c0

 ≡

y24
y23
y22
y21

 (mod p)

with respect to (c3, c2, c1, c0). We write ∆j for the determinant of the
matrix on the left hand side where we have substituted the column j
by the vector (y24, y

2
3, y

2
2, y

2
1). With this notation we have that

cj ≡ ∆4−j∆
∗ (mod p), j = 0, . . . , 3,

where ∆∗ is defined by ∆∆∗ ≡ 1 (mod p), and the congruence (13) is
equivalent to

∆1x
3 + ∆2x

2 + ∆3x+ ∆4y −∆y2 ≡ 0 (mod p).

In particular, since, as we have noticed, c3 6≡ 0 (mod p), we have that
∆1 6≡ 0 (mod p). We can write this congruence as an equation over Z:

(16) ∆1x
3 + ∆2x

2 + ∆3x+ ∆4y −∆y2 = pz, (x, y, z) ∈ Z3.

We can easily check that

|∆4| � (M/I)6M2

and

|∆j| � (M/I)2+jM3, j = 1, 2, 3.
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Thus, collecting the above estimates and taking into account L � I,
we derive

|z| � 1

p

(
|∆1|(M/L)3 + |∆2|(M/L)2 + |∆3|(M/L) + |∆4|M + |∆|M2

)
� M3

p

(
M6

I3L3
+

M6

I4L2
+
M6

I5L
+
M6

I6

)
� M9

pI3L3
.

Since ∆1 6= 0, ∆ 6= 0, for each z, the curve (16) is absolutely irreducible,
and thus by Lemma 12 it contains at most M1/3+o(1) integer points
(x, y) with |x|, |y| ≤M . Hence

I

L
≤M1/3+o(1)

(
1 +

M9

pI3L3

)
for any L satisfying (12). This implies, that

(17) I ≤ LM1/3+o(1) +
M7/3

p1/4L1/2
.

If M < 10p1/8, then we take L = 1 and derive from (17) that

I ≤M1/3+o(1) +
M7/3+o(1)

p1/4
≤M1/3+o(1).

Let now M > 10p1/8. We can assume that I > M5/3p−1/6, as oth-
erwise there is nothing to prove. Then we take L =

⌊
M4/3p−1/6

⌋
and

note that the condition (12) is satisfied. Thus, we derive from (17) that

I ≤ LM1/3+o(1) +
M7/3+o(1)

p1/4L1/2
≤M5/3+o(1)p−1/6

and the result follows.

5.2. Proof of Theorem 2. Clearly we can assume that

(18) M > p5/23

as otherwise

(M3/p)1/16M ≥ M5/3+o(1)

p1/6

and the result follows from Theorem 1. We can also assume that M =
o(p1/3).

We fix one solution (x0, y0) to the congruence (1) and by making the
change of variables (x, y) 7→ (x − x0, y − y0), we see that it is enough
to study a congruence of the form

(19) y2 − c0y ≡ c3x
3 + c2x

2 + c1x (mod p), |x|, |y| ≤M.
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Let W be the set of pairs (x, y) that satisfy (19), and by X we denote
the set of x for which (x, y) ∈ W for some y. Let

ρ =
#X
M

.

We now fix some ε > 0 and assume that

(20) ρ ≥ (M3/p)1/16M ε.

We also assume that M is sufficiently large. In view of (18) and (20),
we also have

(21) ρ > M−1/10.

For ϑ > 0 we define the intervals

Iν,ϑ = [−ϑMν , ϑMν ], ν = 1, 2, 3,

which we treat as intervals in Fp, that is, sets of residues modulo p of
several consecutive integers.

We now consider the set

S ⊆ I1,8 × I2,8 × I3,8
of all triples

(22) s ≡ (x1 + . . .+ x8, x
2
1 + . . .+ x28, x

3
1 + . . .+ x38) (mod p),

where xi, i = 1, . . . , 8, independently run through the set X . We
observe that the system of congruences

(23) xj1 + . . .+ xj8 ≡ xj9 + . . .+ xj16 (mod p), j = 1, 2, 3,

has at most M10+o(1) solutions in integers xi, yi with |xi|, |yi| ≤ M .
Indeed, since M = o(p1/3), the above congruence is converted to the
system of diophantine equations

xj1 + . . .+ xj8 = xj9 + . . .+ xj16, j = 1, 2, 3,

which by Lemma 13 has at most M10+o(1) solutions in integers xi with
|xi| ≤ M , i = 1, . . . , 16. Therefore, the congruence (23) has at most
M10+o(1) solutions in xi ∈ X , i = 1, . . . , 16, as well. Thus, collecting
elements of the set X 8 that correspond to the same vector s given
by (22) and denoting the number of such representations by N(s), by
the Cauchy inequality, we obtain

(#X )8 =
∑
s∈S

N(s) ≤

(
#S

∑
s∈S

N(s)2

)1/2

≤
(
#SM10+o(1)

)1/2
.

Thus

#S ≥ (#X )16

M10+o(1)
= ρ16M6+o(1).
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Hence, there exist at least ρ16M6+o(1) triples

(z1, z2, z3) ∈ I1,8 × I2,8 × I3,8
such that

c3z3 + c2z2 + c1z1 ≡ z̃2 − c0z̃1 (mod p)

for some z̃2 ∈ I2,8 and z̃1 ∈ I1,8. In particular we have that the congru-
ence

c3z3 + c2z2 + z̃2 + c1z1 + c0z̃1 ≡ 0 (mod p),

(z1, z̃1, z2, z̃2, z3) ∈ I1,8 × I1,8 × I2,8 × I2,8 × I3,8,
has a set of solutions S with

(24) #S ≥ ρ16M6+o(1).

The rest of the proof is based on the ideas from [7].
We define the lattice

Γ = {(X2, X3, X̃2, X1, X̃1) ∈ Z5 :

X2 + c3X3 + c2X̃2 + c1X1 + c0X̃1 ≡ 0 (mod p)}
and the body

D = {(x2, x3, x̃2,x1, x̃1) ∈ R5 :

|x1|, |x̃1| ≤ 8M, |x2|, |x̃2| ≤ 8M2, |x3| ≤ 8M3}.
We see from (24) that

# (D ∩ Γ) ≥ ρ16M6+o(1).

Therefore, by Corollary 17, the successive minima λi = λi(D,Γ), i =
1, . . . , 5, satisfy the inequality

(25)
5∏
i=1

min{1, λi} � ρ−16M−6+o(1).

From the definition of λi it follows that there are five linearly inde-
pendent vectors

(26) vi = (v2,i, v3,i, ṽ2,i, v1,i, ṽ1,i) ∈ λiD ∩ Γ, i = 1, . . . , 5.

Indeed, first we choose a nonzero vector v1 ∈ λ1D∩Γ. Then assuming
that for 1 ≤ i ≤ 5 the vectors v1, . . . ,vi−1 are chosen, we choose vi as
one of the vectors v ∈ λiD∩Γ that are not in the linear space generated
by v1, . . . ,vi−1.

We now note that
λ3 < 1.

Indeed, otherwise from (25) we obtain

min{1, λ21} ≤ min{1, λ1}min{1, λ2} ≤ ρ−16M−6+o(1).
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Thus recalling (21) we see that

λ1 ≤
1

10M2
.

Then the vector v1 must have v2,1 = ṽ2,1 = v1,1 = ṽ1,1 = 0. In turn this
implies that v3,1 ≡ 0 (mod p) and since we assumed that M = o(p1/3),
we obtain v3,1 = 0, which contradicts the condition that v1 is a nonzero
vector.

We consider separately the following four cases.
Case 1 : λ5 ≤ 1. Then by (25), we have

5∏
i=1

λi ≤ ρ−16M−6+o(1).

We now consider the determinant ∆ of the 5×5 matrix that is formed
by the vectors (26). It follows that

∆�M2+3+2+1+1

5∏
i=1

λi ≤ ρ−16M3+o(1),

which, by our assumption (20), implies that |∆| < p. On the other
hand, since vi ∈ Γ, we have ∆ ≡ 0 (mod p), thus ∆ = 0 provided
that p is large enough, which contradicts the linear independence of
the vectors in (26). Thus this case is impossible.

Case 2 : λ4 ≤ 1, λ5 > 1. Let

V =


v3,1 ṽ2,1 v1,1 ṽ1,1
v3,2 ṽ2,2 v1,2 ṽ1,2
v3,3 ṽ2,3 v1,3 ṽ1,3
v3,4 ṽ2,4 v1,4 ṽ1,4

 , w =


−v2,1
−v2,2
−v2,3
−v2,4

 , c =


c3
c2
c1
c0

 .

We have

V c ≡ w (mod p).

Let

∆ = detV

and let ∆j be the determinant of the matrix obtained by replacing the
j-th column of V by w, j = 1, . . . , 4.

Recalling (25), we have

(27) |∆| � λ1λ2λ3λ4M
3+2+1+1 ≤ ρ−16M1+o(1)

and similarly

|∆1| ≤ ρ−16M o(1), |∆2| ≤ ρ−16M1+o(1),

|∆3| ≤ ρ−16M2+o(1), |∆4| ≤ ρ−16M2+o(1).
(28)
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Note that, in view of (20), in particular we have

|∆|, |∆j| < p, j = 1, . . . , 4.

If ∆ ≡ 0 (mod p) then since c is nonzero modulo p we also have ∆j ≡ 0
(mod p), j = 1, . . . , 4, implying that ∆ = 0, ∆j = 0. Then the matrix
formed by v1, . . . ,v4 is of rank at most 3, which contradicts their linear
independence. Therefore ∆ 6≡ 0 (mod p) and thus we have

ci ≡
∆4−i

∆
(mod p), i = 0, 1, 2, 3.

Since c3 6≡ 0 (mod p), we have ∆1 6= 0. We now substitute this in (19)
and get that

∆y2 −∆4y ≡ ∆1x
3 + ∆2x

2 + ∆3x (mod p), |x|, |y| ≤M.

We see from (20), (27) and (28) that for sufficiently large M the abso-
lute values of the expressions on both sides are less than p/2, implying
the equality

∆y2 −∆4y = ∆1x
3 + ∆2x

2 + ∆3x, |x|, |y| ≤M.

Now we use Lemma 12 and conclude that the number of solutions is
at most M1/3+o(1).

Case 3 : λ3 ≤ (10M)−1, λ4 > 1. By (25), we have

3∏
i=1

λi ≤ ρ−16M−6+o(1).

Since λ3 ≤ (10M)−1, we also have

(29) vi = (v2,i, v3,i, ṽ2,i, 0, 0), i = 1, 2, 3.

In particular, v2,1 v3,1 ṽ2,1
v2,2 v3,2 ṽ2,2
v2,3 v3,3 ṽ2,3

 1
c3
c2

 ≡
 0

0
0

 (mod p).

Thus, for the determinant

∆ = det

 v2,1 v3,1 ṽ2,1
v2,2 v3,2 ṽ2,2
v2,3 v3,3 ṽ2,3


we have

∆ ≡ 0 (mod p).

On the other hand, from (21) we derive that

|∆| � λ1λ2λ3M
7 <

M1+o(1)

ρ16
< M2.6+o(1).
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Hence, ∆ = 0, which together with (29) implies that the vectors
v1,v2,v3 are linearly dependent, which is impossible.

Case 4 : (10M)−1 < λ3 ≤ 1, λ4 > 1. By (25), we have

3∏
i=1

λi ≤ ρ−16M−6+o(1)

and since λ3 > (10M)−1, we obtain

λ1λ2 < ρ−16M−5+o(1).

We again note that λ1 > (10M2)−1, as otherwise v1 must have v2,1 =
ṽ2,1 = v1,1 = ṽ1,1 = 0. In turn this implies that v3,1 ≡ 0 (mod p)
and since we assumed that M = o(p1/3), we obtain v3,1 = 0, which
contradicts the condition that v1 is a nonzero vector.

Since λ1 > (10M2)−1 and ρ > M−1/10, we get that λ2 < (10M)−1.
Thus, we have

vi = (v2,i, v3,i, ṽ2,i, 0, 0), i = 1, 2.

Next, (
v3,1 ṽ2,1
v3,2 ṽ2,2

)(
c3
c2

)
≡
(
−v2,1
−v2,2

)
(mod p).

Now we observe that

(30) ∆ = det

(
v3,1 ṽ2,1
v3,2 ṽ2,2

)
� λ1λ2M

5 <
M o(1)

ρ16
.

Furthermore,

(31) ∆1 = det

(
−v2,1 ṽ2,1
−v2,2 ṽ2,2

)
� λ1λ2M

4 <
M−1+o(1)

ρ16
,

and

(32) ∆2 = det

(
v3,1 −v2,1
v3,2 −v2,2

)
� λ1λ2M

5 <
M o(1)

ρ16
.

In particular, |∆|, |∆1|, |∆2| < p. Therefore, if ∆ ≡ 0 (mod p), then
∆1 ≡ ∆2 ≡ 0 (mod p) and we see that ∆ = ∆1 = ∆2 = 0. Thus, in
this case the rank of the matrix formed with vectors v1,v2 is at most
1, which contradicts the linear independence of the vectors v1,v2.

Hence, ∆ 6≡ 0 (mod p) and we get that

c3 ≡
∆1

∆
(mod p), c2 ≡

∆2

∆
(mod p).

We now substitute this in (19) and get that

∆y2 − a0y ≡ ∆1x
3 + ∆2x

2 + b0x (mod p), |x|, |y| ≤M,
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for some integers a0, b0. We observe that the condition c3 6≡ 0 (mod p)
implies that ∆1 6= 0.

Let now

T =

⌊( p
M

)1/3
ρ16/3

⌋
.

Note that M2/3 < T < T 2 < p/2. By the pigeonhole principle, there
exists a positive integer 1 ≤ t0 ≤ T 2 + 1 such that

|(t0a0)p| ≤
p

T
, |(t0b0)p| ≤

p

T
,

where (x)p is the element of the residue class x (mod p) with the least
absolute value, see also [14, Lemma 3.2]. Hence

t0∆y
2−(t0a0)py ≡ t0∆1x

3+t0∆2x
2+(t0b0)px (mod p), |x|, |y| ≤M.

By (30), (31), (32), the absolute values of the expressions on both sides
are bounded by pM1+o(1)T−1. Thus, we get

t0∆y
2 − (t0a0)py = t0∆1x

3 + t0∆2x
2 + (t0b0)px+ pz,

where

|x|, |y| ≤M, |z| < M1+o(1)T−1.

Now we use Lemma 12 and conclude that the number of solutions is
at most (

M

T
+ 1

)
M1/3+o(1) <

(
M4/3

p1/3
ρ−16/3 + 1

)
M1/3+o(1)

< M2/3+o(1) <

(
M3

p

)1/16

M.

Since ε > 0 is arbitrary, the result now follows.

5.3. Proof of Theorem 4. Let X be the set of integers x ∈ [R +
1, R + M ] such that the congruence (1) is satisfied for some integer
y ∈ [S + 1, S +M ]. In particular, letting X = #X we have

(33) If (M ;R, S) ≤ 2X.

Fix some integer k ≥ 1 and consider the set

Yk = {y21 + . . .+ y2k (mod p) : S + 1 ≤ yi ≤ S +M, i = 1, . . . , k}.

By making the change of variables yi = S+ zi, i = 1, . . . , k, we observe
that

Yk = {z21 + . . .+ z2k + 2S(z1 + . . .+ zk) + kS2 (mod p) :

1 ≤ zi ≤M, i = 1, . . . , k}.
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In particular,

#Yk ≤ #
{
r + 2Ss+ kS2 : 1 ≤ r ≤ kM2, 1 ≤ s ≤ kM

}
≤ k2M3.

For any (x1, . . . , xk) ∈ X k there exists λ ∈ Yk such that

f(x1) + . . .+ f(xk) ≡ λ (mod p).

Thus,

Xk ≤
∑
λ∈Yk

r(λ)

where

r(λ) = #{(x1, . . . , xk) ∈[R + 1, R +M ]k :

f(x1) + . . .+ f(xk) ≡ λ (mod p)}.

Using the Cauchy inequality, we derive

X2k ≤ #Yk
∑
λ∈Yk

r2(λ) ≤ k2M3Tk(R,M),

where Tk(R;M) is the number of solutions of

f(x1) + . . .+ f(xk) ≡ f(xk+1) + . . .+ f(x2k) (mod p),

(x1, . . . , x2k) ∈ [R + 1, R +M ]2k.

The quantity Tk(R;M) has been defined and estimated in [13] for R = 0
but making a change of variables, it is clear that the same bound holds
for any R. In particular, it is proved in [13] that

Tk(R;M)� (Mm/p+ 1)Mm(m−1)/2Jk,m(M),

where, as before, Jk,m(M) is the number of solutions of the system of
equations (4) with H = M .

Taking k = κ(m) so that the bound (5) holds, we derive

X2k ≤M3 (Mm/p+ 1)Mm(m−1)/2M2k−m(m+1)/2+o(1)

≤ (Mm/p+ 1)M2k+3−m+o(1)

and obtain

X ≤M(M3/p)1/2κ+o(1) +M1−(m−3)/2κ+o(1),

which together with (33) concludes the proof.
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5.4. Proof of Theorem 5. Let J = Jf (M ;R, S).
Without loss of generality we can assume that

0 ≤M + 1 < M + S < p.

Applying Lemma 10 to the sequence of fractional parts γn = {f(n)/p},
n = 1, . . . ,M , with

α = (S + 1)/p, β = (S +M + 1)/p, K = bp/Mc ,
so that we have

1

K
+ min{β − α, 1/k} � M

p
for k = 1, . . . , K, we derive

J � M2

p
+
M

p

K∑
k=1

∣∣∣∣∣
M∑
n=1

exp(2πikf(n)/p)

∣∣∣∣∣ .
Therefore, by Lemma 11, we have

J � M2

p
+
M2−m/2m−1

p

×
K∑
k=1

 ∑
−M<`1,...,`m−1<M

min

{
M,

∥∥∥∥apm!k`1 . . . `m−1

∥∥∥∥−1
}21−m

.

Now, separating the contribution from the terms with `1 . . . `m−1 = 0
we obtain

J � M2

p
+
M2−m/2m−1

p
K(Mm−1)2

1−m

+
M2−m/2m−1

p
W,

where

W =
K∑
k=1

 ∑
0<|`1|,...,|`m−1|<M

min

{
M,

∥∥∥∥apm!k`1 . . . `m−1

∥∥∥∥−1
}21−m

.

Hence, recalling the choice of K, we derive

(34) J � M2

p
+M1−1/2m−1

+
M2−m/2m−1

p
W.

The Hölder inequality implies the bound

W 2m−1 � K2m−1−1
K∑
k=1 ∑
0<|`1|,...,|`m−1|<M

min

{
M,

∥∥∥∥apm!k`1 . . . `m−1

∥∥∥∥−1
}
.
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Collecting together the terms with the same value of z = m!k`1 . . . `m−1
and recalling the well-known bound on the divisor function, we con-
clude that

W 2m−1 � K2m−1−1po(1)
∑

|z|<m!KMm−1

min

{
M,

∥∥∥∥apz
∥∥∥∥−1
}
.

Since the sequence ‖am/p‖ is periodic with period p, we see that

W 2m−1 � K2m−1−1po(1)
KMm−1

p

p∑
z=1

min

{
M,

∥∥∥∥apz
∥∥∥∥−1
}

� K2m−1−1po(1)
KMm−1

p

(
M +

p∑
z=1

∥∥∥∥zp
∥∥∥∥−1
)

� K2m−1

Mm−1po(1).

Thus, recalling the choice of K, we derive

W ≤ KM (m−1)/2m−1

po(1) ≤M (m−1)/2m−1−1p1+o(1),

which after the substitution in (34) concludes the proof.

5.5. Proof of Theorem 6. Assume that H = Hb for some vector
b = (b0, . . . , b2g−1) ∈ F2g

p . We recall that all components of any vector
a ∈ B are non-zero modulo p. Hence, b0 ∈ F∗p and we see from (6)
(combining the equations with i = 2g + 1− h and i = 2g − 1) that

ah2g−1 ≡λa22g+1−h (mod p),

R2g+1−h + 1 ≤a2g+1−h ≤ R2g+1−h +M,

R2g−1 + 1 ≤a2g−1 ≤ R2g−1 +M,

(35)

where

(36) λ = bh2g−1/b
2
2g+1−h.

We also observe that

α4 = b2g−1/a2g−1.

Thus, each solution (ag+1−h, a2g−1) of (35) determines at most two
values of α2, each of which in turn determines all other values of
a0, a1, . . . , a2g−1.

Thus we have seen that N(H;B) ≤ 2T , where T is the number of
solutions (x, y) of the congruence

(37) xh ≡ λy2 (mod p), R+ 1 ≤ x ≤ R+M, S+ 1 ≤ y ≤ S+M,

where R = Rg+1−h, S = R2g−1 and λ is given by (36).
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We now observe that the congruence (37) taken with h = 4, which
is admissible for g ≥ 2, implies

x2 ≡ µy (mod p), R + 1 ≤ x ≤ R +M, S + 1 ≤ y ≤ S +M,

where µ is one of the two square roots of λ (we recall that g ≥ 2).
Applying Theorem 5 with a quadratic polynomial f , we immediately
obtain the desired result.

5.6. Proof of Theorem 7. As in the proof of Theorem 6 we let H =
Hb for some b = (b0, . . . , b2g−1) ∈ F2g

p .

We can assume that M < p1/4 as otherwise the results are weaker
than the trivial upper bound N(H;B)�M .

Let T be the number of solutions (x, y) to the congruence (37).
We follow the proof of Theorem 1. We can assume that T is suf-

ficiently large (recall that g is fixed integer constant). We fix some
integer L with

(38) 1 ≤ L ≤ T

12(h+ 1)
,

to be chosen later. Thus, there exists Q such that the congruence

xh ≡ λy2 (mod p), Q+ 1 ≤ x ≤ Q+M/L, S + 1 ≤ y ≤ S +M,

has at least T/L solutions. We can split the interval [Q+ 1, Q+M/L]
into k0 = dT/(6(h+ 1)L)e intervals of length at most 6(h + 1)M/T .
Since there are at most two solutions to the above congruence with the
same value of x, and since we have at least T/L > 4(h+ 1)k0 solutions
in total, from the pigeonhole principle it follows that there exists an
interval of length 6(h + 1)M/T containing at least 2(h + 1) pairwise
distinct values of x. Let x0 be the first of these values and (x0, y0) the
solution. It is clear that T/L is bounded by the number of solutions of

(x0 + x)h ≡ λ(y0 + y)2 (mod p),

−M/L ≤ x ≤M/L, −M ≤ y ≤M,

which is equivalent to

chx
h + . . .+ c1x+ c0y ≡ y2 (mod p),

−M/L ≤ x ≤M/L, −M ≤ y ≤M,
(39)

where

c0 = −2y0 and cj = λ∗
(
h

j

)
xh−j0 , j = 1, . . . , h,

where λ∗ is defined by λ∗λ ≡ 1 (mod p) and 1 ≤ λ∗ < p. In particular,
ch 6≡ 0 (mod p). Besides, there are at least 2h + 1 solutions (x, y)
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of (39) with x pairwise distinct and such that 1 ≤ x ≤ 6(h + 1)M/T .
From these 2h+1 values we fix h: (x1, y1), . . . , (xh, yh) and rewrite (39)
in the form

(40)


xh . . . x y
xhh . . . xh yh

. . .
xh1 . . . x1 y1



ch
. . .
c1
c0

 ≡

y2

y2h
. . .
y21

 (mod p).

Since h is odd, by Lemma 14, we know that at most 2h pairs (x, y), with
x pairwise distinct, satisfy both the congruence (40) and the congruence∣∣∣∣∣∣∣∣

xh . . . x y
xhh . . . xh yh

. . .
xh1 . . . x1 y1

∣∣∣∣∣∣∣∣ ≡ 0 (mod p).

Since there are at least 2h + 1 solutions of (40), for one of them, say
(xh+1, yh+1), we have

∆ =

∣∣∣∣∣∣∣∣
xhh+1 . . . xh+1 yh+1

xhh . . . xh yh
. . .

xh1 . . . x1 y1

∣∣∣∣∣∣∣∣ 6≡ 0 (mod p).

Note that 1 ≤ |∆| � (M/T )h(h+1)/2M . Now we solve the system

(41)


xhh+1 . . . xh+1 yh+1

xhh . . . xh yh
. . .

xh1 . . . x1 y1




ch
ch−1
. . .
c0

 ≡

y2h+1

y2h
. . .
y21

 (mod p)

with respect to (ch, . . . , c1, c0). We write ∆j for the determinant of the
matrix on the left hand side where we have substituted the column j
by the vector (y2h+1, . . . , y

2
1). With this notation we have that

cj =
∆h+1−j

∆
, j = 0, . . . h,

and the congruence (39) is equivalent to

∆1x
h + ∆2x

h−1 + . . .+ ∆hx+ ∆h+1y −∆y2 ≡ 0 (mod p).

In particular, ∆1 6≡ 0 (mod p). We can write this congruence as an
equation over Z:

(42) ∆1x
h + ∆2x

h−1 + . . .+ ∆hx+ ∆h+1y −∆y2 = pz, z ∈ Z.
We can easily check that

|∆h+1| � (M/T )h(h+1)/2M2
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and
|∆j| � (M/T )h(h−1)/2+j−1M3, j = 1, . . . , h.

Thus, collecting the above estimates, we derive

|z| � 1

p

(
h∑
j=1

|∆j|(M/L)h−j+1 + |∆h+1|M + |∆|M2

)

� M3

p

(
h∑
j=1

(M/T )h(h−1)/2+j−1(M/L)h−j+1 + (M/T )h(h+1)/2

)

� M3

p

(
Mh(h+1)/2T−h(h−1)/2L−h

h∑
j=1

(TL)−j+1 + (M/T )h(h+1)/2

)

� Mh(h+1)/2+3

pT h(h−1)/2Lh
.

Since h is odd, and ∆ 6= 0, ∆1 6= 0, we have that, for each z, the
curve (42) is absolutely irreducible. Thus by Lemma 12 it contains at
most M1/h+o(1) integer points (x, y) with |x|, |y| ≤M . Hence

(43) T ≤ LM1/h+o(1)

(
1 +

Mh(h+1)/2+3

pT h(h−1)/2Lh

)
for any L satisfying (38).

We can assume that the following lower bounds hold for T :

(44) T > M1/h and T > 24(h+ 1)
(
M(M4/p)2/h(h+1) + 1

)
since otherwise there is nothing to prove.

Take L =
⌊
1 + (M (h2+7)/2/p)2/h(h+1)

⌋
. We note that (38) holds as

otherwise L ≥ 2 and we have(
M (h2+7)/2

p

)2/h(h+1)

≥ L− 1 ≥ L

2
>

T

24(h+ 1)

> M

(
M4

p

)2/h(h+1)

=

(
Mh(h+1)/2+4

p

)2/h(h+1)

,

which is impossible.
If M < p2/(h

2+7) we have L = 1 and in view of (44), also

Mh(h+1)/2+3

pT h(h−1)/2Lh
≤ Mh(h+1)/2+3

pM (h−1)/2 =
M (h2+7)/2

p
< 1

In this case, the bound (43) yields

T �M1/h+o(1).
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If M ≥ p2/(h
2+7), we have

(M (h2+7)/2/p)2/h(h+1) � L� (M (h2+7)/2/p)2/h(h+1)

and, recalling our assumption (44) we obtain

Mh(h+1)/2+3

pT h(h−1)/2Lh

� Mh(h+1)/2+3

pMh(h−1)/2(M4/p)(h−1)/(h+1)(M (h2+7)/2/p)2/(h+1)
= 1.

Hence, in this case we derive from (43) that

T ≤ (M (h2+7)/2/p)2/h(h+1)M1/h+o(1)

=M
(
M4/p

)2/h(h+1)+o(1)
,

which concludes the proof.

5.7. Proof of Theorem 8. Clearly

(45)
∑

H∈H(B)

N(H;B) = M2g and
∑

H∈H(B)

N(H;B)2 = T (B).

As in [14], using (45) and the Cauchy inequality we derive

#H (B) ≥M4gT (B)−1.

From (6) we observe that T (B) is the numbers of pairs of vectors
(a,b), a,b ∈ B, such that there exists α such that

ai ≡ α4g+2−2ibi (mod p), i = 0, . . . , 2g − 1.

In particular,

a32g−1b
2
2g−2 ≡ a22g−2b

3
2g−1 (mod p).

Now by Lemma 15, we see that there are only O
(
M4/p+M2+o(1)

)
possibilities for the quadruple (a2g−1, a2g−2, b2g−1, b2g−2). When it is
fixed, the parameter α in (6) can take at most 4 values, and thus for
every choice of (a0, . . . , a2g−3) there are only 4 choices for (b0, . . . , b2g−3).
Therefore,

(46) T (B) ≤M2g−2 (M4/p+M2+o(1)
)
.

When M < p1/(2g) we obtain T (B) ≤ M2g+o(1) and #H (B) ≥
M2g+o(1), which proves Theorem 8 in this range.

When M ≥ p1/(2g) we use a different approach. Using the notation

Ni(λ) = #{(ai, bi) : ai/bi ≡ λ (mod p), Ri + 1 ≤ ai, bi ≤ Ri +M},
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we can write

T (B) =

p−1∑
α=1

N0(α
4g+2)N1(α

4g) . . . N2g−1(α
4).

Thus,

T 2g(B) ≤

(
p−1∑
α=1

N2g
0 (α4g+2)

)
. . .

(∑
α 6=0

N2g
2g−1(α

4)

)

≤

(
(4g + 2)

p−1∑
α=1

N2g
0 (α)

)
. . .

(
4

p−1∑
α=1

N2g
2g−1(α)

)
and then we have

T (B)� max
i

p−1∑
α=1

N2g
i (α).

We observe that for any α 6≡ 0 (mod p) there exist integers r, s with
1 ≤ |r|, s ≤ p1/2, (r, s) = 1 and such that α ≡ r/s (mod p). Thus

p−1∑
α=1

N2g
i (α) ≤

∑
1≤r,s<p1/2
gcd(r,s)=1

N2g
i (r/s) +

∑
1≤r,s<p1/2
gcd(r,s)=1

N2g
i (−r/s).

Our estimate of Ni(r/s) is based on an argument that is very close
to that used in the proof of [2, Lemma 1]. Namely, we observe that
Ni(r/s) is the number of solutions (x, y) to the congruence

x/y ≡ r/s (mod p), Ri + 1 ≤ x, y ≤ Ri +M,

which is equivalent to the congruence

sx− ry ≡ c (mod p), 1 ≤ x, y ≤M,

for a suitable c. We can write the congruence as an equation in integers

sx− ry = c+ zp, 1 ≤ x, y ≤M, z ∈ Z.

We observe that

|z| ≤ |s|M + |r|M + |c|
p

≤ (|s|+ |r|)M
p

+ 1.

For each z we consider, in case it has, a solution (xz, yz), 1 ≤ xz, yz ≤
M . The solutions of the diophantine equation above is given by (x, y) =
(xz + rt, yz + st), t ∈ Z. The restriction 1 ≤ x, y ≤ M implies that
|t| ≤M/max{r, s}.
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Thus we have

Ni(r/s) ≤
(

1 +
2M

max{r, s}

)(
1 +

2M(s+ r)

p

)
≤ 1 +

4M max{r, s}
p

+
2M

max{r, s}
+

4M2

p
.

Therefore∑
1≤r,s<p1/2
gcd(r,s)=1

N2g
i (r/s)

�
∑

1≤r,s<p1/2

(
1 +

M2g (max{r, s})2g

p2g
+

M2g

(max{r, s})2g
+
M4g

p2g

)

�
∑

1≤r<s<p1/2

(
1 +

M2gs2g

p2g
+
M2g

s2g
+
M4g

p2g

)

�
∑

1≤s<p1/2

(
s+

M2gs2g+1

p2g
+
M2g

s2g−1
+
M4gs

p2g

)

�p+
M2g

pg−1
+M2g

∑
1≤s<p1/2

1

s2g−1
+
M4g

p2g−1
.

The estimate of the sum with N2g
i (−r/s) is fully analogous.

Assume that M ≥ p1/(2g) and observe that∑
1≤s<p1/2

1

s2g−1
�

{
logM, if g = 1,

1, if g ≥ 2.

Thus we have

(47) T (B)�

{
M2 logM +M4/p, if g = 1,

M2g +M4g/p2g−1, if g ≥ 2,

which gives

#H (B) ≥M4gT (B)−1 �

{
min{p,M2+o(1)}, if g = 1,

min{p2g−1,M2g}, if g ≥ 2,

and proves Theorem 8 in the range M ≥ p1/2g.

6. Comments

The problem of obtaining a nontrivial upper bound for If (M ;R, S)
in the range p1/3 < M < p1/2 is still open.
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On the other hand, we note that using bounds of exponential sums
obtained with the method of Vinogradov instead of Lemma 11, see [5,
16, 31, 38] and references therein, also leads to some nontrivial bounds
on Jf (M ;R, S) but these results seem to be weaker than a combination
of Theorem 5 with the bounds from [13].

Similar ideas can be exploited to obtain lower bounds for the cardi-
nality of the set I(B) of non-isomorphic isogenous elliptic curves Ha

with coefficients in a cube B.
Indeed, let us denote by It the isogeny class consisting of elliptic

curves over Fp with the same number p + 1 − t of Fp-rational points.
By a result of Deuring [15], each admissible value of t, that is, with
|t| ≤ 2p1/2, is taken and hence there are about 4p1/2 isogeny classes.
Furthermore, Birch [4] has actually given a formula via the Kronecker
class number for the number of isomorphism classes of elliptic curves
over a finite field Fq lying in It. Finally, Lenstra [24] has obtained
upper and lower bounds for this number and, in particular, shown that
the number of isomorphism classes of elliptic curves of a given order is
O
(
p1/2 log p (log log p)2

)
.

Observe that once again bounds for N(H;B) can be translated into
bounds for the number of isogenous non-isomorphic curves with coeffi-
cients in B, via multiplication by p1/2+o(1). However, as we have done
before, one can obtain better bounds in terms of T (B) which is given
by (45).

Thus, using (45) and (47), with g = 1, we see that for the setH(t,B)
of elliptic curves Ha ∈ It with a ∈ B, we have

#H(t,B) =
∑

H∈H(B)∩It

N(H,B)

≤ (#It)1/2
 ∑
H∈H(B)

N(H,B)2

1/2

= (#It)1/2T (B)1/2

�
(
M2p−1/4 + p1/4M log1/2M

)
(log p)1/2 log log p.

This improves the trivial bound

H(N,B)� min{M2, p3/2(log p)1/2 log log p}
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for p1/4+ε ≤ M ≤ p7/8−ε (with any fixed ε > 0). Furthermore, it also
implies the lower bound

#I(B)� M2

max|t|∈2p1/2H(t,B)

� min{p1/4,Mp−1/4 log−1/2M}(log p)−1/2(log log p)−1.

Acknowledgements

The authors are grateful to Alfred Menezes for discussions and useful
references on isomorphism classes of hyperelliptic curves.

M.-C. Chang is very grateful to the Department of Mathematics of
the University of California at Berkeley for its hospitality.

During the preparation of this paper, M.-C. Chang was supported in
part by NSF, J. Cilleruelo was supported by Grant MTM 2011-22851
of MICINN (Spain), M. Z. Garaev was supported in part by the Red
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[37] M. Vâjâitu and A. Zaharescu, ‘Distribution of values of rational maps on the
Fp-points on an affine curve’, Monatsh. Math., 136 (2002), 81–86.

[38] R. C. Vaughan, The Hardy–Littlewood method , Cambridge Univ. Press, Cam-
bridge, 1981.

[39] T. D. Wooley, ‘Vinogradov’s mean value theorem via efficient congruencing’,
Ann. Math., 175 (2012), 1575–1627.

[40] T. D. Wooley, ‘Vinogradov’s mean value theorem via efficient congruencing,
II’, Duke Math. J., 162 (2013), 673–730.

[41] Z. Zheng, ‘The distribution of zeros of an irreducible curve over a finite field’,
J. Number Theory 59 (1996), 106–118.

[42] A. Zumalacárregui, ‘Concentration of points on modular quadratic forms’, In-
tern. J. Number Theory , 7 (2011), 1835–1839.



POINTS ON CURVES IN SMALL BOXES AND APPLICATIONS 35

Department of Mathematics, University of California, Riverside,
CA 92521, USA

E-mail address: mcc@math.ucr.edu
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partamento de Matemáticas, Universidad Autónoma de Madrid, 28049,
Madrid, España

E-mail address: franciscojavier.cilleruelo@uam.es
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