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Abstract
We state and discuss various problems in the general area of arithmetic combi-

natorics and recent developments related to the ‘sum-product phenomenon’ in the
ring of integers, the real and complex numbers and finite fields. In particular, we
discuss applications and connections to the theory of exponential sums, Burgess’
estimate, the subspace theorem and to Szemeredi-Trotter type results.

In recent years, some of the developments in combinatorial number theory relate
to a line of research initiated by Erdős and Szemerédi in their seminal paper [ES] on
the size of sum and product sets of sets of integers. The motivation for this renewed
interest has several distinct sources. One of them belongs to harmonic analysis and
the so-called Kakeya problem. Another relates to the search for deterministic forms
of randomness in computer science. It is certainly not our purpose here to review
how the Erdős-Szemerédi sum-product problems are relevant to these other fields
and what progress they have generated. Our presentation will be mostly limited to a
discussion of what is new for the questions raised in [ES] (obviously a lot remains to
be solved). We will also explain the mathematical connections and tools that have
been brought into play. They will clearly demonstrate that the questions raised in
[ES] have significant connections to several major themes in number theory, such
as character sums and the subspace theorem.

Let A and B be subsets of a ring. The sum set and the product set of A and B
are

A + B = {a + b : a ∈ A, and b ∈ B}
and

AB = {ab : a ∈ A, and b ∈ B},
respectively. The study of sum-product sets aims in particular to estimate the sizes
of A + A and AA asymptotically when N is very large. The following conjecture
[ES] is well-known.
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1. Erdős-Szemerédi Conjecture. For all ε > 0,

min
A⊂Z,
|A|=N

|A + A|+ |AA| > cεN
2−ε.

What they proved is that for any A ⊂ R, |A + A|+ |AA| > c|A|1+δ, where δ > 0
is an absolute constant. Results with explicit δ are: δ = 1

31 by Nathanson [N],
δ = 1

6 by Chen [Ch], δ = 1
15 by Ford [F], δ = 1

4 by Elekes [E], and δ = 3
11+ε by

Solymosi [S].

At this point it is fair to say that there is a consensus that the Erdős-Szemerédi
conjecture, if true, is deep and its solution will likely be a substantial achievement.
But it is unclear what kind of mathematics will be involved. The limited progress
in research has brought a wide area of techniques into play (graph theory, inci-
dence geometry, harmonic analysis, algebraic number theory etc.). One modest
and immediate goal would be to

2. Improve Solymosi’s bound.

Solymosi made the following more general conjecture.

3. Solymosi Conjecture. min
A,B,C⊂Z

|A|=|B|=|C|=N

|A + B|+ |AC| > N2−ε, for all ε > 0.

The next problem is a special case of Problem 3.

4. Is it true that if |AA| < |A|1+ε, then |A + A| > |A|2−δ, where δ = δ(ε) → 0 as
ε → 0? or more generally that |A + B| > |A|2−δ, for all B with |A| = |B|?

The answer is yes [C2], if A ⊂ Z. If A ⊂ R, then the more general conclusion
is true [C4] under the stronger assumption that |AA| < K|A| for some (possibly
large) constant K. The proof of the last statement uses some consequences of the
subspace theorem of Evertse, Schlickewei and Schmidt [ESS].

Switching addition and multiplication, one may ask the following counterpart of
Problem 4.

5. Is it true that if |A + A| < |A|1+ε, then |AA| > |A|2−δ, where δ = δ(ε) → 0 as
ε → 0? or more generally that |AB| > |A|2−δ, for all B with |A| = |B|?

Again, the answer is yes for A ⊂ R, if |AA| < K|A| for some (possibly large)
constant K. (See [C3], [C4].)

Let hA = A+ · · ·+A, and Ah = A · · ·A be the h-fold sumset and h-fold product
set of A. Erdős and Szemerédi made the following more general conjecture.

6. Erdős-Szemerédi Conjecture’. Let h be fixed. Then

min
A⊂Z,
|A|=N

|hA|+ |Ah| > cεN
h−ε,

for all ε > 0.

Regarding Problem 6, Elekes, Nathanson and Ruzsa [ENR] have the following
result.
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Theorem (Elekes-Nathanson-Ruzsa).

|hA| |Ah| > cN3−21−h

.

They and Konyagin made the following conjecture.

7. Elekes-Nathanson-Ruzsa-Konyagin Conjecture. For any b ∈ N, there
exists h = h(b) such that for any A with |A| > 1, |hA| |Ah| > c|A|b.

In [BC1], Bourgain and Chang proved the conjecture is true for A ⊂ Z with
h ∼ cb4 . The method relies on the prime factorization for integers, which suggests
that it cannot be generalized to the real numbers.

Let G ⊂ A × A be a graph. Then the sum and product along the graph G are
the sets

A
G
+ A = {a + a′ : (a, a′) ∈ G}

and
A
G×A = {aa′ : (a, a′) ∈ G},

respectively. Erdős and Szemerédi asked the following question.

8. Erdős-Szemerédi’s Question. Assuming |G| > |A|1+ε, is it true that |A G
+

A|+ |A G×A| > |G|1−ε′ , for all ε′ > 0?

Assume that |G| > δ|A|2. It is known that if A ⊂ Z and |A G
+ A| < c|A|, then

|A G× A| > |G|1−ε′ . Also, if A ⊂ R and |A G× A| < c|A|, then |A G
+ A| > C(δ, c)|G|.

(See [C3] and [C2].)
The restrictive assumption |G| > δ|A|2 allows one to apply the following theorem

[LR].

Laczkovich-Ruzsa Theorem. Assume that G ⊂ A× A satisfies |G| > δ|A|2 and

that |A G
+ A| < C |A|. Then there is a subset A′ ⊂ A such that

|A′ + A′| < K|A|

and
|(A′ ×A′) ∩ G| > 1

K
|A|2,

where K = K(δ, C).

Return to Question 8. In the original question one assumes A ⊂ Z and |G| =
δ|A|. However, for subsets A ⊂ R this assumption on |G| does not give the right
conclusion. For example, if one takes

A = {
√

i±
√

j : 1 ≤ i, j ≤ k, and i, j are square free }

and G = {(√i +
√

j,
√

i − √j) : i, j as in A}, then |A| ∼ |G| ∼ k2 and |A G
+ A| ∼

|A G×A| ∼ k. Hence the assumption that |G| > |A|1+ε is essential for A ⊂ R.
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Using the Szemerédi-Trotter Theorem as in Elekes’ proof, one may show

|A G
+ A|+ |A G×A| > |G| 32

|A| .

The Balog-Szemerédi Theorem is a powerful tool for studying sum-product prob-
lems. Below is the Gowers’ version [G] (or see [C7] for an explicit expression of δ).

Balog-Szemerédi-Gowers Theorem. Let A ⊂ Z with |A| = N . If for some
constant α > 0,

|{(a1, a2, a3, a4) : ai ∈ A, a1 − a2 + a3 − a4 = 0}| > αN3,

then there is a subset A′ ⊂ A satisfying

|A′| > α1+εN

and
|A′ −A′| < δN,

where δ = 221(α log 1
α )5.

9. It would be interesting to know the optimal dependence of δ on α.

The following problem posed by Ruzsa turns out to be related to Problem 8.
(See [C7].)

10. Ruzsa’s Distance Conjecture. Let k1, · · · , kN ∈ Z. Define D = {k2
i + k2

j :
1 ≤ i, j ≤ N}. Then |D| > N2−ε.

In [C7] we used the result of Bombieri-Granville-Pintz [BGP] and Freiman’s
Theorem to show that |D| > N(log N)

1
12−ε.

We think an affirmative answer to the next question would have applications to
coding theory.

11. Noncommutative Setting. Let A ⊂ Sym(d,Zp) be a subset of symmetric
matrices over Zp with p >> 0 and |A| >> 0. Then is |A + A|+ |AA| > |A|1+ε for
some ε > 0?

This is true for A ⊂ Sym(d,R).

As for sum-product in Fp for p prime, there is the following theorem. It was first
proved by Bourgain, Katz and Tao [BKT] for pδ < |A| < p1−δ, then improved by
Bourgain, Glibichuk and Konyagin [BGK].

Theorem BKT-BGK. Let p be a prime. Given δ > 0, there is ε = ε(δ) > 0 such
that if A ⊂ Fp and

1 < |A| < p1−δ,

then
|2A|+ |A2| > c|A|1+ε,

where c = c(δ).
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12. Find good explicit bounds on ε.

See the recent work of Hart-Iosevich-Solymosi [HIS], M. Garaev [Ga], and Katz-
Shen [KS] on this question.

Warning. For k fixed, there are infinitely many p such that there exists A ⊂ Fp

with |A| ∼ p
1
2 , |Ak| < p

3
4 , and |kA| < kp

3
4 .

Proof.
Claim. There are infinitely many primes p such that F∗p has a multiplicative sub-
group of order ∼ p

3
4 .

Proof. We will show that there are infinitely many primes p such that p− 1 has a
divisor q ∼ p

1
4 .

Let Λ(n) be the Von Mangoldt function defined on Z+,

Λ(n) =
{ log p if n = pα for some α > 0

0 otherwise,

and let

(12.1) ψ(x; q, 1) =
∑

n≤x
n≡1 mod q

Λ(n).

By Bombieri-Vinogradov Theorem (see Theorem 17.1 in [IK]), we have
∑

1<q<2x
1
4

∣∣∣ψ(x; q, 1)− x

φ(q)

∣∣∣ <
x

log x
,

where φ is the Euler-phi function.
Applying the Bombieri-Vinogradov Theorem again with x

2 in combination with
the inequality above, (taking possibly fewer summands) we have

∑

1
2 x

1
4 <q<x

1
4

∣∣∣ψ(x; q, 1)− ψ
(x

2
; q, 1

)− x

2φ(q)

∣∣∣ <
2x

log x
.

It follows that for some 1
2x

1
4 < q < x

1
4 ,

(12.2)
∣∣∣ψ(x; q, 1)− ψ

(x

2
; q, 1

)− x

2φ(q)

∣∣∣ <
4x

3
4

log x
.

Next, from (12.1), it is clear that

ψ(x; q, 1) =
∑

p≤x
p≡1 mod q

log p + O(
√

x).

Hence, (12.2) implies
∣∣∣∣∣

∑
x
2 <p≤x

p≡1 mod q

log p− x

2φ(q)

∣∣∣∣∣ <
4x

3
4

log x
+ O(

√
x).
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Therefore,

∑
x
2 <p≤x

p≡1 mod q

log p >
x

2φ(q)
− 5x

3
4

log x
>

x

3φ(q)
> 0,

since φ(q) < q ∼ x
1
4 .

This shows that for any x large, there is at least one prime 1
2x < p ≤ x, and an

integer 1
2x

1
4 < q < x

1
4 , such that p ≡ 1 mod q. ¤

Take H < F∗p with |H| ∼ p
3
4 , a subgroup provided by the claim. For δ > 0,

define ρ(δ) such that

pρ(δ) = max
x∈Fp

|H ∩ {x, x + 1, · · · , x + [pδ]}|.

Clearly, ρ(δ) ≤ δ.
It is easy to see that ρ(δ) ≥ δ − 1

4 . Indeed,

pρ(δ) ≥ 1
p

∑

x∈Fp

[pδ]∑

j=1

χH(x + j)

=
|H|pδ

p

= pδ− 1
4 .

In particular, ρ( 1
4 ) ≤ 1

4 and ρ(1) ≥ 3
4 . Moreover, from the definition of ρ, we

have
ρ(δ) < ρ(δ + logp 2) ≤ ρ(δ) + logp 2.

Hence, there exists δ0 such that ρ(δ0) ∼ 1
2 .

Let x ∈ Fp such that |H ∩ {x, x + 1, · · · , x + [pδ0 ]}| = pρ(δ0). Take A = H ∩
{x, x + 1, · · · , x + [pδ0 ]}. Then Ak ⊂ H and |kA| ≤ k[pδ0 ] ∼ kp

3
4 . ¤

Remark. M. Garaev pointed out that for our purpose we could take H = {gn :
n < p3/4} in the warning, where g is a primitive root modulo p, instead of taking a
subgroup H. So there is no need of the Bombieri-Vinogradov Theorem. This works
for any p and we have |A| ∼ p1/2 and |kA|+ |Ak| < kp3/4.

The above example shows that the analogues of the generalized Erdős-Szemerédi
Conjecture and Elekes-Nathanson-Ruzsa-Konyagin Conjecture for Fp are false. Be-
low is a modification of Problem 7.

13. Let A ⊂ Fp with |A| = pa. Then for all b < 1
2 , is it true that |kA|+ |Ak| > pb

for k > k(a, b)?

In [BGK] the following result was proved.
Given ε > 0, for all H < F∗p with |H| > pε, there exists δ = δ(ε) such that

max
(a,p)=1

∣∣∣∣
∑

x∈H

ep(ax)
∣∣∣∣ ≤ c|H|1−δ.
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14. Make δ more explicit.

For ε > 1
4 , explicit bounds are due to Heath-Brown and Konyagin.

Let χ be a nontrivial multiplicative character (mod p) and let I ⊂ {0, 1, · · · , p−1}
be an arbitrary interval with |I| > p

1
4+ε. We have the

Burgess’ estimate. | ∑
x∈I

χ(x)| < c|I|1−δ, with δ = δ(ε).

15. Prove the estimate above under the weaker assumption |I| > pε, for some
ε > 0.

An affirmative answer to problem 15 would imply the next problem, which is
obviously of relevance to the well-known problem on the least quadratic non-residue.

16. Let I ⊂ {0, 1, · · · , p−1} be an interval with |I| > pε. Prove that Ik = I · · · I =
F∗p , for some k.

Note that the case for |I| > p
1
4+ε follows from Burgess’ estimate, and we thus

obtain k < k(ε).

17. Given ε > 0, for any H < F∗p with |H| > pε, we have kH = Fp for some
k < k(ε). Find a good dependence of k on ε.

Bourgain, Glibichuk and Konyagin [BGK] proved that log k(ε) < c( 1
ε )c.

18. We say a subgroup H < F∗p is uniformly distributed in Fp if

max
(a,p)=1

|
∑

x∈H

ep(ax)| < o(|H|).

How large must |H| be?

Again, in [BGK] Bourgain, Glibichuk and Konyagin proved that

log |H| > log p

(log log p)ρ
,

where ρ is an explicit constant. Perhaps log |H| À log log p is sufficient.

19. Find an analogue of the Szemerédi-Trotter Theorem for Fp or C.

In [BKT], a Szemerédi-Trotter type Theorem for point-line incidence in Fn
p is

proven. This result is significantly weaker (although nontrivial) than the corre-
sponding result in the Euclidean plane. The argument in [BKT] is by contradiction,
it leads to violation of the sum-product theorem in Fp and is therefore non-explicit.

An extension of the Szemerédi-Trotter Theorem to ”pseudo-line systems” has
been obtained in the Euclidean plane. (See for instance, work by J. Pach and M.
Sharir [PS].)

20. Is there a variant of the Szemerédi-Trotter Theorem when straight lines are
replaced by families of algebraic curves over Fp?

Progress on these questions would have significant applications to the theory of
exponential sums. For some recent work related to Question 20, see [HIS].

Acknowledgement. The author would like to thank M. Garaev for helpful comments.
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