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Section 0. Introduction

Let A be a subset of a ring with cardinality |A| = N . The sum set and the product
set are 2A = A+A = {a1 +a2 | ai ∈ A} and A2 = AA = {a1a2 | ai ∈ A}. The study
of sum-product sets is to estimate the sizes of 2A and A2 asymptotically when N is
very large. Since Erdős and Szemerédi conjectured that if A ⊂ Z, at least one of |2A|
and |A2| should be bigger than cN for any constant c, a lot of work has been done in
this subject. In this paper, we give a survey of some of the main results in [C1]-[C5],
and [BC1], [BC2]. In Section 1, we also put together the ideas in [C2]-[C4] and give
a uniform treatment to some of the results there. Of particular importance is the
role of Freiman’s Theorem and the Subspace Theorem. In Section 2, we consider the
noncommutative analogue in matrix spaces. In Section 3, we report on results of sum-
product theorems for residue classes, especially prime fields. The results have striking
applications to the theory of exponential sums, in particular Gauss sums of large
degrees. In Section 4, we present a new and simpler proof of the Generalized Gauss
sums Theorem for prime modulus [BGK], which is also included in the introduction
of [BC2].

Section 1. Subsets of numbers

A well-known conjecture by Erdös and Szemerédi [ES] for A ⊂ Z is that 2A and A2

cannot both be small. Precisely,

Conjecture 1. min
|A|=N

|2A|+ |A2| > cεN
2−ε, for all ε > 0.

More generally, for a fixed integer h ≥ 2, let hA (respectively, Ah) be the set of
sums (resp. products) of h elements in A. Erdös and Szemerédi made the following
conjecture.
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Conjecture 1′. ∀h ≥ 2, min
|A|=N

|hA|+ |Ah| > cε,hNh−ε, for all ε > 0.

What they proved is the following

Theorem. (Erdös-Szemerédi) If A ⊂ R is a finite set of real numbers, then

|2A|+ |A2| > c|A|1+δ, (1.1)

where δ > 0 is an absolute constant.

Terminology. We say the sum-product theorem is true for a set A, if (1.1) holds.

Results with explicit δ are: δ = 1
31 by Nathanson [N], δ = 1

6 by Chen [Ch], δ = 1
15

by Ford [F], δ = 1
4 by Elekes [E], and δ = 3

11+ε by Solymosi [S].

One approach to the conjecture is to use incidence geometry.

Szemerédi-Trotter Theorem. Let S be a set of k points, and let L1, · · · , L` be `
lines, each containing N points in S. Then k, `, N satisfy

k2 > c `N3.

Elekes obtained his bound by taking S = A2 × 2A and the N2 lines

Lxy = {(xz, y + z) | z ∈ R}, ∀x, y ∈ A.

Clearly, each line contains N points in S. Hence (|A2| |2A|)2 > cN2N3.

So far Solymosi obtained the best bound by applying Szemerédi-Trotter Theorem
repeatedly.

Problem 1. Improve Solymosi’s bound.

Recently, Elekes and Ruzsa [ER] established the following general inequality

|2A|4 |A2| log N > N6 (1.2)

again using the Szemerédi-Trotter Theorem. As a consequence of (1.2), it follows that
Conjecture 1 holds if we assume moreover |2A| < α|A|.

In the spirit of ‘few products, many sums’ and ‘few sums, many products’ we have
the following results.
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Theorem 1.a. ([C2], Theorem 1) For all h ≥ 2, if |A2| < αN , and A ⊂ Z, then
|hA| > cNh, where c = (2h2 − h)−hα.

Theorem 1.b. ([C3], Theorem 2) For all h ≥ 2, ε > 0, if |2A| < αN , and A ⊂ C,
then |Ah| > cNh−ε, where c = c(h, α, ε).

Little is known about Conjecture 1’. Elekes, Nathanson and Ruzsa have the follow-
ing inequality involving |hA| and |Ah|.
Elekes-Nathanson-Ruzsa [ENR]

|hA| |Ah| > cN3−21−h

Hence they made the following conjecture which was also conjectured by Konyagin
while working on Gauss sums.

E-N-R-Konyagin Conjecture. ∀b ∈ N,∃h = h(b) such that |hA| |Ah| > c|A|b.

Theorem BC. (Bourgain-Chang [BC1]) E-N-R-Konyagin Conjecture holds for A ⊂
Z, with h ∼ Cb4 .

Remark. In [BC1] the authors did not attempt for the best dependence of h on b.

Problem 2. Find the optimal dependence between h and b.

The next proposition is the key ingredient of Theorem BC. The proof of the propo-
sition relies on careful study of elementary but nontrivial graph theory. First, we will
give a simplified definition of the Λq constant of a given finite set. (cf [R])

Notation. e(θ) = e2πiθ

Definition. Let A ⊂ Z be finite. The Λq constant of A is

λq,A =
‖∑

a∈A e(ax)‖q√
|A|

Proposition 1.1. [BC] Given ε > 0 and q > 2, ∃ δ = δ(q, ε) such that if A ⊂ Z,
|A2| < |A|1+ε, then

λq(A) < |A|δ,
where δ → 0, if ε → 0. Therefore, ‖∑

a∈A
e(ax)‖q < |A|δ+ 1

2 .

To generalize Erdös-Szemerédi Conjecture to sums and products of different sets,
Solymosi asked the following question.
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Question. (Solymosi) ∃ c > 0 such that ∀N ∈ Z+, ∃ A,B, C with |A| = |B| = |C| =
N, |A + B| < N2−c, and |AC| < N2−c ?

Inspired by Solymosi’s question, we proved the following theorems.

Theorem 1.c. ([C4], Theorem 1) Let A ⊂ Z with |A2| < |A|1+ε. Then ∀B ⊂ Z and
∀h ∈ N we have

|hA + B| > |A|h |B| (|A|+ |B|)−δh(ε),

where δh(ε) → 0 as ε → 0.

Theorem 1.d. ([C4], Theorem 2) Let A ⊂ R with |A2| < K|A|. Then ∀B ⊂ R,
∀h ∈ N we have

|hA + B| > |A|h |B| (|A|+ |B|)−ε, ∀ε

Theorem 1.e. ([C4], Theorem 3) Let A ⊂ R+ with |2A| < K|A|. Then ∀B ⊂
R+, ∀h ∈ N, we have

|AhB| > ch(K, ε) |A|h|B| (|A|+ |B|)−ε

We will outline the general idea of the proofs of Theorems 1.a - 1.e. To reduce the
number of constants, we describe the case when h = 2 for Theorem 1.a and h = 1 for
Theorems 1.c - 1.e. The argument for the general case is identical.

Let r(n) = |{(a, b) ∈ A×B | a + b = n}|. Then |A| |B| = ∑
n∈A+B

r(n).

The following are easy to check by Parseval equality, Hőlder’s inequality, and our
definition of the Λq constant.

(1). |A + B| ≥ |A|2|B|2∑
r(n)2

(2).
∑

r(n)2 ≤ ‖(∑
a∈A

e(ax))2‖q ‖(∑
b∈B

e(bx))2‖p, where 1
p + 1

q = 1, p, q to be
chosen.

(3). ‖(∑
a∈A

e(ax))2‖q = (‖∑
a∈A

e(ax)‖2q)2 ≤ (λ2q,A |A| 12 )2

(4). (‖(∑
b∈B

e(bx))2‖p)p ≤ ‖∑
b∈B

e(bx)‖2p−2
∞

∫ |∑
b∈B

e(bx)|2 ≤ |B|2p−1

Hence putting (1)-(4) together, we have

|A + B| ≥ |A| |B|1− 1
q

λ2
2q,A

(1.3)
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and we need to have an upper bound on λ2q,A.

For Theorem 1.c, we take K = Nε in Proposition 1.1, and choose q such that 1
q is

as small as possible. Hence 2δ + 1
q → 0 as ε → 0.

To prove Theorem 1.a, we take A = B in (1), p = q = 2 in (2), and skip (4). Hence

|A + A| ≥ |A|2|A|2
(λ4,A|A| 12 )4

≥ |A|2
36α

.

The second inequality follows from the proposition below which was shown by simple
combinatorics. (See [C2], the proof of Proposition 6.)

Proposition 1.2. Let A ⊂ Z with |A| = N and |A2| < αN . Then

λ2h,A < (2h2 − h)
α
2 .

Therefore, ‖∑
a∈A

e(ax)‖2h < (2h2 − h)
α
2 N

1
2 .

Remark. In this proposition α is viewed as a much smaller constant comparing to
N .

In Theorem 1.d we deal with real numbers. To be able to use (1.3), in the definition
of the Lp-norm ‖f‖p, we replace

∫
f by the mean of almost periodic functions,

∫ ′
f = lim

T→∞
1
T

∫ T

0

f,

and we consider
∑

eiax instead of
∑

e(ax) etc. Hence the Λp-constant λp,A makes
sense, and Parseval equality and Hőlder inequality hold. Therefore, we still have (1.3).
However, Propositions 1.1 and 1.2 are replaced by

Proposition 1.3. ([C4], Proposition B) Let A ⊂ R with |A| = N , and |A2| < K|A|.
Then

λ2h,A ¿h 1 + ecKN− 1
2h , where c = c(h).

Therefore, ‖∑
a∈A

eiax‖2h <h (1 + ecKN− 1
2h )N

1
2 .

The proof of Proposition 1.3 is based on the Subspace Theorem [ESS] which gives
an upper bound on the number of solutions of a linear equation. Let

m∑

i=1

cixi = 1, ci ∈ C (1.4)

be a linear equation over C.

A solution (x1, · · · , xm) is called nondegenerate, if
∑k

j=1 cij xij 6= 0, for all k. The
bound given below is by Evertse, Schlickewei and Schmidt [ESS].
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Theorem (Subspace Theorem, [ESS]). Let Γ < 〈C∗, ·〉 be a subgroup of the multi-
plicative group of C, and let the rank of Γ be r. Then

|{nondegenerate solutions of (1.4) in Γ}| < e(r+1)(6m)3m

.

Notation. d ¿h f means d ≤ c(h)f , where c(h) is a function of h.

The formulation of the Subspace Theorem we need is the following (see [C5])

Corollary. [C4] Let Γ < 〈C∗, ·〉 be a subgroup of rank r and A ⊂ Γ with |A| = N .
Then the numbers of solutions in A of

x1 + · · ·+ x2h = 0 (1.5)

is bounded by Nh−1erc + Nh, up to a constant depending on h. Here c = c(h).

In order to apply the theorem, we need the following (See [Fr], [Rud], [Bi].)

Freiman’s Lemma. Let 〈G, ·〉 be a torsion-free abelian group and A ⊂ G with |A2| <
K|A|. Then

A ⊂ {gj1
1 · · · gjd

d : ji = 1, · · · , `i, and gi ∈ G}, (1.6)

where d ≤ K, and
∏

`i < c(K)|A|.

We let Γ < 〈C∗, ·〉 be the subgroup generated by g1, · · · , gd. Then the rank of Γ is
bounded by d ≤ K and the number of nondegenerate solutions of (1.4) in Γ is bounded
by ecmK .

Lemma. [C4] Let A ⊂ C with |A| = N , and |A2| < K|A|. Then

|{ solutions of (1.5) in A}| <h N
h−1

e
cK

+ N
h

.

Proof of Proposition 1.3.

Let rh(k) be the number of representatives of k as the sum of h elements from A.

rh(k) = |{(a1, · · · , ah) : k = a1 + · · ·+ ah, ai ∈ A}|

Then
|
∑

eiax|2h = |
∑

ei(a1+···+ah)x|2 = |
∑

k∈hA

rh(k)eikx|2.
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Parseval and the definition of rh(k) give
∫ ′

|
∑

eiax|2h =
∑

k∈hA

rh(k)
2

= |{(a1, · · · , a2h)| a1 + · · · ah = ah+1 + · · ·+ a2h}|,

which is <h Nh−1ecK + Nh by the lemma above. ¤

In Theorem 1.b we are bounding the number of factorizations with factors in A.
Let πh(n) be the number of factorizations of n.

πh(n) = |{(a1, · · · , ah) | n = a1 · · · ah, ai ∈ A}|.
We use Freiman’s Lemma on 〈C, +〉, so A lies in a generalized arithmetic progression
( of dimension ≤ α). Then we bound the number of factorizations in a generalized
arithmetic progression.

Proposition 1.4. ([C3], Theorem 1) Let A ⊂ C with |A| = N and |2A| < αN . Then

πh(n) < N
Ch(α)

log log N , for all n ∈ Ah.

To prove Theorem 1.e, we replace r(n) by

π(k) = {(ab) ∈ A×B | k = ab}|.
Properties (1)-(4) can be replaced by (1′) − (4′) below. In (2′) to use the harmonic
analysis language as in (2), we consider the set log A = {log a | a ∈ A} instead of A.

(1′). |AB| ≥ |A|2|B|2∑
π(n)2

(2′).
∑

π(n)2 =
∫ ′ |(∑a eix log a)(

∑
b eix log b)|2 ≤ ‖(∑a eix log a)2‖q ‖(∑b eix log b)2‖p,

where 1
p + 1

q = 1, p, q to be chosen.

(3′). ‖(∑a eix log a)2‖q = (
∫ ′ |∑a e

ix log a |2q
) 1

q

=
( ∑

πq(n)2
) 1

q

<
(
|A|q |A| c

log log |A|
) 1

q

(4′). (‖(∑b eix log b)2‖p)p ≤ ‖∑
b eix log b‖2p−2

∞

∫ |∑b eix log b|2 ≤ |B|2p−1

Section 2. Subsets of matrices

Though the sum-product theorem is true for the quaternions (see Proposition 2.3),
it is false in general for subsets of noncommutative rings. For example, let

A =
{ (

1 k
0 1

)
: k = 1, · · · , N

}
.

It is easy to see that |A| = N , |A + A| = 2N − 1 and |A · A| = 2N − 1. However,
the following theorems are true.
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Theorem 2.a. ([C5], Theorem A) Let A ⊂ Mat(d) and |A| = N . If

det(a− a′) 6= 0, ∀ a 6= a′ ∈ A, (2.1)

then
|2A|+ |A2| > φ(N)N,

where φ(N) →∞ as N →∞.

Theorem 2.b. ([C5], Theorem B) For all d, there is ε = ε(d) > 0 such that if A ⊂
Sym(d) and |A| = N , then

|2A|+ |A2| > N1+ε.

The next lemma for Theorem 2.a is the multi-variable version of the fundamental
theorem of algebra.

Lemma 2.1. ([C5],Lemma 1.2) Let S ⊂ [1, J1]× · · · × [1, Jk] ∩ Z× · · · × Z, with

|S| > 1
cNε

J1 · · · Jk,

and let p(x1, · · · , xk) be a polynomial of degree D, such that p(S) = {0}. Then there
is an affine space W ⊂ Rk such that p(W ) = {0} and

|W ∩ S| > J1 · · · Jk

(cNε)kDk−12k(k−1)
.

To prove Theorem 2.a, we assume |2A| < K|A| for K bounded. So by Freiman’s
Lemma, A lies in a generalized arithmetic progression. Therefore, det(A), the set
of determinants of matrices in A lies in a generalized arithmetic progression. The
assumption |A2| < K|A| guaranteers the existence of a matrix b ∈ A2 with at least
N
K many factorizations. Applying the bound on the number of factorizations on the
generalized progression containing det(A), we conclude that A has a large subset, in
which every matrix has the same determinant. Lemma 2.1 provides a linear space
V ⊂ Mat(d), and A1 ⊂ A with |A1| > cN1−ε, such that det(V ) = {0} and a− a′ ∈ V
for a, a′ ∈ A1. This is a contradiction.

For Theorem 2.b, we use the technical proposition below. This proposition says if
the sum set is small, then there is an affine space V which has a large intersection with
A, and any algebraic property holds for most of the intersection holds for V . Note
that conditions on the rank of matrices and identities of matrices are all algebraic
properties.
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Proposition 2.2. ([C5], Proposition 2.1) Let A ⊂ Rm be a finite set, |A| = N and

|2A| < KN. (2.1)

Then there is E ⊂ A and an affine space V ⊂ Rm such that

(i) |E|
|A| = δ > K−c, where c = c(m)

(ii) E ⊂ V

(iii) If Γ ⊂ Rm is algebraic of degree < m10 and

|Γ ∩ E| > δ10K−10|E|, (2.2)

then
V ⊂ Γ.

Using Proposition 2.2, we prove that {a2: a ∈ V } forms a commutative multiplica-
tive system. Therefore, we use this system to decompose Rd as eigen-subspaces, use
regularization and use induction to finish the proof. For the initial step of the induc-
tion, we use the following variant of Erdős-Szemerédi argument ([C6]).

Proposition 2.3. ([C4],Theorem 3) Let {Rm, +, ∗} be an R-algebra with multiplica-
tive identity and + being the componentwise addition. For a = (a1, · · · , am), let
|a| =

√
(
∑

a2
i ) be the Hilbert-Schmidt norm, and let V ⊂ Rm be a subspace such

that

1. There exists c = c(m) such that for any a, b ∈ V , | a ∗ b| = c| a| | b|.
2. All nonzero elements of V are invertible.

Then for any A ⊂ V , |2A|+ |A2| > |A|1+δ.

Remark. In view of the example in the beginning of Section 2, sum-product theorem
is certainly not true for matrices over Fp. However Helfgott proves that ‘product
theorem’ is true for A ⊂ SL2(p). In particular, |A3| is much larger than |A|, unless
A is contained in proper a subgroup. This result has nice application to the theory of
expanders and Lubotski problem.

The corresponding results for SL3(p) has not been obtained yet.

Section 3. Subsets of Zq

The sum-product theorem is not true for Zq without constraints. For instance, take
A = Zq. Then |2A| = |A2| = |A|.

The following theorem says that for a prime modulus p, sum-product theorem holds
if A is not too close to be the entire ring. It was first proved by Bourgain, Katz and
Tao for pδ < |A| < p1−δ, then improved by Bourgain, Glibichuk and Konyagin. Now
there is a simpler proof in the book by Tao and Vu [TV].
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Theorem ([BKT], [BGK]). Let p be a prime. Given δ > 0, there is ε = ε(δ) > 0
such that if A ⊂ Zp and

1 < |A| < p1−δ.

Then
|2A|+ |A2| > c|A|1+ε,

where c = c(δ).

However, for composite modulus q, further restrictions are needed. For example,
take A = (p) ⊂ Zp2 . Then 2A = A, and A2 = 0. Theorem 3.a says that these are
essentially all the exceptions.

The results described in this section are joint work with J. Bourgain. ([BC2])

We assume the composite modulus q has few large prime factors. This assumption
is sufficient for our applications to exponential sums, though unnecessary for the sum-
product theorem for Zq. Assume q has the prime factorization

q = pα1
1 · · · pαr

r with pi > qβ , for some constant β > 0. (*)

In particular,

α1 + · · ·+ αr <
1
β

, and r <
1
β

.

Theorem 3.a. ([BC2],Theorem 1.10) Assume that q satisfies (∗). Let A ⊂ Zq with
|2A|+ |A2| < qε|A|. Then one of the following holds.

(a) |A| > q1−ε′ .

(b) there exists a prime p|q such that
∣∣A∩(

a+(p)
)∣∣ > q−ε′ |A|, where ε′ = ε′(β, ε) → 0

as ε → 0.

Let eq(θ) = e
2πiθ

q , A ⊂ Zq and k ∈ N. For ξ ∈ Z∗q , we define

Sk(ξ, A) =
∑

x1,... ,xk∈A

eq(x1 . . . xkξ).

The exponential sums problem is to show

|Sk(ξ,A)| < |A|kq−ε, for some ε > 0.

Our approach is to use harmonic analysis. Let

µk = |A|−k
∑

x1,... ,xk∈A

δx1...xk
,
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where δz is the Dirac measure at z ∈ Zq.

For a function µ:Zq → R, let µ̂(ξ) =
∑

x∈Zq
µ(x)eq(xξ) be the Fourier transform of

µ. Then
µ̂k(ξ) = |A|−k Sk(ξ,A).

Next, we will state a rather technical proposition about probability measure. ( µ(x)
is a probability measure if µ ≥ 0 and

∑
µ(x) = 1.) In Section 4, we will give a proof of

a special case of an exponential sum bounds by using the sum-product theorems. The
proof carries the general idea behind the proposition without the technicalities.

Proposition 3.1. ([BC2], Proposition 2.1) Let R =
∏

j Zqj
be a commutative ring

with |R| = q. Let µ be a probability measure on R. Let ε > 0. Then one of the
following alternatives hold:

(i.)
∑

ξ,y∈R

|µ̂(ξ)|2|µ̂(yξ)|2µ(y) < q−ε
∑

ξ∈R

|µ̂(ξ)|2

(ii.) max
x∈R

µ
(
x + (R\R∗)) > cq−τ

(iii.) There is a subset S̄ of R∗ such that

|S̄|.
( ∑

|µ̂(ξ)|2
)

< 10q1+ε,

|S̄ + S̄|+ |S̄.S̄| < qCε|S̄|,
max
x∈R

µ(x + S̄) > q−Cε,

where c, C are some constants.

Applying Proposition 3.1 to the exponential sums setting with some work, one can
show

Theorem 3.b. ([BC2], Theorem 3.2) Let R =
∏

j Zqj be a commutative ring with
|R| = q and let A ⊂ R∗ with |A| = qδ for 0 < δ ≤ 1. Assume there exist κ0, κ1 > 0
such that the following properties hold

(i.) maxx

∣∣A ∩ (
x + (R\R∗))∣∣ < q−κ0 |A|.

(ii.) maxx

∣∣A ∩ (x + S)
∣∣ < q−κ0 |A|, whenever S ⊂ R∗ satisfies

(a.) |S| < q1−κ1 ,

(b.) |S + S|+ |S.S| < qκ0 |S|.
Then there is k = k(κ0) and ε = ε(κ0) such that

max
ξ∈R∗

|Sk(ξ,A)| < |A|kq−ε.

Putting Theorem 3.a and Theorem 3.b together, we have
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Theorem 3.c. ([BC2], Theorem 4.1) Let q ∈ N satisfy (∗), and A ⊂ Zq with |A| = qδ.
Assume

max
p|q,t∈Zp

|A ∩ π−1
p (t)| < q−γ |A|

with 0 < γ < δ
25 .

Then for k > k(γ), ε = ε(γ)

max
ξ∈Z∗q

|Sk(ξ, A)| < |A|kq−ε.

The following applications are straightforward from Theorem 3.c.

Theorem 3.d (Generalized Gauss sums). ([BC2], Corollary 4.2) Let q ∈ N satisfy
(∗), and let H < Z∗q be a subgroup with |H| = qδ and

min
p|q

|πp(H)| > qδ′ .

Then

max
ξ∈Z∗q

∣∣∣∣
∑

x∈H

eq(ξx)
∣∣∣∣ < |H|q−ε

with ε = ε(δ′).

Theorem 3.e (Gauss sums). ([BC2],Corollary 4.3) Let q =
∏

α pνα
α satisfy (∗), and

k ∈ Zq satisfy
(k, pα − 1) < (pα − 1)q−δ for all α, for some δ.

Then

max
ξ∈Z∗q

∣∣∣∣
q−1∑
x=0

eq(ξxk)
∣∣∣∣ < q1−δ′

where δ′ = δ′(δ, C0).

Theorem 3.f (Heilbronn’s exponential sums). ([BC2], Corollary 4.4)

max
(ξ,p)=1

∣∣
p∑

x=1

epm(ξxpm−1
)
∣∣ < p1−δm

for some δm > 0 and p large enough.

Section 4. A simpler proof of the Generalized Gauss sums Theorem for
prime modulus

We will use the Laczkovich-Ruzsa version [LR] of Balog-Szemerédi-Gowers Theorem.
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Theorem BSG-LR 1. Let G ⊂ A×A with |G| > K−1|A|2. Denote

A
G
+ A = {a + a′ : (a, a′) ∈ G}.

If |A G
+ A| < K|A|, then there is a subset A′ ⊂ A such that

|A′ + A′| < Kc|A|
|(A′ ×A′) ∩G| > K−c|A|2,

where c is an absolute constant.

Theorem BSG-LR 2. Let G ⊂ A × B with |G| > K−1|B|2 and |B| ≥ |A| ≥ c1|B|.
Denote

A
G
+ B = {a + b : (a, b) ∈ G}.

If |A G
+ B| < K|B|, then there is a subset B′ ⊂ B such that

|B′ + B′| < Kc|B|
|B′| > K−c|B|,

where c is an absolute constant.

Let H < 〈Z∗q , ·〉 be a multiplicative subgroup. For simplicity, we assume H = −H.

Denote ν−(x) = ν(−x).

Lemma 4.1. Let ν be a probability measure with ν = ν−, ν̂ ∈ R. Assume ∃ τ > 0,
and ∃ Γ ⊂ Zq with Γ = −Γ, such that ∀ ζ ∈ Γ, ν̂(ζ) > q−τ . Then for given δ > 0, one
of the following holds

(1) ∃ Γ′ with |Γ′| > |Γ|1+δ such that ∀ ζ ∈ Γ′, ν̂(ζ) > 1
2q−2τ .

(2) ∃ Γ1 ⊂ Γ with |Γ1| > |Γ|1−δc and |Γ1 + Γ1| < |Γ1|
1

1−δc for some c > 0.

Lemma 4.2. Let ν be an H−invariant probability measure. Assume ∃ τ > 0, and
∃ Γ1 ⊂ Z∗q , such that ∀ ζ ∈ Γ1, ν̂(ζ) > q−τ . Then for given δ1 > 0, one of the following
holds

(i) ∃ Γ′ with |Γ′| > |Γ1|1+δ1 such that ∀ ζ ∈ Γ′, ν̂(ζ) > 1
2q−τ .

(ii) ∃ Γ2 ⊂ Γ1 with |Γ2| > |Γ1|1−δ1c and |Γ2Γ2| < |Γ2|
1

1−δ1c for some c > 0
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Proof of Lemma 4.1. The assumption implies

∑

ξ1,ξ2∈Γ

ν̂(ξ1 − ξ2) > q−2τ |Γ|2

and hence, denoting

G =
{

(ξ1,−ξ2) ∈ Γ× Γ : ν̂(ξ1 − ξ2) >
1
2
q−2τ

}
,

we have
|G| > 1

2
q−2τ |Γ|2.

Let
Γ

G
+ Γ = {ξ1 − ξ2 : (ξ1, ξ2) ∈ G}

If |Γ G
+ Γ| > |Γ|1+δ, then we have Case (1) by taking Γ′ = Γ

G
+ Γ. Otherwise, we

apply Theorem BSG-LR1 with K = |Γ|δ. ¤

Proof of Lemma 4.2. Define the probability measure ν1 on Zq

ν1(x) =
1
|Γ|

∑

ξ∈Γ

ν(xξ−1).

Since ν is H-invariant, so is ν1. Moreover ν̂1(1) > q−τ , hence ν̂1(ζ) > q−τ for all
ζ ∈ H. This means that ∑

ζ∈H,ξ∈Γ

ν̂(ζξ) > q−τ |H| |Γ|.

Denote now
G1 = {(ζ, ξ) ∈ H × Γ : ν̂(ζξ) >

1
2
q−τ}

for which |G1| > 1
2q−τ |H||Γ|. Assume

∣∣H G1× Γ
∣∣ =

∣∣{ζξ : (ζ, ξ) ∈ G1}
∣∣ < |Γ|1+δ

Applying Theorem BSG-LR2 in multiplicative form, we obtain Γ′ ⊂ Γ. ¤

Proof of Theorem 3.d.
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Let µH be the probability measure on H. i.e. µH(x) = 1
|H| , if x ∈ H, and 0

otherwise.

To show ∣∣ ∑

x∈H

eq(xξ)
∣∣ < q−ε |H|,

is equivalent to showing
|µ̂H(ξ)| < q−ε.

To prove by contradiction, we assume |µ̂H(a)| > q−ε for some a ∈ Z∗q . Let µ =
µH ∗ µH , the convolution of µH and µH . Since µ is H−invariant,

µ̂(ξ) > q−2ε, for all ξ ∈ aH

Starting from aH, one aim is to construct consecutively larger and larger sets Λ ⊂ Zq

such that µ̂(ξ) > q−τ for ξ ∈ Λ. (τ may get larger and larger.) This will violate the
fact that

|{ξ: |µ̂(ξ)| > q−τ}| < q1+τ

|H| .

Applying Lemma 4.1 to µ and Γ = aH. Case 1 is what we want. For Case 2, we
apply Lemma 4.2 to the smaller set Γ1 and choose δ1 > 1

1−δc − 1. If we get Case (i),
the set Γ′ with |Γ′| > |Γ1|1+δ1 > |Γ|(1+δ1)(1−δc) is a good enlargement. If we get Case
(ii), then the set Γ2 has the properties

|Γ2| > N (1−δc)(1−δ1c1), |Γ2Γ2| < |Γ2|
1

1−δ1c1 , |Γ2 + Γ2| < |Γ2|
1

1−δc
1

1−δ1c1 ,

which contradicts Theorem 3.a.
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