Week Five Quiz

Linear Algebra
UCR Math-131, Fall 2020

Recall that the trace of a square matrix A, usually denoted $\operatorname{tr}(A)$, is the sum of the diagonal entries of A.

1. Let \mathbf{C} be the field of complex numbers. The set $\mathrm{Mat}_{2}(\mathbf{C})$ of square 2×2 matrices with entries in \mathbf{C} is a vector space over \mathbf{C}. What is the dimension of this vector space?

We can explicitly describe $\mathrm{Mat}_{2}(\mathbf{C})$ in set-builder notation as:

$$
\operatorname{Mat}_{2}(\mathbf{C})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbf{C}\right\}
$$

Since any element of $\mathrm{Mat}_{2}(\mathbf{C})$ depends freely on a choice of four element of \mathbf{C}, this is a four dimensional vector space over \mathbf{C}. The most natural choice of basis would be:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

2. Consider the subset $\mathfrak{s l}_{2}$ of $\mathrm{Mat}_{2}(\mathbf{C})$ consisting of matrices with trace equal to zero. Prove that $\mathfrak{s l}_{2}$ forms a vector subspace of $\mathrm{Mat}_{2}(\mathbf{C})$. What is the dimension of this subspace $\mathfrak{s l}_{2}$ over \mathbf{C} ?

First, $\mathfrak{s l}_{2}$ forms a subspace of $\mathrm{Mat}_{2}(\mathbf{C})$ because (1) the zero matrix has trace zero, (2) the sum of two trace zero matrices has trace zero since $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$, and (3) any scalar multiple of a trace zero matrix will have trace zero since $\alpha \operatorname{tr}(A)=\operatorname{tr}(\alpha A)$. Next, since each element of

$$
\begin{aligned}
\mathfrak{s l}_{2} & =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbf{C} \text { and } a+d=0\right\} \\
& =\left\{\left.\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right) \right\rvert\, a, b, c \in \mathbf{C}\right\}
\end{aligned}
$$

can be uniquely determined by a choice of three elements of $\mathbf{C}, \mathfrak{s l}_{2}$ will have dimension three over \mathbf{C}. A natural choice of basis for $\mathfrak{s l}_{2}$ as a vector space over \mathbf{C} is:

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Note for the curious: the notation $\mathfrak{s l}_{2}$ stands for special linear, and typically $\mathfrak{s l}_{2}$ is thought of as algebraic object called a Lie algebra.

