Week Three Quiz

Linear Algebra UCR Math-131, Fall 2020

1. What does it mean for a set of vectors {*v*₁,..., *v*_n} to *span* a vector space *V*?

A set of vectors span a space if every vector in the space can be written as a linear combination as the vectors in that set. Spelled out explicitly, this means for every $\boldsymbol{v} \in V$ there exists some constants a_1, \ldots, a_n in the base field such that $\boldsymbol{v} = a_1 \boldsymbol{v}_1 + \cdots + a_n \boldsymbol{v}_n$.

2. Do the vectors $\langle 1,2,3 \rangle$, $\langle -1,0,1 \rangle$, and $\langle 0,0,1 \rangle$ span \mathbb{R}^3 ? Use techniques proven in class to answer this question, and please explicitly tell the grader what technique you're using.

Let's show those vectors span \mathbb{R}^3 by writing an arbitrary vector $\langle a, b, c \rangle \in \mathbb{R}^3$ explicitly as a linear combination of those vectors. Let $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, and $\mathbf{k} = \langle 0, 0, 1 \rangle$, and let's name the vectors above as \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 respectively. Notice that $\mathbf{i} = \mathbf{v}_3 - \mathbf{v}_2$, $\mathbf{j} = \frac{1}{2}\mathbf{v}_1 + \frac{1}{2}\mathbf{v}_2 - 2\mathbf{v}_3$, and $\mathbf{k} = \mathbf{v}_3$, and so

$$\langle a, b, c \rangle = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

= $a(\mathbf{v}_3 - \mathbf{v}_2) + b(\frac{1}{2}\mathbf{v}_1 + \frac{1}{2}\mathbf{v}_2 - 2\mathbf{v}_3) + c(\mathbf{v}_3)$
= $(\frac{1}{2}b)\mathbf{v}_1 + (-a + \frac{1}{2}b)\mathbf{v}_2 + (a - 2b + c)\mathbf{v}_3$

which is exactly what we sought to show.