Week Three Quiz

Linear Algebra
UCR Math-131, Fall 2020

1. What does it mean for a set of vectors $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ to span a vector space V ?

> A set of vectors span a space if every vector in the space can be written as a linear combination as the vectors in that set. Spelled out explicitly, this means for every $\boldsymbol{v} \in V$ there exists some constants a_{1}, \ldots, a_{n} in the base field such that $\boldsymbol{v}=a_{1} \boldsymbol{v}_{1}+\cdots+a_{n} \boldsymbol{v}_{n}$.
2. Do the vectors $\langle 1,2,3\rangle,\langle-1,0,1\rangle$, and $\langle 0,0,1\rangle$ span \mathbf{R}^{3} ? Use techniques proven in class to answer this question, and please explicitly tell the grader what technique you're using.

Let's show those vectors span \mathbf{R}^{3} by writing an arbitrary vector $\langle a, b, c\rangle \in \mathbf{R}^{3}$ explicitly as a linear combination of those vectors. Let $\boldsymbol{i}=\langle 1,0,0\rangle, \boldsymbol{j}=\langle 0,1,0\rangle$, and $\boldsymbol{k}=\langle 0,0,1\rangle$, and let's name the vectors above as $\boldsymbol{\nu}_{1}, \boldsymbol{\nu}_{2}$, and $\boldsymbol{\nu}_{3}$ respectively. Notice that $\boldsymbol{i}=\boldsymbol{\nu}_{3}-\boldsymbol{v}_{2}, \boldsymbol{j}=\frac{1}{2} \boldsymbol{\nu}_{1}+\frac{1}{2} \boldsymbol{v}_{2}-2 \boldsymbol{\nu}_{3}$, and $\boldsymbol{k}=\boldsymbol{\nu}_{3}$, and so

$$
\begin{aligned}
\langle a, b, c\rangle & =a \boldsymbol{i}+b \boldsymbol{j}+c \boldsymbol{k} \\
& =a\left(\boldsymbol{v}_{3}-\boldsymbol{v}_{2}\right)+b\left(\frac{1}{2} \boldsymbol{v}_{1}+\frac{1}{2} \boldsymbol{v}_{2}-2 \boldsymbol{v}_{3}\right)+c\left(\boldsymbol{v}_{3}\right) \\
& =\left(\frac{1}{2} b\right) \boldsymbol{v}_{1}+\left(-a+\frac{1}{2} b\right) \boldsymbol{v}_{2}+(a-2 b+c) \boldsymbol{v}_{3}
\end{aligned}
$$

which is exactly what we sought to show.

