
Sample Final Exam
Ordinary Differential Equations

UCR Math-046-E01, Summer 2018

NAME:

STUDENT ID:

Please silence your phone during the exam.

Have your ID ready when you turn in your exam to me.

You may use the blank side of any page as scratch paper, but note

that I will only be looking for you response to a question on the one

side of the page that contains that question.

This exam is long, but that’s okay. I don’t expect you to respond

to all the questions in the allotted time. The exam is long so that

you have options as to which questions you answer and which you

don’t answer.

Each page of this exam will be weighted equally when being graded.

Remember that the purpose of this exam is to provide me a doc-

ument to read so that I may assess how much you’ve learned in

the course, and assess how prepared you are the classes for which

this class is a prerequisite. I’m not a grading robot, looking only for

right answers. I’m just trying to figure out what you know. So please

communicate to me with your responses. Even if you aren’t entirely

sure about a question, let me know what you do know about it.

Anything to give me evidence that you’ve learned something.



1. What is the definition of a differential equation?

A differential equation is an equation that relates a function and its

derivatives. It draws a relationship between the values of the function

and the various orders at which the function is changing (its rate of

change, the rate at which its rate of change is changing, etc).

2. Imagine that your friend is taking this class next quarter and is very confused

about the difference between a general solution and a particular solution to a

differential equation. Help your friend. Explain the difference between a general

solution and a particular solution to a differential equation.

So a solution to a differential equation is a function y that satisfies the

differential equation, right? I.e. if you calculate the functions y and

y ′ and y ′′ and so on, and plug those into the differential equation, it

makes that equation true. A differential equation might have many

solutions though! This is like back in integral calculus class, where

we had to add a +C to our antiderivatives because there were many

different antiderivatives, one for each value of C .

The general solution to a differential equation will also have a bunch

of constants C1,C2, . . . in it, and it is the “most general solution” to the

differential equation in the sense that any solution can be written as

the general solution with some actual numbers chosen for the Ci s. A

particular solution is just one of these choices of Ci s, where you get an

actual solution instead of a thing with a bunch of unknown constants

floating around in it.

So like, if you’re ever given initial conditions when you’re solving a dif-

ferential equation, conditions like y(0) = 7 and y ′(1) =−π or whatever,

you’re being asked for a particular solution. You have to solve for the

general solution first with those constants in it (well, until you learn

about Laplace transforms), but then these conditions “pin down” a

particular solution. You use those initial conditions to solve for the Ci s.
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3. Give me an example of a single variable function such that the derivative of the

function is equal to one more than the square of the function.

Let y be our single variable function. The hard part is to translate the

description of y above into the differential equation

ẏ = y2 +1.

This equation is separable.

1

y2 +1
ẏ = 1 =⇒

∫
1

y2 +1
dy =

∫
dx

arctan(y) = x +C =⇒ y = tan(x +C ) .

We just need any example of a solution, so we can pick the one where

C = 0, and so y = tan(x) is the function in question. This makes sense

since the derivative of tan(x) is sec2(x), and the described differential

equation is just the Pythagorean identity

sec2(x) = (
tan(x)

)2 +1.

4. Give me an example of a single-variable function that is equal to the negative

of three times its second derivative.

Let y be our single variable function. The hard part is to translate the

description of y above into the differential equation

y =−3ÿ =⇒ ÿ + 1

3
y = 0.

We can solve this differential equation by solving the corresponding

characteristic polynomial λ2 + 1
3 = 0. This polynomial has imaginary

roots ±i 1p
3

, which corresponds to a general solution

y = c1 sin

(
tp
3

)
+ c2 cos

(
tp
3

)
.

Taking derivative of this function twice, we get ÿ = −1
3 c1 sin

(
tp
3

)
+

−1
3 c2 cos

(
tp
3

)
, which indicates that c1 = c2 = 1. How nice.
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5. Solve one of the following differential equations by whatever method you find

that works. Please circle the one you choose to solve.

y ẏ + y2 = 3t y ẏ +1 y ′ cot2(x)+ tan(y) = 0

The differential equation on the left is separable.

y ẏ+y2 = 3t y ẏ+1 =⇒ (1−3t )y ẏ = 1−y2 =⇒ y

y2 −1
ẏ = 1

3t −1
.

Integrating on the left can be done with a quick substitution for y2 −1:

1

2
ln

(
y2 −1

)= 1

3
ln

(
C (3t −1)

) =⇒ y2 =C (3t −1)2/3 +1.

The differential equation on the right is also separable.

y ′ cot2(x)+ tan(y) = 0 =⇒ − 1

tan(y)
y ′ = 1

cot2(x)

−cos(y)

sin(y)
y ′ = tan2(x)

−
∫

cos(y)

sin(y)
dy =

∫
sec2(x)−1dx

The integral on the left requires a substitution for sine, but the integral

on the right can be done straight-away:

− ln(sin(y)) = tan(x)−x +C =⇒ 1

sin(y)
=C etan(x)−x

csc(y) =C etan(x)−x

y = arccsc
(
C etan(x)−x

)
.
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6. Solve one of the following initial value problems by whatever method you find

that works. Please circle the one you choose to solve.

t ẏ −2y = t 4 sin(2t )

where y(π) = 3
2 (1−π)

y ′ = 3 y
x − x

y

where y
(p

2
)= 5 and x > 0.

The differential equation on the left is first-order linear. After dividing

through by t , we multiply through by the integrating factor

e−
∫ 2

t dt = 1

t 2
.

So our differential equation becomes

1

t 2
ẏ − 2

t 3
y = t sin2t

d

dt

(
1

t 2
y

)
= t sin2t .

Integrating both sides (integration by parts on the right), and solving

for y we get our solution

y = 1

2
cos(2t )

(
t 2 − t 3)+C t 2 ,

and our initial condition gives us that C = 1−π. We divided through by

t initially, so t = 0 cannot be part of our domain, and since our initial

condition gives us a negative y , the domain of this solution is (−∞,0).

The differential equation on the right is homogeneous. Use the substi-

tution y = xv and y ′ = xv ′+ v .

y ′ = 3
y

x
− x

y
=⇒ xv ′+ v = 3v − 1

v∫
v

2v2 −1
dv =

∫
1

x
dx

ln(2v2 −1) = 4ln(C x) =⇒ y2 =C x6 + 1

2
x2

Using our initial condition, we get that C = 3, and so our solution is

y =
√

3x6 + 1

2
x2 .

Since 3x6 + 1
2 x2 > 0 for all x > 0, the domain of our solution is (0,∞).
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7. Solve one of the following differential equations by whatever method you find

that works. Please circle the one you choose to solve.

y ′+ y − y4 = 0 2x y2 +1+ (2x2 y +1)y ′ = 0

The differential equation on the left is Bernoulli. First rewrite it as

y ′+ y = y4 =⇒ y−4 y ′+ y−3 = 1,

then do the substitution where v = y−3, and so v ′ = −3y−4 y ′. The

resulting equation is then separable:

1

3
v ′+ v = 1 =⇒ 1

v −1
v ′ =−3

ln(v −1) =−3x +C

v =C e−3x +1

y−3 =C e−3x +1 =⇒ y3 = 1

C e−3x +1
,

The differential equation on the right is exact. We can see this more

easily if we rewrite it as

(2x y2 +1)dx + (2x2 y +1)dy = 0

Letting M = 2x y2 +1 and N = 2x2 y +1, we can see that it’s exact since

My = 4x y = Nx .

We need to find the function G such that Gx = M and Gy = N . We need

G =
∫

M dx = x2 y2 +x + f1(y)

G =
∫

N dy = x2 y2 + y + f2(x) .

Comparing these two expressions for G , the function f1(y) must be

only y plus some constant, and f2(x) must contain just x plus some

constant. So the solution to this differential equation is x2 y2+x+y =C .
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8. Solve one of the following differential equations by whatever method you find

that works. Please circle the one you choose to solve.

p
x = 1

x ẏ − (y ÿ)2 y ′′′+3y ′
−3y ′′−y = 1

After looking over the differential equation on the left for a moment,

you should notice that it looks hard! There’s a ÿ2 in there, and we didn’t

discuss any techniques to handle that. It’s not even linear. We should

turn our focus to the other differential equation.

The differential equation on the right is more promising. After rear-

ranging it a bit, we get it to look like

y ′′′+3y ′′+3y ′+ y = 0

which we may solve by looking at the roots of the corresponding char-

acteristic polynomial

λ3 +3λ2 +3λ+1 = 0.

This cubic may look familiar to you, so you might already know its

factorization. But in case you don’t, let’s start guessing roots. Always

start guessing your favorite numbers: 0, 1, and −1. Notice that −1 is a

root, so (λ+1) is a factor We can divide this factor out, which luckily

leaves us with a quadratic that we can factor easily:

λ3 +3λ2 +3λ+1 = (λ+1)
(
λ2 +2λ+1

)
= (λ+1)(λ+1)(λ+1) = (λ+1)3 = 0.

The characteristic polynomial has a repeated root of −1, which indi-

cates that the general solution to this differential equation is

y = c1e−t + c2te−t + c3t 2e−t .
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9. Find the general solution to the following differential equation by whatever

method you find that works.

ÿ + y = 3ex +2ẏ

After moving the 2ẏ over to the left, this is a non-homogeneous lin-

ear differential equation. We can solve this. First we’ve gotta find the

solution to the corresponding homogeneous differential equation

ÿ − 2ẏ + y = 0. Its characteristic polynomial has a root of 1 of mul-

tiplicity two, so the complementary solution is yc = c1ex + c2xex .

Since our complementary solution yc overlaps with the function 3ex

on the right-hand-side of the differential equation, we should guess

that our particular solution looks something like Yp = Ax2ex . Taking a

couple of derivatives of Yp we get

Y ′
p = A

(
2xex +x2ex)

Y ′′
p = A

(
2ex +4xex +x2ex)

.

Then plugging these into our differential equation, we get

A
(
2ex +4xex +x2ex)−2A

(
2xex +x2ex)+ Ax2ex = 3ex

(2A)ex + (4A−4A)xex + (A−2A+ A)x2ex = 3ex ,

and immediately see that A must be 3
2 . So our general solution is

y = yc +Yp = c1ex + c2xex + 3

2
x2ex .
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10. A tank initially holds 100 gallons of Kool-Aid solution containing 1lb of dis-

solved Kool-Aid mix. At t = 0 another Kool-Aid solution containing 2lb of mix

per gallon is poured into the tank at a rate of 3gal/min, while the well-stirred

mixture leaves the tank at a rate of 8gal/min. Write down a function Q(t ) that

returns the amount of Kool-Aid mix in the tank at any time t . At what time does

the mixture in the tank contain exactly 2lb of Kool-Aid mix?

To set up an initial value problem that models this situation, recall that

the rate at which Q is changing is the rate at which water is flowing

into (respectively out of) the tank times the concentration of Kool-Aid

mix in that water. So our differential equation is

Q̇ = (3)(2)− (8)

(
Q

100−5t

)

=⇒ Q̇ +
(

8

100−5t

)
Q = 6 where Q(0) = 1lbs of Kool-Aid mix.

This is a first-order linear differential equation, so we can solve it by

multiplying through by the integrating factor e
∫

p(t )dt where p(t) =
8

100−5t . This integrating factor turns out to be (t −20)−8/5. Multiplying

through by this integrating factor yields

(t −20)−8/5Q̇ + (t −20)−8/5
(

8

100−5t

)
Q = 6(t −20)−8/5

∫
d

dt

(
Q(t −20)−8/5

)
dt =

∫
6(t −20)−8/5 dt

Q(t ) = (t −20)8/5
(
6
−5

3
(t −20)−3/5 +C

)
Q(t ) =

(
(200−10t )+C (t −20)8/5

)
.

What a gross problem this has become. Applying our initial condition

that Q(0) = 1, we get that C = −199(−20)−8/5. So then the time t at

which there are exactly 2lbs of Kool-Aid mix in the tank is given by

2 =Q(t ) = (200−10t )+−199(−20)−8/5(t −20)8/5 ,

which would just be horrendous to solve, so let’s leave it at that.
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11. We’re studying a group of 300 otters in a creek. The size of the group of otters

will grow at a rate that is proportional to its current population. In the absence

of any outside factors the population will increase by a factor of 8 every three

weeks. On any given day about 20 otters wander off to join another group. Will

the group survive and thrive, or eventually all wander off? NOTE: ln(8) is slightly

greater than 2.

The differential equation that we want to use to model this situation is

Ṗ = kP −N

where k is some constant and N is the number of otters that leave

in a given day, which is 20. We need to find k, so for a function P

that ignores the otters that wander off, we know that 8P(0) = P(21). To

use this fact we need to solve the differential equation Ṗ = kP. This

equation is separable, and the solution is P=C ekt , so we have

8P(0) = P(21) =⇒ 8C ek(0) =C ek(21)

1

21
ln(8) = k

So our differential equation that models the entire situation becomes

Ṗ = ln(8)

21
P −20.

To answer the question, we need to solve this differential equation and

see if P (t) is ever zero. This differential equation is separable, so we

can solve it:

Ṗ = ln(8)

21
P −20

∫ (
1

P − 21
ln(8) 20

)
dP =

∫
ln(8)

21
dt

ln

(
P − 420

ln(8)

)
= ln(8)

21
t +C

P (t ) =C e
ln(8)

21 t + 420

ln(8)
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Then we must use our initial condition that P (0) = 300 to solve for C

300 =C e
ln(8)

21 (0) + 420

ln(8)

300− 420

ln(8)
=C

in particular since ln(8) > 2 as per the NOTE, C will be a positive num-

ber, and the solution function P (t ) will grow at t increases:

0 2 4 6 8 10 12 14 16 18 20

400

500

600

700

800

900

t

P (t ) =C e
ln(7)

21 t + 420
ln(7)

So according to the initial model the size of the group of otters will

continue to grow and the otters will thrive in the group.
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12. Suppose that e3x and 1
x are linearly independent complementary solutions to

the differential equation

y ′′+ 9x2 +2

3x2 +x
y ′− 54x2 +9x +6

3x2 +x
y = x ln(x) x > 0.

Using the method of variation of parameters, calculate the general solution to

this differential equation. You may write the general solution in terms of one or

more indefinite integrals.

Let y1 = e3x and y2 = 1
x . One could simply recall from the textbook or

the homework the formula that we have for the particular solution that

is in terms of the Wronskian of y1 and y2. The one that looks like

Yp =−y1

∫
g y2

W(y1, y2)
dt + y2

∫
g y1

W(y1, y2)
dt .

But if we don’t remember that, we can proceed by guessing that our

particular solution will look like Yp =µ1 y1 +µ2 y2 for function µ1 and

µ2, and solve the systemµ̇1 y1 + µ̇2 y2 = 0

µ̇1 ẏ1 + µ̇2 ẏ2 = g (x)
=

µ̇1e3x + µ̇2
1
x = 0

3µ̇1e3x − µ̇2
1

x2 = x ln(x)
.

Doing this, I get that

µ̇1 = x2 ln(x)

3x +1
e−3x µ̇2 =−x3 ln(x)

3x +1
,

and so looking back at our guess, our particular solution must be

Yp = e3x
∫

x2 ln(x)

3x +1
e−3x dx + 1

x

∫
−x3 ln(x)

3x +1
dx .

But the question asks us for the general solution! So we must add this

to the original complementary solution. The general solution is then

y = c1e3x + c2
1

x
+e3x

∫
x2 ln(x)

3x +1
e−3x dx + 1

x

∫
−x3 ln(x)

3x +1
dx .
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13. For a function of f (t ), what is the definition of the Laplace transform L { f (t )}?

L { f (t )} :=
∞∫

0

e−st f (t )dt

The next part isn’t too important, but we should remember that there

are some conditions that f must satisfy for L { f (t )} to exist, otherwise

that integral might not converge. The Laplace transform L { f (t )} exists

if f is of exponential order α for some α> 0, which means that there

exists some M > 0 and x0 > 0 such that | f (t )| ≤ Meαx for all x > x0.

14. Given the initial value problem of solving y ′−7y = sinh(3x) where y(0) = 42, find

an expression for L {y}. I’ll write some (possibly) helpful Laplace transforms

on the board.

We’ve gotta realize that we need the Laplace transforms

L {y ′} = sL
{

y
}− y(0) L {sinh(ax)} = a

s2 −a2
.

Knowing these, we are unstoppable:

L
{

y ′−7y
}=L {sinh(3x)}

L
{

y ′}−7L
{

y
}=L {sinh(3x)}(

sL
{

y
}− y(0)

)
−7L

{
y
}= 3

s2 −9

(s −7)L
{

y
}−42 = 3

s2 −9

L
{

y
}= 3

(s −7)(s2 −9)
+ 42

(s −7)
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15. Compute the Laplace transform of the following function. I will write some

(hopefully) helpful Laplace transforms on the board.

g (x) =
14x + sin(x)−49 0 ≤ x < 7

sin(x)+x2 7 < x

First we use a Heaviside function to write this as a single expression:

g (x) = 14x + sin(x)−49+u7(x)
(

sin(x)+x2 − (14x + sin(x)−49)
)

= 14x + sin(x)−49+u7(x)
(
x2 −14x +49

)
= 14x + sin(x)−49+u7(x)

(
(x −7)2)

And then we can take the Laplace transform of the whole thing:

L
{

g (x)
}=L

{
14x + sin(x)−49+u7(x)

(
(x −7)2)}

= 14L {x}+L {sin(x)}−49L {1}+L
{
u7(x)(x −7)2}

= 14
1

x2
+ 1

s2 +1
−49

1

s
+e−7sL

{
x2}

= 14
1

s2
+ 1

s2 +1
−49

1

s
+e−7s 2

s3
.

And since I’m in a mood to try to make it a little prettier,

L
{

g (x)
}= 2e−7s −49s2 +14s

s3
+ 1

s2 +1
.
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