
International Journal of Pure and Applied Mathematics
————————————————————————–
Volume 61 No. 2 2010, 121-146

SINGULARITY FORMATION OF EMBEDDED CURVES

EVOLVING ON SURFACES BY CURVATURE FLOW
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Abstract: In this paper, we extend Grayson’s Theorem [16] on curvature
flow of embedded curves in a compact Riemannian surface. The main result
is a direct and shorter proof of a theorem of X. Zhu [25] that, if a singularity
develops in finite time, then the curve converges to a round point in a C∞

sense. The proof will extend Hamilton’s isoperimetric estimates technique for
curvature flow of embedded curves in the plane [18].
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1. Introduction

Let γ be a closed embedded curve evolving under the curvature flow in a com-
pact surface M . If a singularity develops in finite time, then the curve shrinks
to a point [16]. So when t is close enough to the blow-up time ω, we may assume
that the curve is contained in a small neighborhood of the collapsing point on
the surface. Using a local conformal diffeomorphism φ : U(⊆ M) → U ′ ⊆ R
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between compact neighborhoods, we get a corresponding flow in the plane which
satisfies the following equation:

∂γ′

∂t
=

(
k′

J2
− ∇NJ

J2

)
N ′, (1)

where γ′(p, t) = φ(γ(p, t)), k′ is the curvature of γ′ in U ′, N ′ is the unit normal
vector, and the conformal factor J is smooth, bounded and bounded away from
0.

For a smooth embedded closed curve γ in R
2, consider any curve Γ which

divides the region enclosed by γ into two pieces with areas A1 and A2, where
A1 + A2 = A is the area enclosed by γ. Let L be the length of Γ. Define [18],

G(γ,Γ) = L2

(
1

A1
+

1

A2

)
, and G(γ) = inf

Γ
G(γ,Γ).

We use the above isoperimetric estimates to prove the following theorem.

Main Theorem. Let γ be a closed embedded curve evolving by curvature
flow on a smooth compact Riemannian surface. If a singularity develops in finite
time, then the curve converges to a round point in the C∞ sense.

2. Evolving Closed Curves in a Surface

Grayson [16] and Gage [14], generalized the study of curvature flow of closed
curves in the plane to that in surfaces. The curvature flow is a gradient flow for
the length functional on the space of immersed curves in the surface M2 with
Riemannian metric g.

Let (M,g) be a smooth compact oriented 2-dimensional Riemannian man-
ifold with bounded scalar curvature. Let γ0 : S1 → M be a smooth embedded
curve in M and let γ : S1 × [0, ω) → M be a one-parameter smooth family of
embedded curves satisfying γ(·, 0) = γ0. If γ evolves by curvature flow, then

∂γ

∂t
(p, t) = k(p, t)N(p, t), (p, t) ∈ S1 × [0, ω), (2)

where k is the geodesic curvature of γ and N is its unit normal.

Arclength is given by

s(p, t) =

∫ p

0

∣∣∣∣
∂γ

∂q
(q, t)

∣∣∣∣ dq.



SINGULARITY FORMATION OF EMBEDDED CURVES... 123

Differentiating,

∂s

∂p
(p, t) =

∣∣∣∣
∂γ

∂p
(p, t)

∣∣∣∣ = v(p, t)

⇒ ∂

∂s
=

1

v

∂

∂p
, and ds = vdp.

From the Frenet formulas, we have

∇sT = kN and ∇sN = −kT.

Now we recall some standard results for the evolution, see [16].

Lemma 2.1. For the curvature flow:

1. The speed v evolves according to ∂v
∂t = −k2v.

2. [ ∂
∂t ,

∂
∂s ] = k2 ∂

∂s .

3. ∇tT = ∂k
∂sN and ∇tN = −∂k

∂sT.

4. The arclength L of the curve evolves according to dL
dt = −

∫
γt

k2ds.

5. ∇t∇s = ∇s∇t + k2∇s − kR(T,N).

6. The curvature k of the curve evolves according to ∂k
∂t = ∂2k

∂s2 + k3 + K k,
where K = 〈R(N,T )T,N)〉 is the Gaussian curvature of M restricted to γ(·, t).

Theorem 2.1. (see [16]) A closed embedded curve moving on a smooth
compact Riemannian surface by curvature flow must either collapse to a point
in finite time or else converge to a simple closed geodesic as t → ∞.

Grayson’s proof was rather delicate, requiring separate analyses of what
may happen under various geometric configurations, and special arguments for
each cases. First he showed that the solution remains smooth and embedded
as long as its curvature remains bounded. He then proved that if a singularity
develops in finite time, then the curvature remains bounded until the entire
curve shrinks to a point. Finally, he proved that if the length of the curve does
not converge to zero, then its curvature must converge to zero in the C∞ norm
and that the curve approaches a geodesic in the C∞ sense.

In this paper, the proof has been simplified using Hamilton’s isoperimetric
estimates technique from [18] to rule out certain kinds of singularity and we
extend Grayson’s Theorem [16] by showing that if the curve shrinks to a point,
then it shrinks to a round point in a C∞ sense. Since the curve does shrink
to a point, we can transform the curvature flow in surfaces to a corresponding
flow in the plane (more general than the curvature flow in the plane per se).
In a series of papers, Angenent [4], [6], [5] developed a more general theory
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of parabolic equations for curves on surfaces. We now summarize some of the
important results of Angenent that we will need.

2.1. Parabolic Equations for Curves on Surfaces

Consider a closed curve evolving by an arbitrary uniformly parabolic equation,

∂γ

∂t
= V (T, k)N, (3)

on a smooth oriented 2-dimensional Riemannian manifold M , and denote its
unit tangent bundle by S1(M) = {ξ ∈ T (M) : g(ξ, ξ) = 1}. Then the normal
velocity is

v⊥(p, t) = V (T, k)(p, t) ≡ V (Tγ(p,t), kγ(p,t)),

for some function V : S1(M) × R → R which satisfies:

(V1) V (T, k) is C2,1,

(V2) λ−1 ≤ ∂V

∂k
≤ λ,

(V3) |V (T, 0)| ≤ µ for all T ∈ S1(M),

(V4) |∇hV | + |k∇vV | ≤ ν(1 + k2),

(V5) V (−T,−k) = −V (T, k),

for positive constants λ, µ, and ν.

The tangent bundle to S1(M) splits into the Whitney sum of the bundle
of horizontal vectors and bundle of vertical vectors. ∇vV and ∇hV denote the
vertical and horizontal components of ∇(V ) (holding the second argument of
V fixed).

These assumptions on V are necessary to make the set of allowable initial
curves as large as possible, and necessary for the short-time existence of the
solutions. The way in which maximal classical solutions can become singular
(limit curves) is based on these assumptions on V and the initial curves. Our

application of this theory will be for the flow given by V (T, k) =
(

k
J2 − ∇NJ

J2

)
,

where J(x, y) is a smooth bounded function that is also bounded away from 0.
We will see that the curvature flow in a surface corresponds to the flow with
this normal velocity in a plane.

Lemma 2.2. For the flow (3):

1. The speed v evolves according to ∂v
∂t = −kV v.

2. [ ∂
∂t ,

∂
∂s ] = kV ∂

∂s .
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3. ∇tT = ∂V
∂s N , and ∇tN = −∂V

∂s T.

4. The arclength L of the curve evolves according to dL
dt = −

∫
γt

kV ds.

5. ∇t∇s = ∇s∇t + kV ∇s − V R(T,N).

6. The curvature k of the curve evolves according to ∂k
∂t = ∂2V

∂s2 +k2V +K V ,
where K = 〈R(N,T )T,N)〉 is the Gaussian curvature of M restricted to γ(·, t).

7. The enclosed area A of the curve evolves according to dA
dt = −

∫
γt

V ds.

We now state the main result from [4] and [6].

Theorem 2.2. Let V satisfy (V1) − (V5), and let γ : S1 × [0, ω) → M be
a maximal classical solution of (3) which becomes singular in finite time. Then
the limit curve γ∗ of the γ(·, t) either has fewer self-intersections than any of
the γ(·, t)’s, or else the total absolute curvature of the limit curve drops by at
least π.

Oaks [23] improved Theorem 2.2 by showing that the latter case never
occurs. So if the initial curve is embedded, and the singularity develops in
finite time, then the curve shrinks to a point. So when t is close enough to
the blow-up time ω, we may assume that the curve is contained in a small
neighborhood of the collapsing point on the surface.

Now from the following theorem, it is enough to work locally in R
2.

Theorem 2.3. (see [23]) Let φ : U(⊆ M) → U ′ ⊆ R
2 be a confor-

mal diffeomorphism between compact neighborhoods. If V : S1(M) × R → R

satisfies (V1) − (V5), then there is a function V ′ : S1(U ′) × R → R which sat-
isfies (V1) − (V5) such that whenever γ(p, t) is a curve in U evolving by (3),

γ′(p, t) = φ(γ(p, t)) satisfies ∂γ′

∂t = V ′(T ′, k′)N ′, where T ′ and N ′ are the unit
tangent and normal vectors, and k′ is the curvature of γ′ in U ′.

Moreover, V (T, k) = J(p)V ′(T ′, k′) and ds = J(p)ds′, where J(p) > 0 is
smooth, bounded, and bounded away from 0.

The metric in U can be written as

g = J2(x, y)(dx2 + dy2),

where the coordinates in U are obtained by φ−1. Because U ′ is compact, J(x, y)
is both bounded and bounded away from 0.

Let ∂
∂x and ∂

∂y be the coordinate vector fields on U , and let X = 1
J

∂
∂x , and

Y = 1
J

∂
∂y . Then X and Y are unit vectors. Since φ is conformal, φ∗(N) = 1

J N ′.
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So γ′ evolves by the equation:

∂γ′

∂t
= (

1

J
V )N ′.

Therefore, V ′ = 1
J V .

We next show that k′ = kJ + ∇NJ. First, we need the following lemma.

Lemma 2.3.

∇XX = −∇Y J

J
Y, ∇XY =

∇Y J

J
X

∇Y X =
∇XJ

J
Y, ∇Y Y = −∇XJ

J
X.

Proof. Since 0 = [ ∂
∂x , ∂

∂y ] = [JX, JY ], we have ∇JXJY = ∇JY JX. There-
fore, J∇XY + (∇XJ)Y = J∇Y X + (∇Y J)X. Since ∇XY ⊥Y and ∇Y X⊥X,
we get ∇XY = ∇Y J

J X and ∇Y X = ∇XJ
J Y . The other two formulas follow from

differentiating 〈X,Y 〉 = 0 with respect to X and Y .

Let θ be the angle T makes with X in U . Then

T = cos θX + sin θY, N = − sin θX + cos θY.

Thus,

∇T X = − cos θ
∇Y J

J
Y + sin θ

∇XJ

J
Y

=

(
−∇Y J

J
cos θ +

∇XJ

J
sin θ

)
Y,

and

∇TY =

(∇Y J

J
cos θ − ∇XJ

J
sin θ

)
X.

We have ∇T θ = 1
J k′. Then

kN = γ′′ = ∇T T = ∇T (cos θ X + sin θ Y )

= − sin θ(
k′

J
)X + cos θ

(
−∇Y J

J
cos θ +

∇XJ

J
sin θ

)
Y + cos θ(

k′

J
)Y

+ sin θ

(∇Y J

J
cos θ − ∇XJ

J
sin θ

)
X

=

(
k′

J
+

∇XJ

J
sin θ − ∇Y J

J
cos θ

)
N,

and thus,

k =

(
k′

J
+

∇XJ

J
sin θ − ∇Y J

J
cos θ

)
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=
k′

J
− 1

J
∇NJ.

That is,

k′ = kJ + ∇NJ. (4)

J is bounded away from 0 and both J and ∇NJ are bounded. So limt→ω |k(p, t)|
is unbounded if and only if limt→ω |k′(p, t)| is also unbounded.

When V = k, i.e., for the curvature flow in a surface M , we have

V ′ =
1

J
V =

k

J
=

k′

J2
− ∇NJ

J2
.

So the curvature flow in a surface corresponds to the following flow in R
2:

∂γ′

∂t
=

(
k′

J2
− ∇NJ

J2

)
N ′. (1)

3. Monotonicity of an Isoperimetric Ratio

From [16], when a closed curve evolves under the curvature flow in a surface,
the solution remains smooth and embedded as long as its curvature remains
bounded. If a singularity develops in finite time, then the curve shrinks to a
point. So when t is close enough to the blow-up time ω, we may assume that
the curve is contained in a small neighborhood of the collapsing point on the
surface. Now by Theorem 2.3, using a local conformal diffeomorphism φ : U(⊆
M) → U ′ ⊆ R

2 between compact neighborhoods, we get a corresponding flow
in the plane which satisfies the following equation:

∂γ′

∂t
=

(
k′

J2
− ∇NJ

J2

)
N ′, (1)

where γ′(p, t) = φ(γ(p, t)), k′ is the curvature of γ′ in U ′, and N ′ is the unit
normal vector. Our next goal is the following Lemma:

Main Lemma. If γ′(·, t) is evolving by the parabolic flow (1), t0 is close
enough to the blow-up time ω < ∞, and G < π

2 , then there is some ε > 0 such
that G(γ′(·, t)) > ǫ for all t ∈ [t0, ω).

Hamilton [18] showed that the isoperimetric ratio G(γ(·, t)) improves under
the curvature flow in the plane when G(γ(·, t)) ≤ π. We prove the main lemma
by showing that the isoperimetric ratio G(γ′(·, t)) improves under the parabolic
flow (1).

For a smooth embedded closed curve γ in R
2, consider any curve Γ which

divides the region enclosed by γ into two pieces with areas A1 and A2, where
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Figure 1

A1 + A2 = A is the area enclosed by γ. Let L be the length of Γ. Define the
ratio

G(γ,Γ) = L2

(
1

A1
+

1

A2

)
, (5)

and let

G(γ) = inf
Γ

G(γ,Γ) (6)

be the least possible value of G(γ,Γ) for all curve segments Γ. Hamilton [18]
takes the infimum over all possible straight lines for (6). He also defines another
isoperimetric ratio, and for that ratio he takes the infimum over all possible
curves. We will use the following theorem of Hamilton.

Lemma 3.1. (see [18]) The minimum G(γ) is attained by a single smooth
curve Γ0 of constant curvature perpendicular to γ.

We now show, in the rest of this section, that the isoperimetric ratio
G(γ′(·, t)) improves under the parabolic flow (1).

Let’s fix the time at t = t0, and consider any one-parameter family of curves
Γµ with parameter µ ∈ [−µ0, µ0], µ0 > 0. We will compute the first and second
variation of the length L(Γµ) and the areas A1(Γµ) and A2(Γµ). We assume Γ0

is our arc of constant curvature which gives the infimum for G(γ′(·, t0),Γµ) at
µ = 0.

In polar coordinates, Γµ is given by the graph of

r = r(θ, µ), θ ∈ [θ−(µ), θ+(µ)],

where θ− is the portion of γ′ near where it meets the bottom of Γ0 and θ+ is
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Figure 2

the portion of γ′ near where it meets the top of Γ0. So,

Γ0 = {(r0, θ) : r0 =
1

K0
, θ ∈ [θ−(0), θ+(0)]},

and we have
∂r

∂θ

∣∣∣∣
µ=0

= 0, and
∂2r

∂θ2

∣∣∣∣
µ=0

= 0. (7)

Since Γ0 is perpendicular to γ′(·, t0) at µ = 0, and we have

∂θ+

∂µ

∣∣∣∣
µ=0

= 0, and
∂θ−

∂µ

∣∣∣∣
µ=0

= 0. (8)

The curve γ′ has curvatures k′
+ at θ+(0) and k′

− at θ−(0) which can be
computed as the curvatures of the graphs of

θ+(µ), r+(µ) = r(θ+(µ), µ)

and

θ−(µ), r−(µ) = r(θ−(µ), µ).
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The curvature of a parameterized curve P (µ) = (r cos θ, r sin θ) is given by

k =
|P ′(µ) × P ′′(µ)|

|P ′(µ)|3 .

By using the formulas above, we get

r0
d2θ+

dµ2

∣∣∣∣
µ=0

= −k
′

+

(
∂r+

∂µ

∣∣∣∣
µ=0

)2

, (9)

and

r0
d2θ−

dµ2

∣∣∣∣
µ=0

= k
′

+

(
∂r−

∂µ

∣∣∣∣
µ=0

)2

. (10)

For the variation, let the velocity v = ∂r
∂µ

∣∣∣
µ=0

and the acceleration z =

∂2r
∂µ2

∣∣∣
µ=0

.

The arclength is given by

L(µ) = L(Γµ) =

∫ θ+(µ)

θ−(µ)

√

r2 +

(
∂r

∂θ

)2

dθ.

Therefore,

dL

dµ
=

∫ θ+(µ)

θ−(µ)

1

2

(
r2 +

(
∂r

∂θ

)2
)−1/2(

2r
∂r

∂µ
+ 2

∂r

∂θ

∂2r

∂θ∂µ

)
dθ

+

√

r2 +

(
∂r

∂θ

)2
∣∣∣∣∣∣
θ+(µ)

∂θ+

∂µ
−

√

r2 +

(
∂r

∂θ

)2
∣∣∣∣∣∣
θ−(µ)

∂θ−

∂µ
.

Thus,

dL

dµ

∣∣∣∣
µ=0

=

∫ θ+(0)

θ−(0)
v dθ. (11)

Now consider the second variation of L.

d2L

dµ2
=

∫ θ+(µ)

θ−(µ)

[
− 1

2

(
r2 +

(
∂r

∂θ

)2
)−3/2

2

(
r
∂r

∂µ
+

∂r

∂θ

∂2r

∂θ∂µ

)2

+

(
r2 +

(
∂r

∂θ

)2
)−1/2((

∂r

∂µ

)2

+ r
∂2r

∂µ2
+

(
∂2r

∂θ∂µ

)2

+
∂r

∂θ

∂3r

∂θ∂µ2

)]
dθ
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+

√

r2 +

(
∂r

∂θ

)2
∣∣∣∣∣∣
θ+(µ)

∂2θ+

∂µ2
+

d

dµ




√

r2 +

(
∂r

∂θ

)2
∣∣∣∣∣∣
θ+(µ)




∂θ+

∂µ

+

√

r2 +

(
∂r

∂θ

)2
∣∣∣∣∣∣
θ−(µ)

∂2θ−

∂µ2
+

d

dµ




√

r2 +

(
∂r

∂θ

)2
∣∣∣∣∣∣
θ−(µ)




∂θ−

∂µ
.

Thus,

d2L

dµ2

∣∣∣∣
µ=0

=

∫ θ+(0)

θ−(0)
z dθ + K0

∫ θ+(0)

θ−(0)

(
dv

dθ

)2

dθ − (k
′

+v2
+ + k

′

−v2
−). (12)

Now we compute the first and second variation of the areas A1 and A2.
Since A1(µ) + A2(µ) = A, we have dA1

dµ = −dA2

dµ and d2A1

dµ2 = −d2A2

dµ2 . We have

Area A =

∫ ∫
rdrdθ =

∫ ∫
r
∂r

∂µ
dµdθ.

If A1(µ) denotes the area on the origin side of Γµ, then

A1(µ) − A1(0) =

∫ µ

0

∫ θ+(τ)

θ−(τ)
r
∂r

∂τ
dθdτ.

Therefore,

dA1

dµ
=

∫ θ+(µ)

θ−(µ)
r
∂r

∂µ
dθ ⇒ dA1

dµ

∣∣∣∣
µ=0

=
1

K0

∫ θ+(0)

θ−(0)
v dθ,

and we have

dA1

dµ

∣∣∣∣
µ=0

= − dA2

dµ

∣∣∣∣
µ=0

=
1

K0

∫ θ+(0)

θ−(0)
v dθ. (13)

Now,

d2A1

dµ2
=

∫ θ+(µ)

θ−(µ)
r
∂2r

∂µ2
+

(
∂r

∂µ

)2

dθ + r
∂r

∂µ

∣∣∣∣
θ+(µ)

∂θ+

∂µ
− r

∂r

∂µ

∣∣∣∣
θ−(µ)

∂θ−

∂µ
.

Thus,

d2A1

dµ2

∣∣∣∣
µ=0

= − d2A2

dµ2

∣∣∣∣
µ=0

=
1

K0

∫ θ+(0)

θ−(0)
z dθ +

∫ θ+(0)

θ−(0)
v2 dθ. (14)

Having found the first and second variations of L, A1 and A2, we can now

write down the condition that G = L2
(

1
A1

+ 1
A2

)
attains its minimum at Γ0.

As usual, this says that dG
dµ

∣∣∣
µ=0

= 0 and d2G
dµ2

∣∣∣
µ=0

≥ 0. It is easier to express
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this inequality in terms of logarithms; thus

G = L2

(
1

A1
+

1

A2

)
= L2

(
A

A1A2

)
⇒ ln G = 2 ln L + ln A − lnA1 − ln A2.

Since

0 =
d

dµ

∣∣∣∣
µ=0

ln G =
2

L

dL

dµ

∣∣∣∣
µ=0

+
1

A

dA

dµ

∣∣∣∣
µ=0

− 1

A1

dA1

dµ

∣∣∣∣
µ=0

− 1

A2

dA2

dµ

∣∣∣∣
µ=0

,

we have

2

L

∫ θ+(0)

θ−(0)
v dθ − 1

A1

1

K0

∫ θ+(0)

θ−(0)
v dθ +

1

A2

1

K0

∫ θ+(0)

θ−(0)
v dθ = 0.

Therefore,

2K0

L
=

1

A1
− 1

A2
. (15)

Next, we have

0 ≤ d2

dµ2

∣∣∣∣
µ=0

ln G =
d

dµ

∣∣∣∣
µ=0

(
2

L

dL

dµ
− 1

A1

dA1

dµ
− 1

A2

dA2

dµ

)

=
d

dµ

∣∣∣∣
µ=0

(
2

L

dL

dµ
− dA1

dµ

(
1

A1
− 1

A2

))

=

[
− 2

L2

(
dL

dµ

)2

+
2

L

d2L

dµ2
− d2A1

dµ2

(
1

A1
− 1

A2

)
+

dA1

dµ

(
1

A2
1

dA1

dµ
− 1

A2
2

dA2

dµ

)]

µ=0

= − 2

L2

(∫ θ+(0)

θ−(0)
vdθ

)2

+
2

L

[∫ θ+(0)

θ−(0)
zdθ + K0

∫ θ+(0)

θ−(0)

(
dv

dθ

)2

dθ − (k
′

+v2
+ + k

′

−v2
−)

]

−
(

1

A1
− 1

A2

)[
1

K0

∫ θ+(0)

θ−(0)
zdθ +

∫ θ+(0)

θ−(0)
v2dθ

]
+

(
1

A2
1

+
1

A2
2

)[
1

K0

∫ θ+(0)

θ−(0)
vdθ

]2

=

[
− 2

L2
+

1

K2
0

(
1

A2
1

+
1

A2
2

)](∫ θ+(0)

θ−(0)
vdθ

)2

+

[
2

L
− 1

K0

(
1

A1
− 1

A2

)]∫ θ+(0)

θ−(0)
zdθ

+
2K0

L

∫ θ+(0)

θ−(0)

(
dv

dθ

)2

dθ − 2

L
(k

′

+v2
+ + k

′

−v2
−) −

(
1

A1
− 1

A2

)∫ θ+(0)

θ−(0)
v2 dθ.

So, by using (15), we get

2

L
(k

′

+v2
+ + k

′

−v2
−) ≤ 1

2K2
0

(
1

A1
+

1

A2

)2
(∫ θ+(0)

θ−(0)
v dθ

)2
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+
2K0

L

∫ θ+(0)

θ−(0)

((
dv

dθ

)2

− v2

)
dθ. (16)

The curvature flow in a surface corresponds to the following flow in the plane
R

2,

∂γ′

∂t
=

(
k′

J2
− ∇NJ

J2

)
N ′ = V ′N ′.

We will now use (15) and (16) to show that d
dt

∣∣
t=t0

ln G > 0. First we need
to compute the evolution of L,A,A1 and A2 at time t0. The evolution of the
length L is the sum of the normal velocity of γ′(·, t) at the two ends of Γ0, so
that

dL

dt

∣∣∣∣
t=t0

= −
(
V

′

+ + V
′

−

)
.

The evolution of the areas are given by:

dA

dt

∣∣∣∣
t=t0

= −
∫

γ′(·,t0)
V ′ ds,

dA1

dt

∣∣∣∣
t=t0

= −
∫

γ
′

1
(·,t0)

V ′ ds,

dA2

dt

∣∣∣∣
t=t0

= −
∫

γ
′

2
(·,t0)

V ′ ds.

Since

G = L2

(
1

A1
+

1

A2

)
= L2 A

A1A2
,

we have

ln G = 2 ln L + ln A − ln A1 − ln A2,

and
d

dt

∣∣∣∣
t=t0

ln G =
2

L

dL

dt

∣∣∣∣
t=t0

+
1

A

dA

dt

∣∣∣∣
t=t0

− 1

A1

dA1

dt

∣∣∣∣
t=t0

− 1

A2

dA2

dt

∣∣∣∣
t=t0

.

Thus,

d

dt

∣∣∣∣
t=t0

ln G = − 2

L

(
k

′

+

J2
+

+
k

′

−

J2
−

)
+

2

L

(∇NJ

J2

∣∣∣∣
+

+
∇NJ

J2

∣∣∣∣
−

)

− 1

A

∫

γ′(·,t0)
V ′ ds +

1

A1

∫

γ
′

1
(·,t0)

V ′ ds +
1

A2

∫

γ
′

2
(·,t0)

V ′ ds. (17)

If we choose the variation such that

v(r0, θ) =
1

J(r0 cos θ, r0 sin θ)
θ ∈ [θ−(0), θ+(0)],
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then we could use the result from (16) in (17). Consider the RHS of (16). First,
∫ θ+(0)

θ−(0)
v dθ ≤ max

θ−(0)≤θ≤θ+(0)

(
1

J

)
(θ+ − θ−).

Using (θ+−θ−) = LK0, we get that the first term of the RHS of (16) is bounded
by

1

2K2
0

(
1

A1
+

1

A2

)2
(∫ θ+(0)

θ−(0)
v dθ

)2

≤ C1L
2

2

(
1

A1
+

1

A2

)2

, (18)

where

C1 = max
θ−≤θ≤θ+

(
1

J2

)
. (19)

Now considering the second term in the RHS of (16), we have

dv

dθ
= − 1

J2
[Jx(−r0 sin θ) + Jy(r0 cos θ)]

≤ r0

J2

√
J2

x + J2
y ,

so we get the bound

2K0

L

∫ θ+(0)

θ−(0)

(
dv

dθ

)2

dθ ≤ 2K0

L

C2

K2
0

(LK0) = 2C2, (20)

where

C2 = max
θ−≤θ≤θ+

(
J2

x + J2
y

J4

)
. (21)

Now using (15) we get the bound for the third term in the RHS of (16),

2K0

L

∫ θ+(0)

θ−(0)
v2 dθ ≥ 2K0

L
C3(LK0) = 2C3K

2
0 =

C3L
2

2

(
1

A1
− 1

A2

)2

, (22)

where

C3 = min
θ−≤θ≤θ+

(
1

J2

)
. (23)

So now (16), (18), (20), and (22) give

2

L

(
k

′

+

J2
+

+
k

′

−

J2
−

)
≤ C1L

2

2

(
1

A1
+

1

A2

)2

+ 2C2 −
C3L

2

2

(
1

A1
− 1

A2

)2

. (24)

So we have a bound on the first term in the RHS of (17). We now bound the
last three terms in the RHS of (17). First,∫

γ′

V ′ ds =

∫

γ′

(
k′

J2
− ∇NJ

J2

)
ds ≥ C4

∫

γ′

k′ ds − C5

∫

γ′

ds,
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where

C4 = min
U ′

(
1

J2

)
, (25)

and

C5 = max
U ′

(∇NJ

J2

)
. (26)

Therefore,

− 1

A

∫

γ′(·,t0)
V ′ ds +

1

A1

∫

γ
′

1
(·,t0)

V ′ ds +
1

A2

∫

γ
′

2
(·,t0)

V ′ ds

=

(
1

A1
− 1

A

)∫

γ′

1

(
k′

J2
− ∇NJ

J2

)
ds +

(
1

A2
− 1

A

)∫

γ′

2

(
k′

J2
− ∇NJ

J2

)
ds

≥
(

1

A1
− 1

A

)[
C4

∫

γ′

1

k′ ds − C5

∫

γ′

1

ds

]
+

(
1

A2
− 1

A

)[
C4

∫

γ′

2

k′ ds − C5

∫

γ′

2

ds

]

=

(
1

A1
− 1

A

)[
C4(π − (θ+ − θ−)) − C5L(γ′

1)
]

+

(
1

A2
− 1

A

)[
C4(π + (θ+ − θ−)) − C5L(γ′

2)
]

=
C4π(A2

1 + A2
2)

A1A2(A1 + A2)
+

C4L
2

2

(
1

A1
− 1

A2

)
(A2

1 − A2
2)

A1A2(A1 + A2)

+ C5

[
L(γ′)

A
− L(γ′

1)

A1
− L(γ′

2)

A2

]
.

Since
1

2
(A1 + A2)

2 ≤ (A2
1 + A2

2) ≤ (A1 + A2)
2,

we have
(A1 + A2)

2

2A1A2(A1 + A2)
≤ (A2

1 + A2
2)

A1A2(A1 + A2)
≤ (A1 + A2)

2

A1A2(A1 + A2)
;

that is,

1

2

(
1

A1
+

1

A2

)
≤ (A2

1 + A2
2)

A1A2(A1 + A2)
≤
(

1

A1
+

1

A2

)
.

Also,

L(γ′)

A
− L(γ′

1)

A1
− L(γ′

2)

A2
=

L1 + L2

A1 + A2
− L1

A1
− L2

A2
≥ −L′

(
1

A1
+

1

A2

)
,

where L′ = max(L1, L2).

So now we have bound on the last three terms in the RHS of (17):
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− 1

A

∫

γ′(·,t0)
V ′ ds +

1

A1

∫

γ
′

1
(·,t0)

V ′ ds +
1

A2

∫

γ
′

2
(·,t0)

V ′ ds

≥ C4π

2

(
1

A1
+

1

A2

)
− C4L

2

2

(
1

A1
− 1

A2

)2

− C5L
′

(
1

A1
+

1

A2

)
. (27)

Next we compute the second term in the RHS of (17). Let

∇NJ

J2
(θ) =

∇NJ

J2
(r0 cos θ, r0 sin θ, θ).

Then
∇NJ

J2

∣∣∣∣
−

=
∇NJ

J2
(r0 cos θ−, r0 sin θ−, θ−)

=
∇NJ

J2
(θ−),

and
∇NJ

J2

∣∣∣∣
+

=
∇NJ

J2
(r0 cos θ+, r0 sin θ+, θ+ + π)

= −∇NJ

J2
(θ+).

By the mean value theorem,(∇NJ

J2

∣∣∣∣
+

+
∇NJ

J2

∣∣∣∣
−

)
=

(∇NJ

J2

)′

(θ0)(θ− − θ+),

for some θ0 ∈ (θ−, θ+). Therefore

2

L

(∇NJ

J2

∣∣∣∣
+

+
∇NJ

J2

∣∣∣∣
−

)
= − 2

L

(∇NJ

J2

)′

(θ0)(LK0)

= −
(∇NJ

J2

)′

(θ0)L

(
1

A1
− 1

A2

)
. (28)

Thus (17), (24), (27), and (28) give

d

dt

∣∣∣∣
t=t0

ln G ≥ −C1L
2

2

(
1

A1
+

1

A2

)2

− 2C2 +
C3L

2

2

(
1

A1
− 1

A2

)2

+
C4π

2

(
1

A1
+

1

A2

)
− C4L

2

2

(
1

A1
− 1

A2

)2

− C5L
′

(
1

A1
+

1

A2

)

−
(∇NJ

J2

)′

(θ0)L

(
1

A1
− 1

A2

)

=
1

2

(
1

A1
+

1

A2

)(
C4π − C1G − 2C5L

′ − 2

(∇NJ

J2

)′

(θ0)
A2 − A1

A1 + A2
L

)
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+
L2

2

(
1

A1
− 1

A2

)2

(C3 − C4) − 2C2. (29)

If t0 is close enough to the blow-up time ω, we can make C4 = minU ′

(
1
J2

)

and C1 = maxθ−≤θ≤θ+

(
1
J2

)
approach 1, and C5 = maxU ′

(
∇N J
J2

)
and C2 =

maxθ−≤θ≤θ+

(
J2

x+J2
y

J4

)
approach 0. The term

(
∇N J
J2

)′
(θ0)

A2−A1

A1+A2
is bounded.

We also have C3 = minθ−≤θ≤θ+

(
1
J2

)
≥ C4. The lengths L′ and L approach

0, and
(

1
A1

+ 1
A2

)
becomes larger. Hence when G gets smaller (say < π

2 ),

d
dt

∣∣
t=t0

ln G > 0.

This completes the proof of the main lemma..

In the next section we will study the formation of singularity by re-scaling
the solutions, and then prove our main theorem using the main lemma.

4. The Limit of the Re-Scaled Solutions

If the evolution equation has a smooth solution on a maximal time interval
0 ≤ t < ω < ∞, then the supremum norm of the curvature must blow up as
t → ω. We say that Q ∈ R

2 is a blow-up point or singularity if there is p ∈ S1

such that γ(p, t) → Q and k(p, t) becomes unbounded as t → ω. We define
{(pn, tn) ∈ S1 × [0, ω)} to be a (essential) blow-up sequence if limn→∞ tn = ω,
limn→∞ k(pn, tn) = ∞, and

|k(p, t)| ≤ |k(pn, tn)| p ∈ S1, t ∈ (0, tn].

Let Mt = sup k2(·, t). Then we will use the following dilation-invariant catego-
rization of singularity formation:

Type-I singularity if limt→ω Mt.(ω − t) is bounded, and

Type-II singularity if limt→ω Mt.(ω − t) is unbounded.

We next re-scale the solution along a blow-up sequence {(pn, tn)}: for every
n we obtain a new solution γn, from γ by translating tn 7→ 0, and dilating the
solution in space and time (scaling time as space squared) so that k2

n(pn, 0) 7→ 1.
First, we will give a precise definition: We have

γ : S1 × [0, ω) → R
2.

We define the re-scaled solutions γn of γ along the blow-up sequence {(pn, tn)}
to be as follows:

γn : S1 × [−λ2
ntn, λ2

n(ω − tn)) → R
2
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is given by

γn(·, t) = λn[γ(·, t)] = λn[γ(·, tn + λ−2
n t)],

where λn = |k(pn, tn)| and t = λ2
n(t − tn). So, we have

t ∈ [0, ω) ⇔ t ∈ [−λ2
ntn, λ2

n(ω − tn)) = [an, ωn) say.

That is,

γn : S1 × [an, ωn) → R
2

is given by

γn(·, t) = λnγ(·, t).
Since λn → ∞, we have limn→∞ an = −∞ and

lim
n→∞

ωn =

{
finite if type I,

+∞ if type II.

The curvature of γn satisfies |kn(p, t)| ≤ 1 for all t ∈ [an, 0]. We have

∂γn

∂t
= λn

∂γ

∂t

dt

dt
= λn

∂γ

∂t
(λ−2

n ).

So
∂γn

∂t
=

1

λn

(
∂γ

∂t

)
.

Since
∂γ

∂t
= V (T, k)N =

(
k

J2
− ∇NJ

J2

)
N

(notice that we have dropped the prime), we have

∂γn

∂t
=

1

λn
V (T, λnkn)N

=

(
kn

J2
− 1

λn

∇NJ

J2

)
N.

A limit solution, if it exists, may be a family of noncompact curves. So think
of our solutions as a family of L(t) (length of γ(·, t)) periodic curves,

γ̃n : R × [an, ωn) → R
2,

such that γ̃n(0, ·) = γn(pn, ·). We also parameterize the curves by arclength
from the origin 0 ∈ R.

Now as in [4], a uniform bound on the curvature implies bounds on the
higher derivatives. Therefore, by the Ascoli-Arzela Theorem one can extract a
subsequence of γ̃n(·, t) which converges on compact sets of R × (−∞, ω∞) to a
smooth family of curves γ̃∞.

The limit solution γ̃∞ is either closed, or unbounded and complete. We will
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denote by γ∞ one period, possibly infinite, of γ̃∞, which satisfies

∂γ∞

∂t
=

k∞

J2(Q)
N = k∞N,

where Q is the collapsing point of γ(·, t), and k∞ is the curvature of γ∞(·, t).
So |k∞(p, t)| ≤ 1 for all t ≤ 0 with |k∞(0, 0)| = 1, and hence the process of
re-scaling does not allow the limit solution to be trivial, that is, a straight line.

Lemma 4.1. (see [2]) For a closed embedded curve in the plane evolving
by curvature flow we have

d

dt

∫

γ(·,t)
|k| ds = −2

∑

p:k(p,t)=0

∣∣∣∣
∂k

∂s

∣∣∣∣ .

Theorem 4.1. γ∞ is a family of convex curves.

Proof. On the limit solution,
∫
γ∞(·,t) |k∞| ds is constant. We also have

d

dt

∫

γ∞(·,t)
|k∞| ds = −2

∑

p:k∞(p,t)=0

∣∣∣∣
∂k∞

∂s

∣∣∣∣ .

Hence, ∫ ω∞

−∞

∑

p:k∞(p,t)=0

∣∣∣∣
∂k∞

∂s

∣∣∣∣ dt = 0.

Therefore, any inflection points for the limit curve must be degenerate (i.e.,
k∞ = ∂k∞

∂s = 0). So [6] implies that if a solution has degenerate inflection
points for any interval in time, then the solution must be a line. Since γ∞ is
not trivial, the family of curves must have no inflection points and therefore
must all be convex.

4.1. Limiting Shapes of Re-Scaled Solutions along Blow-Up

Sequences

4.1.1. Type-I Singularities

In this section we assume {(pn, tn)} is type-I blow-up sequence. We will prove
that the re-scaled solutions γ∞ on [0, ω∞) of the curvature flow converge to a
solution which moves simply by homothety. It is convenient to drop the ∞
symbol in this section and consider the solution as γ(p, t) on [0, ω).

Now we want to re-scale γ(·, t) near a singular point as t → ω, such that the
re-scaled curve remains uniformly bounded. So we define the re-scaled solution
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γ of the solution γ on [0, ω) by

γ(p, t ) =
γ(p, t)√
2(ω − t)

,

where

t = −1

2
ln(ω − t) ∈

[
−1

2
ln ω,+∞

)
≡ [t0,+∞).

That is,

γ : S1 × [t0,∞) → R
2

and
dt

dt
=

1

2(ω − t)
⇒ ∂

∂t
= 2(ω − t)

∂

∂t
.

Arclength is given by

s(p, t) =

∫ p

0

∣∣∣∣
∂γ

∂q
(q, t)

∣∣∣∣ dq.

Differentiating,

v(p, t) =
∂s

∂p
(p, t) =

∣∣∣∣
∂γ

∂p
(p, t)

∣∣∣∣ =
1√

2(ω − t)

∣∣∣∣
∂γ

∂p
(p, t)

∣∣∣∣ .

Thus,

∂s

∂p
=

1√
2(ω − t)

∂s

∂p
⇒ ∂

∂s
=
√

2(ω − t)
∂

∂s
.

Hence we have the following operators:

∂

∂t
= 2(ω − t)

∂

∂t
,

∂

∂s
=
√

2(ω − t)
∂

∂s
.

Therefore,

∂γ

∂t
= 2(ω − t)

∂

∂t

(
γ√

2(ω − t)

)

=
√

2(ω − t)
∂γ

∂t
+

γ√
2(ω − t)

=
√

2(ω − t)
∂2γ

∂s2
+ γ

=
∂

∂s

(
∂γ

∂s

)
+ γ.

But,

∂γ

∂s
=
√

2(ω − t)
∂

∂s

(
γ√

2(ω − t)

)
=
√

2(ω − t)
1

v

∂

∂p

(
γ√

2(ω − t)

)
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=
√

2(ω − t)
1√

2(ω − t)

1

v

∂γ

∂p
=

∂γ

∂s
,

so the re-scaled solutions satisfy the equation

∂γ

∂t
=

∂2γ

∂s2 + γ.

The curvature of the modified solution is

k(p, t) =
√

2(ω − t)k(p, t).

Since we are assuming the forming singularity is type-I, the curvature k
2
(·, t)

is uniformly bounded, and all higher derivatives of the curvature are bounded
as well.

Monotonicity and Self-Similar Solutions. Huisken [20] proved a gen-
eral monotonicity formula for hypersurfaces moving by mean curvature flow.
Then he used the monotonicity result to show that singularities satisfying the
growth rate estimate Mt ≤ C

ω−t (type-I), are asymptotically self-similar. As
in [2], we apply the Huisken monotonicity formula for the curves evolving by
curvature flow in a plane.

Let ρ(x, t) be the backward heat kernel at (
−→
0 , ω), i.e.,

ρ(x, t) =
1√

4π(ω − t)
exp

( −|x|2
4(ω − t)

)
, t < ω.

In the re-scaled setting we obtain a monotonicity formula if we define the mod-
ified kernel by

ρ(x, t) = e−
1

2
|x|2, x ∈ R

2.

Theorem 4.2. (see [20]) 1. For γ, when t ∈ [0, ω), we have the formula

d

dt

∫

γ(·,t)
ρ(x, t) ds = −

∫

γ(·,t)
ρ(x, t)

∣∣∣∣
∂2γ

∂s2
+

1

2(ω − t)
γ⊥

∣∣∣∣
2

ds. (30)

2. For γ, when t ∈ [t0,∞), we have the formula

d

dt

∫

γ(·,t)
ρ ds = −

∫

γ(·,t)
ρ

∣∣∣∣
∂2γ

∂s2 + γ⊥

∣∣∣∣
2

ds, (31)

where γ⊥ = γ − γ⊤, and γ⊤ is the tangential component of the position vector.

Proof. First we compute ∂v
∂t

. Arclength is given by

s(p, t) =

∫ p

0

∣∣∣∣
∂γ

∂q
(q, t)

∣∣∣∣ dq.
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Differentiating,

∂s

∂p
(p, t) =

∣∣∣∣
∂γ

∂p
(p, t)

∣∣∣∣ = v(p, t).

In addition,

v2 =

〈
∂γ

∂p
,

∂γ

∂p

〉
,

which implies that

2v
∂v

∂t
= 2

〈
∂2γ

∂t∂p
,

∂γ

∂p

〉
.

Thus,

v
∂v

∂t
=

〈
∂

∂p
(k N + γ),

∂γ

∂p

〉
because

∂γ

∂t
=

∂2γ

∂s2 + γ

=

〈
k
∂N

∂p
+

∂k

∂p
N +

∂γ

∂p
,

∂γ

∂p

〉

=

〈
k
(
v(−k T )

)
,

∂γ

∂p

〉
+

∣∣∣∣
∂γ

∂p

∣∣∣∣
2

= −k
2
v

∣∣∣∣
∂γ

∂p

∣∣∣∣+
∣∣∣∣
∂γ

∂p

∣∣∣∣
2

= −k
2
v2 + v2.

Hence,

∂v

∂t
= (−k

2
+ 1)v.

Now we complete the proof of (31):

d

dt

∫

γ(·,t)
ρ ds =

d

dt

∫

γ(·,t)
e−

1

2〈γ(p,t), γ(p,t)〉v dp

=

∫

γ(·,t)

[
ρ(−k

2
+ 1)v + ρ(−1)

〈
γ,

∂γ

∂t

〉
v

]
dp

=

∫

γ(·,t)

[
ρ

(
−
∣∣∣∣
∂2γ

∂s2

∣∣∣∣
2

+ 1

)
− ρ

〈
γ,

∂2γ

∂s2 + γ

〉]
ds

=

∫

γ(·,t)

[
−ρ

(∣∣∣∣
∂2γ

∂s2 + γ

∣∣∣∣
2

− 2

〈
γ,

∂2γ

∂s2

〉
− |γ|2

)
+ ρ − ρ

(〈
γ,

∂2γ

∂s2

〉
+ |γ|2

)]
ds

=

∫

γ(·,t)

[
−ρ

∣∣∣∣
∂2γ

∂s2 + γ

∣∣∣∣
2

+ ρ + ρ

〈
γ,

∂2γ

∂s2

〉]
ds
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=

∫

γ(·,t)

[
−ρ

∣∣∣∣
∂2γ

∂s2 + γ

∣∣∣∣
2

+ ρ
∂

∂s

〈
γ,

∂γ

∂s

〉]
ds

=

∫

γ(·,t)
−ρ

∣∣∣∣
∂2γ

∂s2 + γ

∣∣∣∣
2

ds −
∫

γ(·,t)

∂ρ

∂s

〈
γ,

∂γ

∂s

〉
ds

=

∫

γ(·,t)
−ρ

(〈
∂2γ

∂s2

∂2γ

∂s2

〉
+ 2

〈
∂2γ

∂s2 , γ

〉
+ 〈γ, γ〉

)
ds −

∫

γ(·,t)
ρ(−1)

〈
γ,

∂γ

∂s

〉2

ds

=

∫

γ(·,t)

[
−ρ

(〈
∂2γ

∂s2

∂2γ

∂s2

〉
+ 2

〈
∂2γ

∂s2 , γ⊥

〉
+
〈
γ⊥, γ⊥

〉
+
〈
γ⊤, γ⊤

〉)

+ρ

〈
γ,

∂γ

∂s

〉2
]

ds

=

∫

γ(·,t)

[
−ρ

∣∣∣∣
∂2γ

∂s2 + γ⊥

∣∣∣∣
2

− ρ

〈
γ,

∂γ

∂s

〉2

+ ρ

〈
γ,

∂γ

∂s

〉2
]

ds

=

∫

γ(·,t)
−ρ

∣∣∣∣
∂2γ

∂s2 + γ⊥

∣∣∣∣
2

ds. �

We will use Theorem 4.2(2) to study the behavior of γ(·, t) as t → ∞. First

notice that γ(·, t) cannot disappear at infinity. Let
−→
0 ∈ R

2 be the blow-up
point. Then we have

|γ(p, t)| ≤
∫ ω

t
|k|dτ ≤ C

√
ω − t,

and so,

|γ(p, t)| ≤ C.

Now, integrating the monotonicity formula in time gives the following lemma.

Lemma 4.2. ∫ ∞

t0

∫

γ(·,t)
ρ

∣∣∣∣
∂2γ

∂s2 + γ⊥

∣∣∣∣
2

dsdt < ∞.

Corollary 4.1. ∀ǫ > 0, ∃T < ∞ such that
∫ ∞

T

∫

γ(·,t)
ρ

∣∣∣∣
∂2γ

∂s2 + γ⊥

∣∣∣∣
2

dsdt < ǫ.

From the corollary above we get∣∣∣∣
∂2γ

∂s2 + γ⊥

∣∣∣∣ = 0.
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That is,

k =< γ,−N > .

Hence the limit is an asymptotically self-similar homothetically shrinking
solution. These are classified by Abresch and Langer [1], and the only embedded
one is the circle. Hence if the forming singularity is type-I, then the curve
converges to a round point in the C∞ sense.

4.1.2. Type-II Singularities

We will now assume a type-II singularity is forming at time ω. Our model for
this type of behavior is the formation of a cusp.

We will use the re-scaling from previous section. By [2], the limit solution
γ∞ exists for all time and the curvature k satisfies 0 < k ≤ 1, and k = 1 at the
origin at t = 0.

Remark. The solution does not cross itself or else a loop would pinch and
the curvature would not be bounded for all time in the future. The curve must
turn at least π or else the curve would not be ancient (that is, it could not
exist since t = −∞). Thus the curve must turn exactly π and is embedded. So∫

k ds = π, imply that the curvature goes to zero at the end of the curve. It is
not hard to show that all of the derivatives of k must also decay to zero near
the ends.

Therefore, by [17], the limit is a translating soliton. It is then necessarily
the graph y = f(x, t) of a function where

∂y

∂t
=

∂

∂x
tan−1

(
∂y

∂x

)
= 1,

which is solved to give the grim reaper

y = t + ln(sec x).

In the grim reaper, a horizontal line segment has length L < π, while if it
is high enough, it encloses an arbitrarily large area A1, while there is still an
arbitrarily large area A2 on the other side if we go out far enough. If the grim
reaper is to be the limit, then the original curve comes arbitrarily close to it
after translating, rotating, and dilating; all of which do not affect the constant
G. But then we must have G → 0, which is impossible.

Thus we have proved the following main theorem.

Main Theorem. Let γ be a closed embedded curve evolving by curvature
flow on a smooth compact Riemannian surface. If a singularity develops in finite
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time, then the curve converges to a round point in the C∞ sense.
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