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Abstract

In this paper, we extend Grayson’s theorem [Gra89] on curvature flow of embedded
curves in a compact Riemannian surface. The main result is a new proof of a theorem of
X. Zhu that, if a singularity develops in finite time, then the curve converges to a round
point in a C∞ sense. The proof will extend Huisken’s distance comparison technique
for curvature flow of embedded curves in the plane [Hui98].
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1 Introduction

Let γ be a closed embedded curve evolving under the curvature flow in a compact surface
M . If a singularity develops in finite time, then the curve shrinks to a point [Gra89].
So when t is close enough to the blow-up time ω, we may assume that the curve is
contained in a small neighborhood of the collapsing point on the surface. Using a local
conformal diffeomorphism φ : U(⊆ M) → U ′ ⊆ R2 between compact neighborhoods,
we get a corresponding flow in the plane which satisfies the following equation:

∂γ′

∂t
=

(
k′

J2
− ∇NJ

J2

)
N ′ (1)

where γ′(p, t) = φ(γ(p, t)), k′ is the curvature of γ′ in U ′, N ′ is the unit normal vector,
and the conformal factor J is smooth, bounded and bounded away from 0.
We define the extrinsic and intrinsic distance functions

d, l : Γ× Γ× [0, T ] → R

by

d(p, q, t) = |γ(p, t)− γ(q, t)|R2 and l(p, q, t) =
∫ q

p

dst = st(q)− st(p)

where Γ is either S1 or an interval.
We also define the smooth function

ψ : S1 × S1 × [0, T ] → R
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by

ψ : (p, q, t) :=
L(t)
π

sin
(

l(p, q, t)π
L(t)

)
.

We use the distance comparison d
l and d

ψ to prove the following theorem.

Main Theorem. Let γ be a closed embedded curve evolving by curvature flow on a
smooth compact Riemannian surface. If a singularity develops in finite time, then the
curve converges to a round point in the C∞ sense.

This extends Huisken’s distance comparison technique for curvature flow of embed-
ded curves in the plane [Hui98]. Hamilton used isoperimetic estimates techniques to
prove that when a closed embedded curve in the plane evolves by curvature flow the
curve converges to a round point [Ham95b], and Zhu used Hamilton’s isoperimetric
estimates techniques for asymptotic behavior of anisotropic curves flows [Zhu98].

2 Evolving Closed Curves in a Surface

Grayson [Gra89] and Gage [Gag90], generalized the study of curvature flow of closed
curves in the plane to that in surfaces. The curvature flow is a gradient flow for the
length functional on the space of immersed curves in the surface M2 with Riemannian
metric g.

Let (M, g) be a smooth compact oriented 2-dimensional Riemannian manifold with
bounded scalar curvature. Let γ0 : S1 → M be a smooth embedded curve in M and let
γ : S1 × [0, ω) → M be a one-parameter smooth family of embedded curves satisfying
γ(·, 0) = γ0. If γ evolves by curvature flow, then

∂γ

∂t
(p, t) = k(p, t)N(p, t), (p, t) ∈ S1 × [0, ω), (2)

where k is the geodesic curvature of γ and N is its unit normal.
Arclength is given by

s(p, t) =
∫ p

0

∣∣∣∣
∂γ

∂q
(q, t)

∣∣∣∣ dq.

Differentiating,
∂s

∂p
(p, t) =

∣∣∣∣
∂γ

∂p
(p, t)

∣∣∣∣ = v(p, t)

⇒ ∂

∂s
=

1
v

∂

∂p
, and ds = vdp.

From the Frenet formulas, we have

∇sT = kN and ∇sN = −kT.

Now we recall some standard results for the evolution [Gra89].

Lemma 2.1. For the curvature flow:

1. The speed v evolves according to ∂v
∂t = −k2v.

2. [ ∂
∂t ,

∂
∂s ] = k2 ∂

∂s .
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3. ∇tT = ∂k
∂s N and ∇tN = −∂k

∂s T.

4. The arclength L of the curve evolves according to dL
dt = − ∫

γt
k2ds.

5. ∇t∇s = ∇s∇t + k2∇s − kR(T,N).

6. The curvature k of the curve evolves according to ∂k
∂t = ∂2k

∂s2 + k3 + K k, where
K = 〈R(N,T )T, N)〉 is the Gaussian curvature of M restricted to γ(·, t).

Theorem 2.1. [Gra89] A closed embedded curve moving on a smooth compact Rie-
mannian surface by curvature flow must either collapse to a point in finite time or else
converge to a simple closed geodesic as t →∞.

Grayson proof was rather delicate, requiring separate analyses of what may happen
under various geometric configurations, and special arguments for each cases. First he
showed that the solution remains smooth and embedded as long as its curvature remains
bounded. He then proved that if a singularity develops in finite time, then the curvature
remains bounded until the entire curve shrinks to a point. Finally, he proved that if the
length of the curve does not converge to zero, then its curvature must converge to zero
in the C∞ norm and that the curve approaches a geodesic in the C∞ sense.

In this paper, the proof has been simplified using distance comparison techniques
to rule out certain kinds of singularity and we extend Grayson’s theorem [Gra89] by
showing that if the curve shrinks to a point, then it shrinks to a round point in a C∞

sense. Since the curve does shrink to a point, we can transform the curvature flow in
surfaces to a corresponding flow in the plane (more general than the curvature flow in
the plane per se). In a series of papers, Angenent [Ang90, Ang91b, Ang91a] developed
a more general theory of parabolic equations for curves on surfaces. We now summarize
some of the important results of Angenent that we will need.

2.1 Parabolic Equations for Curves on Surfaces

Consider a closed curve evolving by an arbitrary uniformly parabolic equation,

∂γ

∂t
= V (T, k)N, (3)

on a smooth oriented 2-dimensional Riemannian manifold M , and denote its unit tan-
gent bundle by S1(M) = {ξ ∈ T (M) : g(ξ, ξ) = 1}. Then the normal velocity is

v⊥(p, t) = V (T, k)(p, t) ≡ V (Tγ(p,t), kγ(p,t)),

for some function V : S1(M)× R→ R which satisfies:

(V1) V (T, k) is C2,1,

(V2) λ−1 ≤ ∂V

∂k
≤ λ,

(V3) |V (T, 0)| ≤ µ for all T ∈ S1(M),

(V4) |∇hV |+ |k∇vV | ≤ ν(1 + k2),
(V5) V (−T,−k) = −V (T, k),

3



for positive constants λ, µ, and ν.
The tangent bundle to S1(M) splits into the Whitney sum of the bundle of horizontal

vectors and bundle of vertical vectors. ∇vV and ∇hV denote the vertical and horizontal
components of ∇(V ) (holding the second argument of V fixed).

These assumptions on V are necessary to make the set of allowable initial curves
as large as possible, and necessary for the short-time existence of the solutions. The
way in which maximal classical solutions can become singular (limit curves) is based
on these assumptions on V and the initial curves. Our application of this theory will
be for the flow given by V (T, k) =

(
k
J2 − ∇N J

J2

)
, where J(x, y) is a smooth bounded

function that is also bounded away from 0. We will see that the curvature flow in a
surface corresponds to the flow with this normal velocity in a plane.

Lemma 2.2. For the flow (3):

1. The speed v evolves according to ∂v
∂t = −kV v.

2. [ ∂
∂t ,

∂
∂s ] = kV ∂

∂s .

3. ∇tT = ∂V
∂s N , and ∇tN = −∂V

∂s T.

4. The arclength L of the curve evolves according to dL
dt = − ∫

γt
kV ds.

5. ∇t∇s = ∇s∇t + kV∇s − V R(T,N).

6. The curvature k of the curve evolves according to ∂k
∂t = ∂2V

∂s2 + k2V + K V , where
K = 〈R(N,T )T, N)〉 is the Gaussian curvature of M restricted to γ(·, t).

7. The enclosed area A of the curve evolves according to dA
dt = − ∫

γt
V ds.

We now state the main result from [Ang90] and [Ang91b].

Theorem 2.2. Let V satisfy (V1) − (V5), and let γ : S1 × [0, ω) → M be a maximal
classical solution of (3) which becomes singular in finite time. Then the limit curve γ∗

of the γ(·, t) either has fewer self-intersections than any of the γ(·, t)’s, or else the total
absolute curvature of the limit curve drops by at least π.

Oaks [Oak94] improved Theorem 2.2 by showing that the latter case never occurs.
So if the initial curve is embedded, and the singularity develops in finite time, then the
curve shrinks to a point. So when t is close enough to the blow-up time ω, we may
assume that the curve is contained in a small neighborhood of the collapsing point on
the surface.
Now from the following theorem, it is enough to work locally in R2.

Theorem 2.3. [Oak94] Let φ : U(⊆ M) → U ′ ⊆ R2 be a conformal diffeomorphism
between compact neighborhoods. If V : S1(M)×R→ R satisfies (V1)− (V5), then there
is a function V ′ : S1(U ′)×R→ R which satisfies (V1)− (V5) such that whenever γ(p, t)
is a curve in U evolving by (3), γ′(p, t) = φ(γ(p, t)) satisfies ∂γ′

∂t = V ′(T ′, k′)N ′, where
T ′ and N ′ are the unit tangent and normal vectors, and k′ is the curvature of γ′ in U ′.

Moreover, V (T, k) = J(p)V ′(T ′, k′) and ds = J(p)ds′, where J(p) > 0 is smooth,
bounded, and bounded away from 0.

The metric in U can be written as

g = J2(x, y)(dx2 + dy2),
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where the coordinates in U are obtained by φ−1. Because U ′ is compact, J(x, y) is both
bounded and bounded away from 0.

Let ∂
∂x and ∂

∂y be the coordinate vector fields on U , and let X = 1
J

∂
∂x , and Y = 1

J
∂
∂y .

Then X and Y are unit vectors. Since φ is conformal, φ∗(N) = 1
J N ′. So γ′ evolves by

the equation:
∂γ′

∂t
= (

1
J

V )N ′.

Therefore, V ′ = 1
J V .

We next show that k′ = kJ +∇NJ. First, we need the following lemma.

Lemma 2.3.

∇XX = −∇Y J

J
Y ∇XY =

∇Y J

J
X

∇Y X =
∇XJ

J
Y ∇Y Y = −∇XJ

J
X.

Proof

Since 0 = [ ∂
∂x , ∂

∂y ] = [JX, JY ], we have ∇JXJY = ∇JY JX. Therefore, J∇XY +
(∇XJ)Y = J∇Y X + (∇Y J)X. Since ∇XY⊥Y and ∇Y X⊥X, we get ∇XY = ∇Y J

J X

and ∇Y X = ∇XJ
J Y . The other two formulas follow from differentiating 〈X,Y 〉 = 0

with respect to X and Y .

Let θ be the angle T makes with X in U . Then

T = cos θX + sin θY, N = − sin θX + cos θY.

Thus,

∇T X = − cos θ
∇Y J

J
Y + sin θ

∇XJ

J
Y

=
(
−∇Y J

J
cos θ +

∇XJ

J
sin θ

)
Y,

and

∇T Y =
(∇Y J

J
cos θ − ∇XJ

J
sin θ

)
X.

We have ∇T θ = 1
J k′. Then

kN = γ′′ = ∇T T = ∇T (cos θ X + sin θ Y )

= − sin θ(
k′

J
)X + cos θ

(
−∇Y J

J
cos θ +

∇XJ

J
sin θ

)
Y + cos θ(

k′

J
)Y

+ sin θ

(∇Y J

J
cos θ − ∇XJ

J
sin θ

)
X

=
(

k′

J
+
∇XJ

J
sin θ − ∇Y J

J
cos θ

)
N,
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and thus,

k =
(

k′

J
+
∇XJ

J
sin θ − ∇Y J

J
cos θ

)

=
k′

J
− 1

J
∇NJ.

That is,
k′ = kJ +∇NJ. (4)

J is bounded away from 0 and both J and ∇NJ are bounded. So limt→ω |k(p, t)| is
unbounded if and only if limt→ω |k′(p, t)| is also unbounded.

When V = k, i.e., for the curvature flow in a surface M , we have V ′ = 1
J V = k

J = k′
J2 − ∇N J

J2 .
So the curvature flow in a surface corresponds to the following flow in R2:

∂γ′

∂t
=

(
k′

J2
− ∇NJ

J2

)
N ′. (1)

3 Distance Comparison Principles for Evolving Curves

Huisken [Hui98] showed that the curvature flow of an embedded curve in a plane con-
verges smoothly to a round point using his distance comparison principles to eliminate
type-II singularities for the curvature flow and also measure the deviation of the evolving
curve from a round circle.

From [Gra89] when a closed embedded curve evolves under the curvature flow in a
surface, the solution remains smooth and embedded as long as its curvature remains
bounded. If a singularity develops in finite time then the curve shrinks to a point. So
when t is close enough to the blow-up time ω, we may assume that the curve is contained
in a small neighborhood of the collapsing point on the surface. Now by theorem 2.3,
using a local conformal diffeomorphism φ : U(⊆ M) → U ′ ⊆ R2 between compact
neighborhoods, we get a corresponding flow in the plane which satisfies the following
equation:

∂γ′

∂t
=

(
k′

J2
− ∇NJ

J2

)
N ′, (1)

where γ′(p, t) = φ(γ(p, t)), k′ is the curvature of γ′ in U ′, and N ′ is the unit normal
vector.

In this section, we will apply Huisken’s techniques to the flow (1) in R2 which
corresponds to the curvature flow in a surface.

3.1 Comparison between Extrinsic Distance and Intrinsic Dis-
tance

We define the extrinsic and intrinsic distance functions

d, l : Γ× Γ× [0, T ] → R

by
d(p, q, t) = |γ(p, t)− γ(q, t)|R2 ,
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and
l(p, q, t) =

∫ q

p

dst = st(q)− st(p),

where Γ is either S1 or an interval. Notice that 0 < d
l ≤ 1, with equality on the diagonal

of Γ × Γ or if γ is a straight line. The ratio d
l can be considered as a measure for the

straightness of an embedded curve.
We now prove that under the parabolic flow (1), the ratio d

l improves at a local
minimum. This proves that embedded curves stay embedded for this parabolic flow.
Lemma A. Let γ : I × [0, T ] → R2 be a smooth embedded solution of the flow (1),
where I is an interval such that l is smoothly defined on I×I. Suppose d

l attains a local
minimum at (p0, q0) in the interior of I × I at time t0 ∈ [0, T ]. Then

d

dt

(
d

l

)
(p0, q0, t0) ≥ 0,

with equality if and only if γ is a straight line.
Proof

We may assume, without loss of generality, that p0 6= q0, and s(q0, t0) > s(p0, t0).
Since d

l attains a local minimum at (p0, q0), we have

δ(ξ)
(

d

l

)
(p0, q0, t0) = 0, and δ2(ξ)

(
d

l

)
(p0, q0, t0) ≥ 0, (5)

where δ(ξ) and δ2(ξ) denote the first and second variation with regard to the variation
vector ξ = v1 ⊕ v2 ∈ Tp0γt0 ⊕ Tq0γt0 .

d

l

e1

e2

p0

q0
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We have

δ(ξ)
(

d

l

)
(p0, q0, t0) :=

d

dτ

∣∣∣∣
τ=0

(
d

l

)
(αp(τ), αq(τ), t0),

where
αp(0) = γ(p0, t0) and α′p(0) = v1 ∈ Tp0γt0 ,

αq(0) = γ(q0, t0) and α′q(0) = v2 ∈ Tq0γt0 .

Also,

δ2(ξ)
(

d

l

)
(p0, q0, t0) :=

d2

dτ2

∣∣∣∣
τ=0

(
d

l

)
(αp(τ), αq(τ), t0).

Let

e1 =
∂γ

∂s
(p0, t0), e2 =

∂γ

∂s
(q0, t0), and ω =

γ(q0, t0)− γ(p0, t0)
d(p0, q0, t0)

.

Then using (5), we will show that 〈ω, e1〉 = 〈ω, e2〉 = d
l .

First, calculate δ(e1 ⊕ e2)d(p0, q0, t0):

d

dτ
d(αp(τ), αq(τ), t0) =

d

dτ

√
〈αp(τ)− αq(τ), αp(τ)− αq(τ)〉

=

〈
α′p(τ)− α′q(τ), αp(τ)− αq(τ)

〉
√〈αp(τ)− αq(τ), αp(τ)− αq(τ)〉 .

Therefore,

δ(e1 ⊕ e2)d(p0, q0, t0) :=
d

dτ

∣∣∣∣
τ=0

d(αp(τ), αq(τ), t0)

=

〈
α′p(0)− α′q(0), αp(0)− αq(0)

〉

d(p0, q0, t0)
= 〈e1 − e2,−ω〉 . (6)

Assume ξ = e1 ⊕ 0:
Then using δ(e1 ⊕ 0)d(p0, q0, t0) = 〈e1,−ω〉 and
δ(e1 ⊕ 0)l(p0, q0, t0) = d

dτ |τ=0(l(p0, q0, t0)− τ) = −1, we get

0 = δ(e1 ⊕ 0)
(

d

l

)
(p0, q0, t0)

=
l(po, q0, t0)δ(e1 ⊕ 0)d(p0, q0, t0)− d(p0, q0, t0)δ(e1 ⊕ 0)l(p0, q0, t0)

l2

=
l 〈e1,−ω〉 − d(−1)

l2
.

Hence,

〈ω, e1〉 =
d

l
. (7)

Assume ξ = 0⊕ e2:
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Then using δ(0⊕ e2)d(p0, q0, t0) = 〈−e2,−ω〉 and δ(0⊕ e2)l(p0, q0, t0) = 1, we get

0 = δ(0⊕ e2)
(

d

l

)
(p0, q0, t0)

=
l 〈e2, ω〉 − d(1)

l2
,

and hence,

〈ω, e2〉 =
d

l
. (8)

Then either e1 = e2 or e1 6= e2. Notice that in the later case e1 + e2 is parallel to ω.
Case 1: e1 = e2. In this case, we choose ξ = e1 ⊕ e2.
Since d

dτ l(αp(τ), αq(τ), t0) = 0, we have δ(ξ)(l) = 0. Hence,

0 ≤ δ2(ξ)
(

d

l

)
(p0, q0, t0) =

d2

dτ2

∣∣∣∣
τ=0

(
d

l

)
(αp(τ), αq(τ), t0)

=
d

dτ

∣∣∣∣
τ=0

l d
dτ d− d d

dτ l

l2
=

d

dτ

∣∣∣∣
τ=0

1
l

d

dτ
d

=
d

dτ

∣∣∣∣
τ=0

[
1
ld

〈
α′p(τ)− α′q(τ), αp(τ)− αq(τ)

〉]

=
[

ld

(ld)2
(〈

α′p(τ)− α′q(τ), α′p(τ)− α′q(τ)
〉

+
〈
α′′p(τ)− α′′q (τ), αp(τ)− αq(τ)

〉)

+
1

(ld)2
〈
α′p(τ)− α′q(τ), αp(τ)− αq(τ)

〉 d

dτ
(ld)

]

τ=0

=
1
l

〈−→
k (p0, t0)−−→k (q0, t0), −ω

〉
Since α′p(0)− α′q(0) = 0.

Thus, 〈
ω,
−→
k (q0, t0)−−→k (p0, t0)

〉
≥ 0. (9)

Case 2: e1 6= e2. In this case, we choose ξ = e1 ª e2.
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Since d
dτ l(αp(τ), αq(τ), t0) = d

dτ (l(p0, q0, t0)− 2τ) = −2, we have δ(ξ)(l) = −2. Thus,

0 ≤ δ2(ξ)
(

d

l

)
(p0, q0, t0) =

d2

dτ2

∣∣∣∣
τ=0

(
d

l

)
(αp(τ), αq(τ), t0)

=
d

dτ

∣∣∣∣
τ=0

l d
dτ d− d d

dτ l

l2

=
d

dτ

∣∣∣∣
τ=0

[
1
ld

〈
α′p(τ)− α′q(τ), αp(τ)− αq(τ)

〉
+

2d

l2

]

=
[

ld

(ld)2
(〈

α′p(τ)− α′q(τ), α′p(τ)− α′q(τ)
〉

+
〈
α′′p(τ)− α′′q (τ), αp(τ)− αq(τ)

〉)

− 1
(ld)2

〈
α′p(τ)− α′q(τ), αp(τ)− αq(τ)

〉 (
l

d

dτ
d + d

d

dτ
l

)
+

(
2l2 d

dτ d− 2d.2l. d
dτ l

l4

)]

τ=0

=
1
l

〈−→
k (p0, t0)−−→k (q0, t0), −ω

〉
+

1
ld
|e1 + e2|2 +

1
l2d

〈e1 + e2, ω〉

(l 〈e1 + e2,−ω〉 − 2d) +
2
l2
〈e1 + e2, −ω〉 − 4d

l3
(−2)

=
1
l

〈
ω,
−→
k (q0, t0)−−→k (p0, t0)

〉
+

1
ld
|e1 + e2|2 − 1

ld
〈e1 + e2, ω〉2

− 4
l2
〈e1 + e2, ω〉+

8d

l3

=
1
l

〈
ω,
−→
k (q0, t0)−−→k (p0, t0)

〉
.

The last line follows from 〈ω, e1 + e2〉 = 2d
l , which implies that

− 4
l2 〈e1 + e2, ω〉 = − 8d

l3 . Also ω ‖ e1 + e2 gives 〈e1 + e2, ω〉2 = |e1 + e2|2, and so
1
ld 〈e1 + e2, ω〉2 = 1

ld |e1 + e2|2.
Hence, 〈

ω,
−→
k (q0, t0)−−→k (p0, t0)

〉
≥ 0. (10)

We now use the evolution equation (1) to compute d
dt

(
d
l

)
(p0, q0, t0).

d

dt

(
d

l

)
(p0, q0, t0) =

l d
dtd− d d

dt l

l2
=

1
l

d

dt
d− d

l2
d

dt
l.

we have

d

dt
d(po, q0, t0) =

d

dt

√〈
γ(p0, t0)− γ(q0, t0), γ(p0, t0)− γ(q0, t0)

〉
〈

∂γ
∂t (p0, t0)− ∂γ

∂t (q0, t0), γ(p0, t0)− γ(q0, t0)
〉

d(p0, q0, t0)

=
〈

∂γ

∂t
(p0, t0)− ∂γ

∂t
(q0, t0),−ω

〉

=
〈(

k

J2
− ∇NJ

J2

)
N(p0, t0)−

(
k

J2
− ∇NJ

J2

)
N(q0, t0),−ω

〉
,
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and
d

dt
l =

d

dt

∫ q

p

dst = −
∫ q

p

k

(
k

J2
− ∇NJ

J2

)
dst.

Since 〈ω, e1〉 = 〈ω, e2〉 = d
l , let α = ∠(ω, e1) = ∠(ω, e2) with 0 < α < π/2. Then

〈ω, N(q0, t0)〉 = − sin α and 〈ω, N(p0, t0)〉 = sin α. Since
〈
ω,
−→
k (q0, t0)−−→k (p0, t0)

〉
≥

0, we have − sin α(k(p0, t0) + k(q0, t0)) ≥ 0. Therefore,

d

dt
d(po, q0, t0) = −

(
k

J2
(p0, t0) +

k

J2
(q0, t0)

)
sin α+

(∇NJ

J2
(p0, t0) +

∇NJ

J2
(q0, t0)

)
sin α.

Hence,

d

dt

(
d

l

)
(p0, q0, t0)

=
1
l

d

dt
d− d

l2
d

dt
l

=
1
l

(
− sin α

(
k

J2
(p0, t0) +

k

J2
(q0, t0)

)
+

(∇NJ

J2
(p0, t0) +

∇NJ

J2
(q0, t0)

)
sin α

)

+
d

l2

∫ q

p

k

(
k

J2
− ∇NJ

J2

)
dst

≥ 1
l

[− sin α(k(p0, t0) + k(q0, t0))C1 − 2C2 sin α] +
d

l2
C1

∫ q

p

k2 ds− d

l2
C2

∫ q

p

k ds

=
1
l

{(
− sin α(k(p0, t0) + k(q0, t0)) +

d

l

∫ q

p

k2 ds

)
C1 −

(
2 sin α +

d

l

∫ q

p

k ds

)
C2

}
,

where

C1 = min
U

(
1
J2

)
, C2 = max

U

( |∇NJ |
J2

)
.

If t0 is close enough to the blow-up time ω, we can make C1 approach 1 and C2

approach 0. By the Hölder inequality,

l

∫ q

p

k2 ds ≥
(∫ q

p

|k| ds

)2

≥ 4α2 > 0.

The last inequality is true since cos α = 〈ω, e1〉 = 〈ω, e2〉 = d
l ⇒ cos α < 1 ⇒ α > 0. So

we have − sin α(k(p0, t0) + k(q0, t0)) ≥ 0, 2 sin α + d
l

∫ q

p
k ds is bounded, and d

l

∫ q

p
k2 ds

is bounded away from 0, hence d
dt

(
d
l

)
(p0, q0, t0) > 0.

3.2 Deviation of the Evolving Curve from a Circle

Now let γ : S1 × [0, T ] → R2 be a closed smooth embedded curve moving by the flow
(1). Let L(t) be the total length of the curve. The intrinsic distance function l is now
only smoothly defined for 0 ≤ l < L

2 . We define the smooth function

ψ : S1 × S1 × [0, T ] → R

11



by

ψ : (p, q, t) :=
L(t)
π

sin
(

l(p, q, t)π
L(t)

)
.

So the isoperimetric ratio d
ψ = d

l

(
lπ
L

sin( lπ
L )

)
→ 1 on the diagonal of S1 × S1 and d

ψ ≡ 1

on any circle. We now prove that the ratio d
ψ improves at a local minimum under the

parabolic flow (1). Therefore, it plays the role of an improving isoperimetric ratio that
measures the deviation of the evolving curve from a circle.

d

l

e1

e2

p0

q0

Lemma B. Let γ : S1 × [0, T ] → R2 be a smooth embedded solution of the flow (1).
Suppose d

ψ attains a local minimum ( d
ψ )(p0, q0, t0) < 1 at some point (p0, q0) ∈ S1 × S1

at time t0 ∈ [0, T ]. Then
d

dt

(
d

ψ

)
(p0, q0, t0) ≥ 0,

with equality if and only if d
ψ ≡ 1 or γ(S1, ·) is a circle.

Proof

We may assume, without loss of generality, that 0 = s(p0, t0) < s(q0, t0) < L(t0)
2 ,

such that l(p0, q0, t0) = s(q0, t0)−s(p0, t0). Since d
ψ attains a local minimum at (p0, q0),

we have

δ(ξ)
(

d

ψ

)
(p0, q0, t0) = 0, and δ2(ξ)

(
d

ψ

)
(p0, q0, t0) ≥ 0, (11)

where δ(ξ) and δ2(ξ) denote the first and second variation with regard to the variation
vector ξ = v1 ⊕ v2 ∈ Tp0γt0 ⊕ Tq0γt0 . Let

e1 =
∂γ

∂s
(p0, t0), e2 =

∂γ

∂s
(q0, t0), and ω =

γ(q0, t0)− γ(p0, t0)
d(p0, q0, t0)

.

12



Then using (11), we first show that 〈ω, e1〉 = 〈ω, e2〉 = d
ψ cos( lπ

L ).
Now from (6), we have

δ(e1 ⊕ e2)d(p0, q0, t0) = 〈e1 − e2,−ω〉 ,
and

d

dτ
ψ(αp(τ), αq(τ), t0) =

L

π
cos

(
lπ

L

)
π

L

d

dτ
(l)

= cos
(

lπ

L

)
d

dτ
(l).

Assume ξ = e1 ⊕ 0: Then

0 = δ(e1 ⊕ 0)
(

d

ψ

)
(p0, q0, t0)

=
ψ(po, q0, t0)δ(e1 ⊕ 0)d(p0, q0, t0)− d(p0, q0, t0)δ(e1 ⊕ 0)ψ(p0, q0, t0)

l2

=
ψ 〈e1,−ω〉 − d cos( lπ

L )(−1)
ψ2

,

and hence,

〈ω, e1〉 =
d

ψ
cos

(
lπ

L

)
. (12)

Assume ξ = 0⊕ e2:

0 = δ(0⊕ e2)
(

d

ψ

)
(p0, q0, t0)

=
ψ 〈e2, ω〉 − d cos( lπ

L )(1)
l2

,

and hence,

〈ω, e2〉 =
d

ψ
cos

(
lπ

L

)
. (13)

Then either e1 = e2 or e1 6= e2. Notice that, in the later case, e1 + e2 is parallel to ω.
Case 1: e1 = e2. In this case, we choose ξ = e1 ⊕ e2.
Since d

dτ ψ(αp(τ), αq(τ), t0) = 0 we have δ(ξ)(ψ) = 0. Then

0 ≤ δ2(ξ)
(

d

ψ

)
(p0, q0, t0) =

d2

dτ2

∣∣∣∣
τ=0

(
d

ψ

)
(αp(τ), αq(τ), t0)

=
d

dτ

∣∣∣∣
τ=0

ψ d
dτ d− d d

dτ ψ

ψ2
=

d

dτ

∣∣∣∣
τ=0

1
ψ

d

dτ
d

=
d

dτ

∣∣∣∣
τ=0

[
1

ψd

〈
α′p(τ)− α′q(τ), αp(τ)− αq(τ)

〉]

=
[

ψd

(ψd)2
(〈

α′p(τ)− α′q(τ), α′p(τ)− α′q(τ)
〉

+
〈
α′′p(τ)− α′′q (τ), αp(τ)− αq(τ)

〉)

+
1

(ψd)2
〈
α′p(τ)− α′q(τ), αp(τ)− αq(τ)

〉 d

dτ
(ψd)

]

τ=0

=
1
ψ

〈−→
k (p0, t0)−−→k (q0, t0), −ω

〉
Since α′p(0)− α′q(0) = 0.

13



Thus, 〈
ω,
−→
k (q0, t0)−−→k (p0, t0)

〉
≥ 0. (14)

Case 2: e1 6= e2. In this case, we choose ξ = e1 ª e2.
Since d

dτ ψ(αp(τ), αq(τ), t0) = cos( lπ
L ) d

dτ (l(p0, q0, t0)−2τ) = cos( lπ
L )(−2), we have δ(ξ)(ψ) =

−2 cos( lπ
L ). Then,

0 ≤ δ2(ξ)
(

d

ψ

)
(p0, q0, t0) =

d2

dτ2

∣∣∣∣
τ=0

(
d

ψ

)
(αp(τ), αq(τ), t0)

=
d

dτ

∣∣∣∣
τ=0

ψ d
dτ d− d d

dτ ψ

ψ2

=
d

dτ

∣∣∣∣
τ=0

[
1

ψd

〈
α′p(τ)− α′q(τ), αp(τ)− αq(τ)

〉
+

2d

ψ2
cos

(
lπ

L

)]

=
[

ψd

(ψd)2
(〈

α′p(τ)− α′q(τ), α′p(τ)− α′q(τ)
〉

+
〈
α′′p(τ)− α′′q (τ), αp(τ)− αq(τ)

〉)

− 1
(ψd)2

〈
α′p(τ)− α′q(τ), αp(τ)− αq(τ)

〉(
ψ

d

dτ
d + d

d

dτ
ψ

)

+
2d

ψ2

(
− sin

(
lπ

L

) (π

L

)
(−2)

)
+ cos

(
lπ

L

) (
2ψ2 d

dτ d− 2d.2ψ. d
dτ ψ

ψ4

)]

τ=0

=
1
ψ

〈−→
k (p0, t0)−−→k (q0, t0), −ω

〉
+

1
ψd
|e1 + e2|2 +

1
ψ2d

〈e1 + e2, ω〉
(

ψ 〈e1 + e2,−ω〉 − 2d cos
(

lπ

L

))
+

4dπ

ψ2L
sin

(
lπ

L

)
+

2
ψ2

cos
(

lπ

L

)
〈e1 + e2, −ω〉

− 4d

ψ3
(−2) cos2

(
lπ

L

)

=
1
ψ

〈
ω,
−→
k (q0, t0)−−→k (p0, t0)

〉
+

1
ψd
|e1 + e2|2 − 1

ψd
〈e1 + e2, ω〉2

− 4
ψ2

cos
(

lπ

L

)
〈e1 + e2, ω〉+

4dπ2

ψ2L2

(
L

π
sin

(
lπ

L

))
+

8d

ψ3
cos2

(
lπ

L

)

=
1
ψ

〈
ω,
−→
k (q0, t0)−−→k (p0, t0)

〉
+

4π2d

L2ψ
.

The last line follows from 〈ω, e1 + e2〉 = 2d
ψ cos

(
lπ
L

)
, which implies that

− 4
ψ2 cos

(
lπ
L

) 〈e1 + e2, ω〉 = − 8d
ψ3 cos2

(
lπ
L

)
. Then ω ‖ e1 + e2 gives

〈e1 + e2, ω〉2 = |e1 + e2|2, and so 1
ψd 〈e1 + e2, ω〉2 = 1

ψd |e1 + e2|2.
Hence,

1
ψ

〈
ω,
−→
k (q0, t0)−−→k (p0, t0)

〉
+

4π2d

L2ψ
≥ 0. (15)

We now use the evolution equation (1) to compute d
dt

(
d
ψ

)
(p0, q0, t0).

d

dt

(
d

ψ

)
(p0, q0, t0) =

ψ d
dtd− d d

dtψ

ψ2
=

1
ψ

d

dt
d− d

ψ2

d

dt
ψ.
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We have

d

dt
d(po, q0, t0) =

d

dt

√〈
γ(p0, t0)− γ(q0, t0), γ(p0, t0)− γ(q0, t0)

〉
〈

∂γ
∂t (p0, t0)− ∂γ

∂t (q0, t0), γ(p0, t0)− γ(q0, t0)
〉

d(p0, q0, t0)

=
〈

∂γ

∂t
(p0, t0)− ∂γ

∂t
(q0, t0),−ω

〉

=
〈(

k

J2
− ∇NJ

J2

)
N(p0, t0)−

(
k

J2
− ∇NJ

J2

)
N(q0, t0),−ω

〉
,

and

dψ

dt
=

L

π
cos

(
lπ

L

)
π

d

dt

(
l

L

)
+

dL

dt

1
π

sin
(

lπ

L

)

= L cos
(

lπ

L

) (
L d

dt l − l d
dtL

L2

)
+

1
π

sin
(

lπ

L

)
dL

dt

= cos
(

lπ

L

)
d(l)
dt

+
(

1
π

sin
(

lπ

L

)
− l

L
cos

(
lπ

L

))
dL

dt

= − cos
(

lπ

L

) ∫ q

p

k

(
k

J2
− ∇NJ

J2

)
dst

−
(

1
π

sin
(

lπ

L

)
− l

L
cos

(
lπ

L

))∫

S1
k

(
k

J2
− ∇NJ

J2

)
dst.
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Since 〈ω, e1〉 = 〈ω, e2〉 = d
l cos( lπ

L ), let α = ∠(ω, e1) = ∠(ω, e2) with 0 < α < π/2. Then
〈ω, N(q0, t0)〉 = − sin α, and 〈ω, N(p0, t0)〉 = sin α. Therefore we have

d

dt

(
d

ψ

)
(p0, q0, t0)

=
1
ψ

d

dt
d− d

ψ2

d

dt
ψ

= − 1
ψ

((
k

J2
(p0, t0) +

k

J2
(q0, t0)

)
−

(∇NJ

J2
(p0, t0) +

∇NJ

J2
(q0, t0)

))
sin α

+
d

ψ2
cos

(
lπ

L

) ∫ q

p

k

(
k

J2
− ∇NJ

J2

)
dst

+
d

ψ2

(
1
π

sin
(

lπ

L

)
− l

L
cos

(
lπ

L

))∫

S1
k

(
k

J2
− ∇NJ

J2

)
dst

≥ − 1
ψ

[(k(p0, t0) + k(q0, t0))C1 − 2C2] sin α

+
d

ψ2
cos

(
lπ

L

)
C1

∫ q

p

k2 ds− d

ψ2
cos

(
lπ

L

)
C2

∫ q

p

k ds

+
d

ψL

(
1− l

ψ
cos

(
lπ

L

))[
C1

∫

S1
k2 ds− C2

∫

S1
k ds

]

=
1
ψ

[
− sin α(k(p0, t0) + k(q0, t0)) +

d

ψ
cos

(
lπ

L

) ∫ q

p

k2 ds

+
d

L

(
1− l

ψ
cos

(
lπ

L

)) ∫

S1
k2 ds

]
C1

− 1
ψ

[
2 sin α +

d

ψ
cos

(
lπ

L

) ∫ q

p

k ds +
d

L

(
1− l

ψ
cos

(
lπ

L

)) ∫

S1
k ds

]
C2,

where

C1 = min
U

(
1
J2

)
, C2 = max

U

( |∇NJ |
J2

)
.

Since
l

ψ
cos

(
lπ

L

)
=

lπ
L

tan( lπ
L )

< 1,

we have

1− l

ψ
cos

(
lπ

L

)
> 0.

If t0 is close enough to the blow-up time ω, we can make C1 approach 1 and C2 approach
0. We also have

∫
k2 ds > 0. We now consider case 1 and case 2 separately to show

d
dt

(
d
ψ

)
(p0, q0, t0) > 0.

Case 1: e1 = e2. Since
〈
ω,
−→
k (q0, t0)−−→k (p0, t0)

〉
≥ 0, we have − sin α(k(p0, t0) +

k(q0, t0)) ≥ 0. Hence, d
dt

(
d
ψ

)
(p0, q0, t0) > 0.

Case 2: e1 6= e2. Since 1
ψ

〈
ω,
−→
k (q0, t0)−−→k (p0, t0)

〉
+ 4π2d

L2ψ ≥ 0, we have− sin α
ψ (k(p0, t0)+

k(q0, t0)) ≥ − 4π2d
L2ψ .
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Claim:
d

ψL

(
1− l

ψ
cos

(
lπ

L

))∫

S1
k2 ds− 4π2d

L2ψ
≥ −4π2dl

ψ2L2
cos

(
lπ

L

)
.

Using − sin α
ψ (k(p0, t0) + k(q0, t0)) ≥ − 4π2d

L2ψ and then the claim, we have

d

dt

(
d

ψ

)
(p0, q0, t0)

≥
[
−4π2d

L2ψ
+

d

ψ2
cos

(
lπ

L

) ∫ q

p

k2 ds +
d

ψL

(
1− l

ψ
cos

(
lπ

L

))∫

S1
k2 ds

]
C1

− 1
ψ

[
2 sin α +

d

ψ
cos

(
lπ

L

) ∫ q

p

k ds +
d

L

(
1− l

ψ
cos

(
lπ

L

))∫

S1
k ds

]
C2

≥
[

d

ψ2
cos

(
lπ

L

) ∫ q

p

k2 ds− 4π2dl

ψ2L2
cos

(
lπ

L

)]
C1

− 1
ψ

[
2 sin α +

d

ψ
cos

(
lπ

L

) ∫ q

p

k ds +
d

L

(
1− l

ψ
cos

(
lπ

L

))∫

S1
k ds

]
C2

≥
[

d

ψ2l
cos

(
lπ

L

)(
l

∫ q

p

k2 ds− 4π2l2

L2

)]
C1

− 1
ψ

[
2 sin α +

d

ψ
cos

(
lπ

L

) ∫ q

p

k ds +
d

L

(
1− l

ψ
cos

(
lπ

L

))∫

S1
k ds

]
C2.

By the Hölder inequality,

l

∫ q

p

k2 ds ≥
(∫ q

p

|k| ds

)2

≥ 4α2 >
4π2l2

L2
.

The last inequality is true since cos α = 〈ω, e1〉 = 〈ω, e2〉 = d
ψ cos( lπ

L ) ⇒ cosα <

cos( lπ
L ) ⇒ α > lπ

L . Hence, d
dt

(
d
ψ

)
(p0, q0, t0) > 0.
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We now prove the claim:

d

ψL

(
1− l

ψ
cos

(
lπ

L

)) ∫

S1
k2 ds− 4π2d

L2ψ
≥ d

ψL

(
1− l

ψ
cos

(
lπ

L

))(
4π2

l

)
− 4π2d

L2ψ

=
4π2dl

ψ2L2

[
ψL

l2

(
1− l

ψ
cos

(
lπ

L

))
− ψ

l

]

=
4π2dl

ψ2L2

[
ψ

l

(
L

l
− 1

)
− L

l
cos

(
lπ

L

)]

>
4π2dl

ψ2L2

[
ψ

l
− L

l
cos

(
lπ

L

)]

=
4π2dl

ψ2L2

[
sin( lπ

L )
( lπ

L )
− L

l
cos

(
lπ

L

)]

≥ 4π2dl

ψ2L2

[
cos

(
lπ

L

)
− L

l
cos

(
lπ

L

)]

= −4π2dl

ψ2L2
cos

(
lπ

L

)(
L

l
− 1

)

= −4π2dl

ψ2L2
cos

(
lπ

L

)
.

The distance comparison principles thus established immediately rule out slowly
forming (type-II) singularities for the flow, where the ratios estimated above tend to
zero. Thus, using only the known classification of possible singularities, we have proved
the main theorem using distance comparison principles.
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