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Abstract

The notion of a filter F € 22" has been extended to that of a : prefilter F € QIX,
generalised filter f € T 2* and fuzzy filter ¢ € I! YA uniformity is a filter with some
other conditions and the notion of a uniformity D € 22" has been extended to that of
a : fuzzy uniformity D € 27 XXX, generalised uniformity d € I 2% and super uniformity
§ € I, We establish categorical embeddings from the category of uniform spaces into the
categories of fuzzy uniform spaces, generalised uniform spaces and super uniform spaces and
also categorical embeddings into the category of super uniform spaces from the categories
of fuzzy uniform spaces and generalised uniform spaces.
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PREFACE

Since the notion of a fuzzy set was introduced by Zadeh [84], there have been attempts
to extend useful mathematical notions to this wider setting, replacing sets by fuzzy sets.
The study of uniform space notion is facilitated by the notion of a filter. In [52] Lowen
introduced the notion of a fuzzy uniform space. This was accomplished with the aid of a
filters on I which Lowen [48] called prefilters. The notions of prefilter and fuzzy uniform
space are extentions of filter and uniform space. We prove that the category of uniform
spaces is embedded into the category of fuzzy uniform spaces.

The notion of a fuzzy filter is introduced in [22] and then a new generalised form of
uniformity, called super uniformity, is defined and studied. It is based on the concept of
fuzzy filter. In [15] the notion of a generalised uniform space is introduced and studied using
prefilters, which are not the most natural analogue of the filter notion in this situation.
With the collaboration of Burton and Gutiérrez we introduced and studied the notion of a
generalised filter in [16]. In Chapter 8, we rewrite the basic theory of generalised uniform
spaces with the aid of generalised filters.

We can see that the notion of a generalised uniform space and the notion of a super
uniform space are extentions of uniform space and the category of uniform spaces is embed-
ded into the categories of generalised uniform spaces and super uniform spaces. We prove
that the category of generalised uniform spaces and the category of fuzzy uniform spaces
are isomorphic. We also show that the categories of fuzzy uniform spaces and generalised
unifrom spaces are embedded into the category of super uniform spaces. We first establish
consistent notation. We have also slightly changed a few definitions and strengthened some
theorems. This lead us to establish a nice categorical connection between the categories of
uniform spaces, fuzzy uniform spaces, generalised uniform spaces and super uniform spaces.

Chapters 1 and 2 introduce basic results in fuzzy sets and fuzzy topology. Chapter 1
gives the introduction to fuzzy sets and deals with crisp subsets associated with a fuzzy
set and fuzzy sets induced by maps. The second chapter is concerned with fuzzy topology:
the fuzzy closure operator is a very useful tool to define a topology. We also see in this
chapter continuous functions between fuzzy uniform spaces. In chapters 3 and 4 we record
the standard results on filters and uniform spaces, since they give and an idea for consequent
results in later chapters.

Chapter 5 explores the fundamental ideas of prefiters. We get prefilters from filters and
filters from prefilters. We see the images and preimages of filters under a map and study
convergence in fuzzy topological space. In chapter 6 we defined fuzzy topology as a prefilter
plus other conditions. We deal some basic results in fuzzy neighbourhood spaces which are
essential to find a fuzzy closure operator and then obtain a fuzzy topology from it. We find
fuzzy topologies from fuzzy uniform space directly and from fuzzy neighbourhood spaces.
Next we deal with convergence in uniform topology and uniformly continuous functions
between fuzzy uniform spaces. In the last section we deal with a-level uniformities which
turned out to be very useful for subsequent results.

Chapter 7 is concened with generalised filters: definitions, generalised filters from pre-
filters and prefilters from generalised filters and prime generalised filters. In Chapter 8 we
deal with generalised uniform spaces and uniformly continuous functions between generalised
uniform spaces. We will see fuzzy filters in Chapter 10 with more emphasis given to a fuzzy
filter with characteristic value 1. We also obtain fuzzy filters from generalised filters and
generalised filters from fuzzy filters. In Chapter 10 we give definitions for a-uniformities and
super uniformities. Then we see uniformly continuous functions between a-uniform spaces
and super uniform spaces.

Chapter 11 is the centeral chapter which connects the categories of uniform spaces, fuzzy



uniform spaces, generalised uniform spaces and super uniform spaces. Here we see that
fuzzy uniform spaces, generalised uniform spaces and super uniform spaces are extentions of
uniform space using categorical embeddings from the category of uniform spaces into these
categories. We can also obtain categorical embeddings into the category of super uniform
spaces from the categories of fuzzy uniform spaces and generalised uniform spaces. Also
we show that the category of fuzzy uniform spaces and the category of generalised uniform
spaces are isomorphic.



Chapter 1

Fuzzy Sets

1.1 Introduction

The role of set theory has been formulated in the development of modern mathematics.
However usual observables in our daily lives and conversation as well as scientific experi-
mentation constitute ill-defined sets. For example, the set of old people, the class of tall
men, the class of large numbers, the set of low temperatures etc.

In order to try to develop a theory for such ill-defined sets L.A. Zadeh [84] defined the
notion of a fuzzy set as follows.

1.1.1 Definition
Let X be a set. A fuzzy set on X is a map from X into [0,1]. That is, if p is a fuzzy set on
X then p € I*. Where I = [0,1] and I denotes the collection of all maps from X into I.

Since the notion of a fuzzy set was introduced the basic theorems of set theory have been
extended to produce a calculus of fuzzy sets.
Lattice-dependent subsets

The unit interval I = [0,1] can be replaced with a complete lattice L.

Let X be a set and L be a complete lattice. Then an L-subset of X is a map from X to
L.

Order-structure of L-subsets
L¥X is equipped with order-theoretic structure induced from L, and so is a complete lattice.
For example,
p<vevVeeX, ulx) <viz)

(V w)(@) =\ (@), = € X;

jedJ jedJ
(Aw)@) = \ui@), z€X.
JjeJ JjeJ

L is de Morgan iff L admits an order-reversing involution
"L —L (" =a,a<b=d >V)
in which case L¥ is also de Morgan.

Remark
I is a complete de Morgan lattice, and so is IX.

If X is a set and A C X, then we define the characteristic function of A, denoted 14 by

1, def 1 ifzeAd
A7V 0 ifxg¢A



Note that 14 € {0,1}* = 2% and there is a natural bijection between P(X) and 2. If A’
denotes the complement of A, we see that:

VaelX, 1@( ) 0

VeelX, 1x(z) =

VxeX lA/()—l—lA()

VaeeX, lagp(r) =1a(z) V1p(z);

VaeeX, lanp(r) =1a(z) Alp(z);

ACB=14<l1p.

Algebra on X

IX is equipped with order-theoretic structure induced from I.
The empty fuzzy set 0is : Vax € X, 0(x) = 0;
The whole fuzzy set 1is: Vax e X, 1(z) =1;
p=veVarelX, ux)=rx);
p<rvevVeelX, ux) <vix)

(pVv)(z) =p@) Vr(z), z€X;
(pAv)(x) = (@) Av(z), © € X;
(_\G/Juj)(x) = \e/Ju j(2), v e X;
(_/E\Juj)(x) A pi(@), = € X;
W) =p@) =1-p(x), zeX.

In the case where I is the closed unit interval, we remind ourselves of the following basic
facts:

1.1.2 Theorem
1. If f € I**Y then,

sup  f(x,y) =sup sup f(z,y);

(z,y)EXXY r€EX ycey
inf — inf inf
(xyyl)réXny(w,y) inf inf f(@,y);

sup inf f(x y) < mf E sup fz,y).
zeX yeY Yaeex

2. If X,Y C I then,

sup X Asup Y =sup sup zAy;
zeX yeYy

inf XVinf Y =inf inf aVy.
zeX yeYy

3. If p,v € IX then
sup (uAv) <sup pAsup v.

4. If v € I* and A, B C X then

sup v(z) Asup v(y) =sup sup (v(x)Av(y)).
T€EA yeB €A yeB



1.2.1

1.2.2

1.2 Crisp Subsets of X Associated With a Fuzzy Set

If 4 € I and a € I we define,

p z e Xt p(a) > ak;

Ha o {r e X :u(x) > a}.

These are the so-called a-level(or cut), strong and weak respectively. If a theory is to be
fuzzified (for example group theory), a very useful type of theorem to have avilable is one
which relates a property (such as normality) to its fuzzy analogue. Very often the theorem
takes the form

wisfuzzy — P Vael, u“is P.

Or some variation of this. These a-levels theorems are extremly useful.

Lemma
If pi,v € IX then,
u=v &SVYaecl p*=0°
& Vae(0,1), p* =v-.

PROOF.

(<)

Let x € X and u(x) = a. If v(z) > a then x € v* and so x € pu®. Therefore u(z) > a.
This is a contradiction. Hence v(z) < a. If v(z) < « then 38 such that v(z) < 8 < a.
Therefore * € pf and so € v? and hence v(z) > (. This is a contradiction. Hence
v(z) = o Since z is arbitrary. Therefore V © € X, v(z) = p(z). That is p = v.

Assume V « € (0,1), u®* = v®. Now we have to show V a € [0,1], p* = v®. That
is ut = vt and p® = 0. But clearly u!' = 0 = v! Let € p® then u(z) > 0. So Ja >
0 such that pu(z) > a > 0. Therefore z € pu® = v* = v(zr) > a > 0 = x € v° and hence

u® € 10, Similarly v° C u°. Therefore u° = v°.

O
Lemma
If ;1 € I then,
= sup alge.
a€e(0,1)
ProOOF.
If x € X then
foa ifp(r) >«
lye (2) = { 0 if p(x) <a.
Let z € X and p(z) = 8. Then
a if8>a
alye(2) = { 0 iff<a.
Therefore
sup alye(z) = 6.
a€e(0,1)
U



1.2.3 Lemma
If p, v, 1(4),v(j) € I, j € J then

1. (pAV)* =p* N

2. (LVV)* = p*Up;

3. (UWAV)a = o N Vs

4. (pVV)a = ta Ula;

5. U /’L(j)a c (\/ :u(j))cd
jeJ jeJ

6. (A n())a= pG)as
jedJ jedJ

7. Ual) = (V ()
JjeJ jEJ

8. (A wuG)N™<C N u
jed jeJ

9. () Mo, = Ha Where o = sup ay;
keK kEK

10. ak = 1% where a = inf ay;
kgKu p* where o = inf ay,

11 (p)a = ('),
12, (0)* = (H1-a)';
13. pa = N 1%

B<a
4. p* = U pp.
B>a
Proor.
(1)
x€(pAv)* = (pAv)(z) >«
<~ p(z) > a and v(z) > «
=z cp*Nv
(2)
x€(uVr)® <= (uvr)(z) >«
<= p(z) > aorv(z) >«
=z € pu*Urv.
3)
rE€(UAV)a = (pAV)(2) >«
<~ p(z) > aand v(z) > «
= T € Uo NVy.
(4)
x€(UVV)y <= (uVr)(z)>a«
< p(z) > aorv(z) >«
T € o Ur,.
()

x € gJ,u(j)a <= Jjo € J such that = € u(jo)a
j
= lio)(@) >
— (Vi) = o

—ze (j\e/Ju(j))a.



(10)

re(Au(ia Vel pi)) >0
= Viced x€puja
=z € N puHa-
jeJ

x € 4L€JJ,u(j)°‘ <= Jjo € J such that u(jo)(z) > «
J
= (VY u()(x)>a
JjeJ

=z e (Y ni)"

ze (A pu@) < jgju(j)(x >a

jeJ )
=VjeJ, ,u(g)(x) >

< zx e N ]
jGJM(J

kaQKuak = VEkekK, ulx)>a

<~ p(x) > sup oy
keK
= T € Usup ay-

keEK
x € kUK,uo"“ <= Jko € K such that u(z) > ay,
€
— > inf
@) > inf a

inf oy

= X € pkeK

€ (Wa = p(@)2a=1-pux) za
—ulz)<a<=px) Fl-—a
=z e (pt).

re (W) =p@>a=pu)<l-a
() F1— a2 € (ra)

re N’ —=ViE<a, ulx)>p
B<a
= p(z) >sup B =«
B<a
=T E g,

x € ﬁu g <= 30y > a such that u(zx) > Gy
>a

—= p(z) > a
= x € u.



1.3.1

1.3 Fuzzy Sets Induced by Maps

For a function
f: X—Y

there corresponds a function
f= P(X) — P(Y)

where f7(A) = {f(z) : © € A} is called the direct image of A C X; and a function
7 PY) — P(X)

where f~(B) ={z € X : f(x) € B} is called the preimage of BCY.

We define the analogues of these as follows.

If X and Y are sets, f € YX,u € I and v € IY we define the direct image of u, denoted
by f[p] and the preimage of v denoted by f~![v]as follows:

ForyeY,
flul(y) = swp ()
f(z)=y
with the convention that sup @ = 0 and
fE verf.

It is straightforward to check these definitions reduce to usual ones in the case where
uw =1lgandv = 1gwith AC X and BCY.

Theorem
Let X,Y,Z besetsandlet f € YX, g Z¥, pecIX,v eIV and X € IZ.
Let (uj:j€J)e (IX) and (vj:j € J) € (IY)’. Then

L (go f)lul = glflull;

2. (go /)TN = g A

3. fﬁl[Jé/]VJ] :j\€/Jf71[1/]],
4 A= A F vl

6. 11 <wvo= fn] < el

T fLY = Vo flugl;

jeJ jeJ
. 1< 1:
8 f[jé\JM]] > j/e\Jf[NJ]v

9. flu]” < fli'], provided f is surjective;

10. pn < po = flu] < flpal;

11. f[f~t[v]] < v, with equality if f is surjective;
12. p < f7Yf[u]], with equality if f is injective;

13. fIftv] A p] < v A flu], with equality if f is injective.



glflull(z) = sup flul(y) = sup sup pu(x)

9(y)== g(y)=z f(z)=y
= sup u(x) = (g0 f)v](2).
gof(z)=z
(go /7' = A(go f)(@) = Ma(f(2) = g7 N(f(x))
=g (=

jeJ
= AU lE) = (A D @),
PN =V (@) = (@) = (@)

fILV puil(y) = sup (V pi)(z)= VvV  V p(z)

e fa)=y 7€ fa)=y jes "’
=V vV ; = V .
sy @)=V (Fl)()
= (Y D ®)-
/\ o = Su /\ . ) = \/ /\ (1
FLA il(Y) Juwp (apale) = v A ()
< A V (x
7jEJ f(x):guj( )

= jQJ(f[uj](y))
= (jQJf[uj])(y)-

flul'ty) = flud ()" =1 - flul(y)
“1 sup )
f@)=y
< sup 1— p(x) [ since f is surjective |
f@)=y
= sup p'(z) = flW'l(y)
f@)=y

flm](y) = sup pa(z) < sup po(x) = flual(y).
@)=y Fla)=y

FIF y) = sup fHV](2) = sup v(f(=)) < v(y).
f(z)=y fx)=y

If f is surjective then f({y}) # 0 and so



(12)

S @) = flul(f(2)) = sup  u(z) > p(a).
f(2)=f(x)

If f is injective then f(z) = f(2) = 2z = x and therefore

(13)

If f is injective then f< ({y}) is a singlton set and therefore

ST I AW =v A flu).
O

More information regarding fuzzy set can be found in [23, 7, 25, 26, 32, 46, 49, 59, 60,
71, 85].



Chapter 2

Fuzzy Topology

2.1 Definitions and Fundamental Properties
In [19], Chang introduced the notion of a fuzzy topology as follows.

2.1.1 Definition
A fuzzy topology on X is a subset T of IX satisfying

1. 0,1 €T,
2. yuveT =uhveT;

3.Vjed pueT= \u 7.
jeJ
(X, 7) is called a fuzzy topological space (f.t.s) and the members of 7 the fuzzy open sets
of X.
If 7; and 75 are fuzzy topologies on X then if 7; C 75 we say 73 is coarser than 75 or 75
is finer than 7;.

In [44] Lowen defines a subset 7 C I to be a fuzzy topology on X if (1),(2),(3) hold as
well as:
A Vael, alx €T.

2.1.2 Examples
1. The discrete fuzzy topology on X: T = IX.

2. The indiscrete fuzzy topology on X: 7 = {0, 1}.

3. Any topology 7 on X generates a fuzzy topology on X — identify with the open sets
their characteristic functions.

4. Given a topological space (X, ), the family 7, of all lower semi continuous functions
on X into [0,1] is a fuzzy topology on X which contains 7. We call 7,, the natural
fuzzy topology on a topological space (X, 7).

2.1.3 Definition
A fuzzy set pin a f.t.s (X, 7) is T-closed (fuzzy closed) iff f/ =1—peT.

2.1.4 Definition
The fuzzy interior u° of a fuzzy set u is the join of all members of 7 contained in p.
That is,
pw=vivel*:veT, v<ul)

This is the largest fuzzy open set contained in p and

w is open iff u = pu°.



2.1.5 Definition
The fuzzy closure fi of a fuzzy set y is the meet of all 7-closed sets which contain .
That is,
p=Nrel*: v eT, pn<v}.

Thus [ is the smallest 7-closed set which contains p and
w is closed iff p = f.

2.1.6 Proposition
(1) i = ()° and (u
(2)0=0, p<p, p=

PROOF

)

(W
and g

||
=
<
N

(1) a) Let C be the set of all 7- closed sets which contain . Then V v € C, p < v and
vVeT.
It is easy to show that {v/ : v € C} is the set of all T-open sets contanied in p’. Therefore

= A d ()= v
H ueCV an (,u) VECV

So

N/ /. /
() = (V/E\CV) =L
Hence @' = (1/')°.
b) Let C be the set of all T-open sets which are contained in g. ThenVv €C, v € 7 and v < p.
It is easy to show that {¢/ : v € C} is the set of all 7-closed sets which contain p’. Therefore

u’ = \/Vand,u— AV
veC

and so

~

O/: \/ /:/\ .
(1°) (Vec”) ALY

Hence, (u°)" = p'.
(2) We have 0' =1 € 7. So 0= 0.

Wehave i=A{rveIX v/ €T, v>pul>pandso i’ =Vv{v/ cIX: v c¢Tv>pu}c
T. Therefore fi is closed = 1 =

Let A={¢ecIX:¢ecT, p<€tand B={nel¥:n €T, v<n} Then

AV D= (gé\Ag)v(né\B n) = seeé(évn)

But uvv<¢vVnand (EVn) eT.
If A€ IXissuchthat uy Vv < Xand N € Tthenpy < A\, N € Tandv <\, N € 7.
Therefore there exists £ € A, n € Bsuch that A\=¢§ and A =17. Thus A=¢ V.

Therefore
Vv = \Y
nVy =1 L(EV)
neB
Hence
wNVv=pVuv

10



2.2.1

2.2.2

2.2 Fuzzy Closure Operator

In [53] the notion of a fuzzy closure operator is introduced. We adopt a slightly different
definition of a fuzzy closure operator.

Definition
A fuzzy closure operator on X is a map ~: IX — IX which fulfills the following properties
1. 0=0;
2. Vpel®, p<p
3.V u,velX uvVv=pnVu;
4. ¥V pelX, o=j.
This definition of fuzzy closure operator differs from the definition in [53], where it is
required that
Vo € I, alx =alx.
It is shown that a fuzzy topology can be defined using a closure operator.
Theorem
If the map ~: IX — IX is fuzzy closure operator then 7 = {y’ : u = fi} is a fuzzy topology
on X whose closure operation is just the operation y — f.
Proor

We have 0 =0=0"=1¢€7.
Since 1 < 1. Sol:i:>1’_:0€’f_.
Let p, v € T. Then p/ =/, v/ =1/ and

(uAv) =W Vv = vV =p Vv = (uAv).
Therefore
(uAv))Y =prveT.
If p <wvthen v =p Vv and hence

v=uvVv=puVvv
So i < .
Let v; € T for each j € J. Then

ANVE<V = AV <UL
R A e

jeJ
Therefore
AVE< ANV, = Av
jeg J T jer?  jes
and hence
AVi= Av
jeg 1 jeJg
Hence

AV = Vv eT.
(jeJVJ) jeJVJ

It remains to show that the resulting closure operation is just the operation y — p.
Let F ={p' :peT}t={p:p=pn}

We have to show that for each p € IX, [i is the smallest element of F containing .
Now =i = i € F and we have u < [i.

If v € F and p < v then

n<v=uw.

Thus [ is the smallest element of F containing u. 0

11



2.3.1

2.3.2

2.3.3

2.3 Continuous Functions

In [19], the notion of a continuous function between fuzzy topological spaces is introduced

and studied.

Definition

Let (X,7;) and (Y, 73) be two fuzzy topological spaces. A function f: (X,7;) —

is continuous it Vv e Ta, f~[v] € T1.

Proposition
If f:(X,71) — (Y,T2) and g : (Y,T3) — (Z,7T3) are continuous functions then
of:(X,T1) — (Z,7T3) is continuous.

Y. )

O

PROOF.
Let A € 73. Then (go f)~ 1[ ] F7 g7 \]] and, since g is continuous, g~1[\] € Tz.
Since f is continuous, f~![g7![A]] € 7. Therefore (g o f) is continuous.

Theorem

Let f:(X,71) — (Y, 72) be a function. Then the the following are equivalent
1. f is continuous,

2. For each T3-closed v, f~![v]is T;-closed,

3. For each v € IV, f-1[v] < f~[p],

4. For each p € IX, fli] < flu]-
Proor.

(1) = (2)
Let v/ € T5. Then f~1[V/] € T3 and (f~Y[v]) = f~[v'] € T1.
Therefore f~1[v] is 7y — closed .

2)= (1)

Let v € T. Then v/ is T — closed and so f~1[v/] = (f~1[v]) is 71 — closed .

f71[v] € 71 and hence f is continuous.

(2) = 4)
For p € IX,
flul=nNvel¥ vV el v>flu}
Therefore
YUl = A{f ] :vel¥, v ey, v> flu]} and
p=ANAeI*: N eT, \>pu}.
But
Ve = (fT) €T
and
v> flu] = p < FUfl) < £V
Thus
Pl = A
and so
Fl = fUFHI) = Al
That is:

12
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(4)=(3)

For v e IV, f~1[v] e I'*.

Therefore

I < flfHvll <o
and so
FH = A = Y]
Thus
fHP =

(3)=(2)

Let v/ € T5. Then v € IY and

Therefore

and hence
f Y] is Ti — closed.

More information regarding fuzzy topology can be found in [61, 65, 77, 79, 80].
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3.1.1

Chapter 3

Filters

3.1 Introduction

The facts regarding fiters can be found in [8, 81] but, for convenience, we record the basics
in this chapter. We will see the similar results for prefiters, generalised filters and fuzzy
filters in the chapters 5,7 and 9 respectively.

Definitions
If X is a set, we call F C P(X) a filter on X iff

1. F#0and 0 ¢ F;
2.VF,GeF, FNG eT;
3. VFeF, FCG=GeF.
If X is a set, we call B C P(X) a filter base on X iff
1. B# 0 and 0 ¢ B;
2.VF,GeB, 3BeB: BC FNG.

For S C P(X),
def

<S>={Y C X :35 € Ssuchthat SCY}.
If AC X then < {A} > is a filter on X.
If F and G are filters on X, we say that G is finer than F or F is coarser than G, if F C G.
If a filter F is such that there exists a set A with F =< {A} >, we call F a principal filter.
Note that

AC B=<{B} >C< {4} >.

We therefore expect principal filters which are generated by a singleton to be maximal. In
other words z € X =< {{z}} > is maximal.
We say that a filter F is fized iff NF # @ and free if NF = (.

We call B C F to be a base for F iff <B >=T.

3.1.2 Proposition

1. If B is a filter base then < B > is a filter.

2. If F is a filter and B C F satisfies < B >= T then B is a filter base.

14



3.1.3

3.2.1

3.2.2

Examples

1. If (X, 7) is a topological space we define the neighbourhood filter N, by
N,=<{U:Uer, 2€U} >.

It is straightforward to check that N, is a fixed filter.
2. Let (X, 7) be a topological space and let ) # A C X. Define

F(Fcx:AcCF).

Then F is a filter and F C< {A} > .

3. On the real line R we have the free filter
<{(a,0):a R} >.

4. Let X be an infinite set. Define

F << {A°: A is finite } > .

It is easy to check that F is a filter.
5. On the natural numbers N we have the free filter
<{(n,>=):n €N} >.

6. On R? we have the free filter

<{B,:0<r<oo}>

where

By ¥ {(z,y) 1 V22 + 2 <1}

3.2 Ultrafilters

Definition
Filters which are maximal (with respect to inclusion) are called witrafilters. In other words,
for a filter T,

Fis ultra <= (FCG, Gisafilter = F=G).

Proposition
A principal filter F =< {A} > is ultra iff A is a singleton.
ProOOF.

Let F =< {A} > be an ultrafilter and let z,y € A. Then F C< {{z}} > and F C<
{{y}} >. So, since F is maximal,

F =< {{a}} >=< {{s}} >

We therefore obtain
{z} S {y} S {=}
and from this we deduce that z = y.

On the other hand, let F =< {z} >, FC G and G € G. Then {a} e FC G and G € G
and so {z} N G # ). This means that {z} C G and so G € F. O

Here is a surprising and useful characterisation of ultrafilters.

15



3.2.3

3.2.4

3.2.5

3.2.6

Theorem
Let F be a filter on a set X. Then

Fisultra < VACX, AcFor A° € F.

PROOF.
Let F be an ultrafilter, A C X and A ¢ F. Define
G={FNA°:F eF}.
Then G is a filter base since:
(i) AgF=VFeF, FZA=VFeF, FNA®#o.

(ii) If FNA°,GNA° € G with F,G € F then FNG € Fandso FNG € A. Thus FNGNA® # (.
We have F C< G > and hence F =< G >. Now X € [F and so X N A¢ = A° ¢ F.

Conversely, let F C G with G a filter and let G € G. If G ¢ F then G° € F and hence
G°¢ € G. But then GNG¢ = € G and this contradiction establishes that G € F. Thus
F = G and so F is maximal. O

The following result will be appealed to many times and we note, in passing, that the Axiom
of Choice is required.

Theorem
Every filter is contained in an ultrafilter.

PROOF.

Let F be a filter on a set X and define

s {G : G is a filter and F C G}.

Inclusion is a partial ordering on S. Let C be a chain in S. Then it is easy to check that

H % UC is a filter on X and H is an upper bound for C. We appeal to Zorn’s Lemma to

deduce that S has a maximal element G. Then F C G and G is maximal. O

Definition
If F is a filter on a set X, we say that

Fis prime <= (FUGeF=FecForGel).

Theorem
A filter is ultra iff it is prime.

PROOF.
Let F be an ultrafilter, FUG € F, F' ¢ F. Define

GY{H:HUF €F}.
It is straighforward to check that G is a filter and G € G. Furthermore, if K € F then
K CKUF €F and so K € G. Consequently we have F C G and, since F is ultra, F = G.
Thus G € F since G € G.
To prove the converse, let A C X. Then AU A° = X € F and hence A € F or A° € F.
Thus, F is ultra. O

16



3.2.7 Theorem

3.2.8

Let F be a filter on a set X. Then
F =NP(F).

Where
P(F) def {K: K is an ultrafilter and F C K}.

PROOF.

The inclusion F C NP(F) is obvious so we show that NP(F) C F. To this end let K €
NP(F). If K ¢ F then for each F € F, F' ¢ K. Thus we have

VFelF, FNK°#0).

Let .
KY<{FNK®:FeF}>.

It is easy to see that K is a filter containing F. Let H be an ultrafilter containing K. We
therefore have
FCKCH e P(F).

Now K¢ = X N K° € K and so K¢ € H. But we also have K € NP(F) C H and so
K N K¢ =( € H. This contradiction establishes the result. O

Definitions
We say that a subset S C P(X) has the finite intersection property (FIP) if every finite
subcollection from S has nonempty intersection. We let

0/ (S) € {C CS:Cis finite }.

Then
S has FIP <= VC € p(S), NC # 0.

So a filter has FIP.
If S has FIP we can construct a filter containing S as follows. Let

[S1Y {nC:Cepr(S)

So [ 8] denotes the set of all intersections of finite subsets of S. It is easy to check that
S has FIP = [ S]] is a filter base

and so
S has FIP =< [S] > is a filter.

Furthermore,

SC<[S]>.

Of course, a filter F is closed with respect to the formation of finite intersections and
supersets and so
<[F]>=F.

If F and G are filters on a set X, we say that they are compatible , and write F ~ G, if
every element of F meets every element of G. In other words

FrG < VFeF, VGeG, FNG#0.

If F ~ G we can construct a filter which contains them both.

17



3.2.9 Theorem

If F ~ G then

F,G] ¥< {FNG:FeF, GEG} >

is a filter and F,G C [F, GJ.
Furthermore [F, G] is the smallest filter containing both F and G.

The proof of this is straightforward. The fact that [F,G] is the smallest filter containing
both F and G tempts some authors to write F vV G for [F,G] and this is fine as long as
we realise that the set of filters on a set X is not a lattice. This is because two filters
need to be compatible in order for the supremum to exist. If they are not compatible then
[F,G] = P(X) which is not a filter. In particular, two different ultrafilters have no filter as
a supremui.

In the case where G =< {A} > for some set A C X, we write

[IF7 G] = [F, A]
and the compatibility requirement is that

VEeF, FNA#(.

Thus we have

3.2.10 Corollary

VFeF, FNA#()=[F,A]is a filter and F C [F, A4].
Now here is a useful observation.

3.2.11 Corollary
If F is an ultrafilter on X and A C X then

VEeF, FNA#() < AcF.

PROOF.

VFeF, FNA# :>]FC[]F,A]
:[ 7A]
=>A€[IF,A]

The converse is obvious. O

3.3 Topological Notions in Terms of Filters

The fundamental topological notions of convergence, closure and continuity can be described
using filters.

3.3.1 Definition
Let (X, 7) be a topological space and F a filter on X. A point z € X. is said to be a limit
point of IF, if F is finer than the neighbourhood filter N,,.
F is also said to be coverge to x and we write F — .

In other words
F—2 <« N, CF.

18



3.3.2

3.3.3

3.3.4

A filter base B converges to x iff <B >— x

We define,

HmF < {z e X :F — 2}

Definition
Let (X, 7) be a topological space and a filter F on X has z € X as a cluster point if every
member of F meets every member of N,. We write F > x
In other words
F-z < VFECF, VW eN,, FNV #10.

A filter base B clusters at z iff <B >> x

We define,

adhF < {z € X :F + a}

Examples

(1) On the real line R with the usual topology the filter
1
F=< {(O,g) :n € N} >

converges to 0.
To check this, let V' be a neighbourhood of 0. Then there exists € > 0 such that (—e,e) C V.
Thus there exists n € N such that 1 < e and so (0, 1) C (—¢,e) C V. We have shown that

n
VW eNy, dFeF, FCV
and this means that Ny C F.
(2) On the real line R with the usual topology, let
F =< {(0,m(n)) :n € N} >
where

l . .
m(n) déf{ {L if n is odd

if n is even.

Then F > 0 since if (—&,e) CV € Ny and (0,m(n)) C F € F it is clear that V N F # 0.

Theorem

F>z < Jafilter GwithFCG and G — =z.

PROOF.

(=)
IfF > x let G = [F,N;]. Then N, C G and F C G means that G is finer than F and
G — =z

(<)
Conversely, if FC G and G — x then N, CG. Let V€ N, and FF € F. Then F € G
and V € G and so FNV # 0. O

The closure can be described in terms of filters.
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3.3.5

3.3.6

3.3.7

Theorem
Let (X, 7) be a topological space and A C X. Then

r€A < JF, Fafiteron X ,A€F, F— z.

PROOF.

(=)
If v € Alet F=[N,, A]. Then A € F and F — =.

(=)
Conversely, let A € F and F — 2. Then N, C F and hence if V' € N, we have V € F
and so VN A # (). Since V is arbitrary, « € A. O

Continuity can be described in terms of filters.
The following proposition is straightforward.

Proposition
Let f: X — Y be a function and F is a filter on X then

fIE]={f"(F): F €F}
is a filter base on Y.

Theorem
Let X and Y be topological spaces and let f: X — Y be a function. Then

f is continuous at zy <= VF, (F is a filter and F — 2y =< f[F] >— f(x0)).

PROOF.

=)

Let f be continuous at =, F — z and V € Ny (). Then there exists U € N, such that
fIU] C V. Thus f[U] € f[F] and so V €< f[F] >. Since V is arbitrary we have shown that
Ny €< f[F] >.

(<)

Conversely, let € X and V' € Ny(,y. Then, since N, — z, we have < f[N,] >— f(z).
This means that Ny,y €< f[N,] > and so V' €< f[N,] >. Therefore there exists U € N,
such that f[U] C V. Since V and z are arbitrary, we have shown that f is continuous. O
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Chapter 4

Uniform Spaces

We will see later fuzzy uniform spaces, generalised uniform spaces and super uniform spaces.
In this chapter we include only some basic results regarding uniform spaces and we will see
later similar results for the above mentioned uniform spaces. More literature regarding
uniform spaces can be found in [8, 37, 81].

4.1 Introduction

If X is a set then we define the following notation.
1. A=A(X) o {(z,2):z € X}.
2. If U,V C X x X then

Uov ¥ {(z,y) € X x X : 3z € X such that (z,z) € V and (z,y) € U}.

3. IfU C X x X then U, & {(z,y) : (y,z) € U}.

Note that
1. ACB= A, C B,.
2. ACEFEand BCF=A0oBCEoF.

3. 0" UolUo---0U.
~—_———

n factors

FACUthenUCU?2CU3C...CU".

4.1.1 Definitions
If X is set then D C P(X x X) is called a uniformity on X iff

1. D is a filter;

2.VvUeD, ACU;

3. VU eD, Us € Dy

4. VUeD, IVeD: VoV CU.

We call (X,D) a uniform space.

If X is a set and B C P(X x X) is called a uniform base on X iff
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1. B is a filter base;

2.VBeB, ACB;

3.VBeB, 3DeB:D; C B;
4. VBeB, 3DeB:DoD CB.

We call B C D a base for D if <B >=D. So B is a base for Diff vV D € D, 3B € B :
BCD.

4.1.2 Proposition
1. If B is a uniform base then < B > is uniformity.

2. If D is a uniformity and B C ID satisfies < B >= D then B is a uniform base.

Proor.
(1) Let B be a uniform base then B is filter base. So,

B is a filter base =< B > is a filter .

D =<B >={D :3 B € B such that B C D}

If D € D thendB € B such that B C D. Thus A C B C D.

If D € D then dB € B such that B C D. So dF € B such that £, C B. Therefore
FE C B; C Dy and hence Dy € D.

If D € D then 9B € B such that B C D. So, dF € B such that Eo EF C B C D.

(2) We have D is filter, B C D and < B >=D. Therefore, B is a filter base.

D = {D : 3B € B such that B C D}

If BeBthen BeD. So A C B.
If Be€ Bthen B e D. So3dE € D such that EFoFE C B. Therefore 3F € B such that F C
FE and hence
FoFCFEoFECB

If Be B then B €D. So B, € D. Therefore 3F € B such that £ C B, = E, C B.
O

4.1.3 Examples

(1) Let (X, p) be a pseudometric space and € > 0. Let

Df ={(z,y) : p(z,y) <e}
B, ={Df:e >0}
D, =<B, >.

Then D, is a uniformity on X. Note that D, = Dy, and so different metrices generate
the same uniformity.

(2) Let B={A} and D =< B >. Then B is a uniform base and D is a uniformity called the
discrete uniformity.

(3) If D = {X x X} then D is called the trivial uniformity.

(4) For r e R, let B, = AU{(z,y) e RxR:z>r, y>r}then B={B, :r € R}isa
uniform base on R.

We call D € D symmetric if D = D;.
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4.1.4

4.2.1

4.2.2

Proposition
(1) A uniformity has a base of symmetric elements.
(2) DeD, neN= 3 symmetric E€D: E" C D.

PROOF.

(1) Let (X,D) be a uniform space and B={D € D: D = D,}. Then < B >=D:
Let DeDand E=DND,. Then E€Band EC D.

(2) Let D eDand n € N. Then A C D and A" =A C D. O

4.2 The Uniform Topology

Letze X, ACXand U C X x X.

Ux) € {y € X : (z,y) € U}

and

U(A) = gAU(x) ={y € X : 3z € A such that (z,y) € U}.

Theorem
Let (X, D) be a uniform space. Then
Bx ={U(z) : U € D} is a neighbourhood base at x.

PROOF.

(i) We have = € U(x) because (z,z) € A CU.
(ii) Let U(z),V(x) € B;. Then U,V € D and so U NV € D. Therefore

U)nV(z) ={yeX:(x,y) €U and (z,y) € V}
={yeX:(z,y) eUNV}
=UNV)(z) € B,.

(iii) If U(z) € 3, then U € D.
We seek V(z) € B, such that if y € V(z) then IW (y) € G, with W(y) C U(x). We
have
UeD= 3V € D such that VoV CU.

Let y € V(x). Then (z,y) € V. If z € V(y) then (y,2z) € V and so (z,z) € VoV C U.
Therefore z € U(z). Hence V(y) C U(x). That is IV (y) € B, with V(y) C U(z). O

Lemma
Let (X, D) be a uniform space and B is a base for D. Then
By = {B(x) : B € B} is also a neighbourhood base at x.

PROOF.

(i) We have © € B(x). because (z,z) € A C B.

(ii) Let U(z),V(x) € Bz. Then U,V € B and so 3B € B such that B C UNV. But
U(x) NV (xz) = (UNV)(z) and therefore B(z) C (UNV)(x).

(iii) Let U(z) € By. Then U € B. Therefore 3V € Bsuchthat VoV C U. If y €
V(z) then (z,y) € V. If z € V(y) then (y,z) € V and so (z,z) € VoV C U. Therefore
z € U(z). Hence V(y) C U(x). That is 3V (y) € B, with V(y) C U(z).

O
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4.2.3

4.3.1

Thus if (X, D) a uniform space then

B, = {U(z) : U € D}

is a neighbourhood base at x. Therefore
N, ={V C X :BCYV for some B € (3,}

is a neighbourhood system at x, and hence

m={UCX:VzeX, IV eN, such that V C U}

is a topology on X.
The same topology is produced if any base [ is used in place of D.
We call p the uniform topology generated by D.

There is a simple expression for 7p-closure:

Theorem
If B is a base for D then -
A= nUA).
UeB
PROOF.

Let # € AandU € B. Let V € B be symmetric with V. C U. Then V(z) is a
neighbourhood of = and so V(z) N A # 0. Let a € V(z) N A then (z,a) and so (a,z) € V.
Therefore x € V(a) CV(A) CU(A). Thus VU € B, x € U(A) and this means that

x € uQBU(A).

Now let = € UOBU(A) and V(z) be a basic neighbourhood of x with V' symmetric. Then
€

r € V(A) = Ja € Asuch that (a,x) € V. Therefore (z,a) € V and so a € V(z) which
means that V(x) N A # (). Hence x € A.
0

4.3 Uniformly Continuous Functions

Let f: X — Y be a mapping. Then

X[ XxX —Y XY, (z,9)— (f(z),f(y))

is a mapping.
For DC X x X,
(f x £)7 (D) ={(f(x), f()) : (x,y) € D}
and for ECY xY
(fx)7(E)={(z,y) e X x X : (f(x), f(y)) € E}.

Definition
Let (X,D) and (Y,E) be uniform spaces and f : X — Y a mapping. [ is said to be
uniformly continuous ifV E€E, 3D €D : (f x f)7(D) C E. That is,

VEEE, (f x f)~(E) € D.
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4.3.2

4.3.3

For example:

If (X, p) and (Y, d) are metric spaces then (X,D,) and (Y,Dy) are uniform spaces. Then

f+X — Y is uniformly continuous

iff Ve >0, 36 > 0 such that p(z,y) < = d(f(z), f(y)) <e
iff Ve >0, 36 > 0 such that (z,y) € D§ = (f(2), f(y)) € D?
iff vV e Dy, 3U € D, such that (f x f)7(U) CV.

So uniform continuity in the uniform space context generalises uniform continuity in
metric spaces.

Theorem
If f:(X,D) — (Y,E) is uniformly continuous function then f : (X,mp) — (Y,7g) is
continuous.

PROOF.

Let V(f(z)) be a 75 -neighbourhood of f(z) with V € E. Since f is uniformly continu-
ous function. Therefore U € D such that (f x f)7(U) CV and so f~(U(z)) C V(f(z)).
Since z € f7(U(x)) = Jy € U(x) such that f(y) = z. So

yeU(@) = (z,y) eU= (f(x). f(y) €V = fly) =z € V(f(2)).

Lemma

If f:(X,D) — (V,E)and g : (Y,E) — (Z,F) are two uniformly continuous mappings
then

gof:(X,D) — (Z,F) is uniformly continuous.

ProOOF.
Let F € F. Then, since g is uniformly continuous,
(9xg)"(F) €E.
Since f is uniformly continuous,
(fx )" ((gxg)~(F)) €D.

That is
((gog) x(gog)™ (F)=(fx f)"((g xg)" (F)) €D.

Hence (g o f) is uniformly continuous.
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5.1.1

Chapter 5

Prefilters

5.1 Introduction

In [48], Lowen introduced the notion of a prefilter and since then it has been studied. The
facts regarding prefiters can be found in [50, 52, 62, 10]. In this chapter we summarize these
properties of prefilters.

First we state some notations here. I will denote the unit interval, Iy and I; are the
intervals (0,1], [0,1). For any p € I and € € I we define

(1+e) () = (ux) +e) Aland (u—e)(2) = (u(z) =€) VO

sup [ def sup u(z) and inf p def inf w(x).
rzeX zeX

Definitions
If X is aset, ) #F C I’ is called a prefilter (on X) iff

1. 0¢g F
2.VvyueF, vAueF,

3. VveF, v<u=puerF.

If X isaset, ) g B CIX is called a prefilter base (on X) iff
1. 0 € B;
2.Vv,peB, INeB: A< vALpW

For () £ F C IX,

<]~'>d§f{u€IX:EIV€.7: such that v < u}.

If 1 € I then
<p>%c {1} >.

We call B C F a prefilter base for F if <B >= F. So B is a prefilter base for F iff
VpueF, dveB v <.

If F and G are prefilters and F C G we shall say that F is coarser than G or G is finer
than F.
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5.1.2

5.1.3

5.1.4

Proposition
1. If B is a prefilter base then < B > is a prefilter.

2. If F is a prefilter and B C F satisfies < B >= F then B is a prefilter base.

PROOF.

(1) We have < B># () and 0 ¢< B >.

If u, v €< B > then 3/, v/ € B such that p/ < p and v/ <v. So, I\ € B such that A <
w AV < pAv. Therefore, p Av €< B >.

If pe<B> and p < vthen 3 A €< B> such that A < pu <wv. So, v €< B >. Hence,
< B > is a prefilter.

(2) <B>#0.SoB#0.0¢ F=<B>=0¢B.
Let o, v € B.Thenu, v € F =< B >. So, p Av €< B >. Therefore, 3 \ €
B such that A < u A v. Hence, B is a prefiter base.
O

Definitions
Given a prefilter F and p € IX the following subset of I

CH(F) def {ael:VveF,IzeX suchthat v(z) > p(x)+ a}

will be called the characteristic set of F with respect to p and

M (F) def sup C*(F)

will be called the characteristic value of F with respect to p.

When g = 0 we shall refer to them just as the characteristic set and characteristic value of
F. We shall denote them by C(F) and ¢(F).

That is,

C(F) def {pel*:VYveF IzecX suchthat v(z) > a}.

and .
c(F) 4 sup C(F).

We collect together some basic facts in the following proposition.

Proposition
Let F be a prefilter and p € IX then

1.CHF)={aecl: p+a¢gF};
2. {ael:p+aeF}={1}or e 1] with ¢ € I; or (¢, 1] with ¢ € Iy;
3. CH(F) =0 or [0,¢) with ¢ € Iy or [0, c] with ¢ € Iy;

4. c*(F) df sup CH(F)=inf {a €l:p+ae F}

PROOF.

(1) We have
ptag¢F —=VveF, p+taPv
= VveF, JzeX vix)>ul)+oa.

2)Let A={ae€l:p+aecF}. Thenle A If o« € A and a < 3 then 3 € A. Therefore
A={1} or [¢,1] with ¢ € I or (¢, 1] with ¢ € I;.

B8)Let B=C"F)={ael:p+a¢ F} Then ANB =Pand AUB = I. So,
B =10,¢) with ¢ € Iy or 0 or [0,c] with ¢ € I.
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(4) Therefore we have
sup B =inf A.

That is,
M(F)=sup CH(F)=inf {ael:p+aecF}

Note
1. C(F)={ael:alx ¢ F}

. = inf ;
3. ¢(F) inf_sup v;

4. For a prefilter base F, ¢(F) = c(< F >).
If p = 0 then
CHF)=C(F)={aecl:alx ¢ F},
o(F)=sup C(F)=inf {a € I:alx € F}.

We have
{aoel:alx e F} ={sup v:veF}

Since if v € F then (sup v)lx € F and sup alx = a. Therefore
co(F) = ll/réf}_sup v.

We next see the definition of prime prefilter which is similar to the definition of prime
filter.

5.1.5 Definition
A prefilter F is said to be prime if V v, u € IX such that vV u € F we have either v € F
or peF.

5.1.6 Theorem

If 1 € IX then
<p>isprimeiff Ia>0,3x € X : p=al,.
Proor.
(=)

Let 21,z € p® with 21 # 5. Then

_ | ple) ifx#Fmm

take m1 = ,u(xl)lam and V2($> - { 0 ifr= 1.

Then v1 Vg = p €< >, sovy €< > or v €<y >. Therefore v1 > porve > p
which is clearly false. Thus u° is a singlton. Hence 3 >0, 3o € X : u = al,.

(<)
Let 11 Vo €< al, >. Then vy Vs > al,. So
1 Vi > a.

Therefore
vi(z) > aor va(z) > a.

Consequently,
v E<aly > orv e<al, >.
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5.1.7

5.1.8

5.1.9

Therefore < al, > is prime.

Note
This reveals that prime prefilters are not maximal since if 5 < a < p(z) then
< p>C<al, >C< f1, > with both < al, > and < 1, > being prime.

Definitions
If F and G are prefilter bases then

FrGeoVveFYpueg, vAp#0.

If F ~ G we define,

fW/g@f<{uA;uz/e]2;Leg}>.

and it is easy to see that F V G is the smallest prefilter containing both F and G.
For prefilter bases F and G we define,

def [ ¢(FVG) i F~gG
o(F,9) = { 0 otherwise.

If 0 # p € IX then < pu > is a prefilter and for a prefilter F we define,
def
o(F,u) = oF, < p>).
We define the saturation of a prefilter as follows.

Definition
For a prefilter base F with ¢(F) > 0 we define,

FE {sup (ve — )« (ve 12 € I) € FI0,

ec€ly

Theorem
If 7 and G are prefilter bases with ¢(F) A ¢(G) > 0 then,

1. .7-'2.7:';
2. Veely, viteeF)=>velF;

3. Fisa prefilter base;

If F is a prefilter then F = F;

If F is a prefilter then c¢(F) = ¢(F).

© »® @

PROOF.

(1) Let v € F and V € € Iy, v, =v. Then

sup (v, —¢) =sup (v—¢)=v e F.
e€lp ecly
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(2) Let Ve eIy, v+e € F. Then

sup (v+¢)—¢)=ve F.
e€ly

(3) We have F # () and 0 ¢ F.

Let u=sup (e —€), v=sup (v. —¢) € F withV e € Iy, pe,ve € F. Then
eely ecly

(nAV)(E) = sup (e —€)(w) Asup (ve —e)(x)

e€lo e€lo

=sup sup (e —€)(@) A (vs — 0)(2)
e€ly d6€lp

> sup (e Ave —e)(x).
eely

So

pAv>sup (e Ave —e).
eely

But we have,
Veely pe,ve € F=Ve€ly, A €F such that \. < u. Are.

Therefore

pAY>sup (pe Ave —e) >sup (A —e) € F.
eelp eelo

Hence, F is a prefilter base.

(4) Let p = sup (v —e) € F with V € € Iy, v. € F. Then
ecly

Veely, .eG=peg

(5) Let p =< F > . Then 3 v € F such that v < p.
Therefore 3 (v. : € € Iy) € F such that u > v = sup (v, — ).

e€lp
Let Ve e Iy, e déf/,a—l—ez Ve. Then p. €< F >.
So,
pw=sup (e —e) € < F >.
e€ly
Therefore

<F>C<F>.

Let p € < F >. Then 3 (pe : € € Iy) €< F > such that u = sup (ue —€). So
e€ly

Ve e ly, v, € F such that v, < pe.

Therefore
sup (v. — <) < p.
e€lp
Hence .
wEeESF >.
Thus o
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5.1.10

5.1.11

>>

(6) Let 4 € F. Then 3 (pe : € € Iy) € F' such that u = sup (p. — ). Therefore
eelp

e = sup (u§ — &) for some (u§ : 6 € Iy) € Flo.
6€ly
So

p = sup (sup (u§—95) —¢)
e€ly €l

=sup sup (u5—0 —¢)
ecly 6€ly

—sup sup (uf — )
a€ly ,0€ly

et+d=a

=sup (Vg — @).

acly
Where,
Vo = SUp ps €< F >.

e,0€y
cté=a

Therefore
peE<F>=F.

(7) Wehave FC G = FCG=<F >C<G>.

(8) If F is a prefilter then F =< F > . Therfore F = < F > = F.
(9) We have ¢(F) = inf}_ sup v and so,
ve

FCF=c(F)>cF).
If 3 o such that ¢(F) < a < ¢(F) then

inf sup v < a = 3 v € F such that sup v < a.
veF
So
v =sup (v. —¢) for some (v. : € € Iy) € Flo.
e€ly
Define 4 = f1x where sup v < < a. then v < u. therefore

39 >0suchthat v <v+6 < p.

But we have Ve € Iy, v+¢ > v, and so, p > v+40 > vs. Since F is a filter. Therfore u € F.
That is 4 € F and sup p = 8 = ¢(F) < B < a. This is a contradiction to ¢(F) > a.

Therefore ¢(F) = ¢(F).
O

Definition R
A prefilter F with F = F will be called saturated prefiter.

Some useful results regarding saturated prefilters.

Theorem
If F is a prefilter then
1)
Fis saturated < (Veely, v+teceF=veF)
& Veely, 3v.eFiv.<v4+e=veF).

@2) F={pel*:Veely, uteeF}
(3) F is a saturated prefilter.

(4) If F is prefilter base then F = F.
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PROOF.

(1)

(=)
We have R
Veely, v+eeF)=velF.

But F = F, therefore v € F.
(<) .
Let © € F. Then we have

3 (pe : € € Iy) € Flo such that p = sup (e — €).
ecly

Therefore
Veely, p+e>pu. €F.

Since F is a prefilter, we have V € € Iy, p+¢ € F. Hence p € F. Therefore F = F. It is
easy to show that,

Veely, vrtee FoveF)«— Veecl,Iv.eF:v.<v+e=>vEeEF)

(2) We have R
{pel*:Veecly, p+eecF}CF.

Let p € F. Then we have

3 (pe : € € Iy) € F such that u = sup (u. — ).
ecly

Therefore
Veely, p+e>p.€F.

Since F is a prefilter, we have Ve € Iy, u+e¢e € F.
(3) If F is a prefilter then

—

F=<F>=<F>=F

So, F is a prefilter. R
Now let Ve € Iy, u+¢e € F. Then

Veely, Véely, u+e+deF

=sVaecl, p+tacF
=pueF.
Therefore F is a saturated prefilter.
(4) If F is a prefilter base then < F > is a prefilter. So

~ —_— —_—

F=<F>=<F>

That is, F is a saturated prefilter. So,

F=<F>=F=F

We next see characteristic set of a saturated prefilter.

32



5.1.12 Proposition R
Let F be a prefilter with ¢(F) = a then C(F) = [0, a).

PROOF.

We have ¢(F) =inf {f €:p51lx € F}.
So,

Blx € Florall 3> aand fly ¢ F for all < «
=>Veel, alx+e=(a+eAl)lx eF
éalxeﬁ.
On the other hand if 8 < « then 3 ¢ > 0 such that §+ ¢ < «
= Plx+e=(B+¢e)lx ¢ F.
Which means 81x ¢ F. But

CF)={tel:tlx ¢ F}.

Therefore C(F) = [0, @).

5.2 Prefilters from Filters

Recall fr?m 1.2 thatif v e I¥ anda eI
o {r e X :v(z)>al,

vo iz e X v(x) > al.

5.2.1 Definition
Let IF be a filter on X . For « € (0,1] define,

Fo €< {alp: F €F} >,

F* e :v<a, P €T

5.2.2 Theorem
Let F and G are filters on X. Then we have

1. F, and F* are prefilters on X with F, C F* for any a € (0, 1],
2. F, CFsand F* CFPif 0 < 8 < a,
3. F, CG,and F* C GYif F CG,
4. F, = F* = Fe,
5. C(Fy) = C(F*) = [0,a) and ¢(Fy) = ¢(F*) = .
Proor.
(1) We have 0 ¢ {alp: F € F} # () and

alp Aalg = alpng € {alp : F € F}.

Therefore {alp : F € F} is a prefilter base. Hence F, is a prefilter.
1eF*#( and 0 ¢ F<.
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Let p,v € F* then V 3 < «, 1P, 0% € F. But
(wAv)P =pP NP eF.

So p Av e TFe.

Let p € F* and p < v. ThenV B < o, p? e FFor B < o, v? D P € F, and so v°? € F
Therefore v € F*.

Hence F? is a prefilter.

Let 1 € Fy. Then 3 F € F such that 4 > alp. For 8 < a, p” O (alp)? = F € F and
so u € F*. Therefore F, C F?.

(2) We have p € F, = 3 F € Fsuch that g > alp. If 0 < § < « then 4 > B1p and so
p € Fg. Therefore p € F* =V y<a, ) EF=Vy<f, n? €F = pecF5

3)

peEF,=3FcF:p>alp=3FecG:u>alr=pcG,.
pefF*=vVi<a pPeF=ViE<a peCG=pecG™

(4) Let € Fo. Then 3 (pe : € € Iy) € (F*)™ such that = sup (pe — ). So
eel,

Veel, VB<a, u? €T,
B— (v _ B— y —g)? = U uPte.
I (eezo(“f £)) EACE €) L me

If 3 < athen 36> 0suchthat 3+ <a=pultccF

= U ultceF= /P’ cPl.
ecly

Therefore p € F* and hence F* = Fe.
F, C F* = F, C Fo = F*,

Let u € F*. ThenV 3 < a, p® € F. Then for each € € Iy, define v, = ala—ac. Since
pu** eFsov. € F, and also p+¢€¢ > v.. Thatis,Vee ly, u>v.—¢

= p>sup (v, —e) with Ve € Iy, v, € F,.
eely

Since Fa is a prefilter and so pu € ]FL Therefore F¢ C Fa. Hence
F, = Fo = Fe.

(5) We have C(F,) = {8 €1 :p0lx ¢ Fo}. If B < athen flx # alp forany F € F =
Blx ¢ F,. But if 8 > « then flx > alp for some F € F = f1x € F,. Therefore

C(F,) =[0,a) and hence ¢(F,) = a.
We have
CF) = {Be1: flx ¢ F°}.

IfB<athendd:f<d<aand (Blx) =0¢F = pBlx ¢ F*.
If>athenVy<a, (lx)Y=XeF=plx € F~
Therefore

C(F) = [0, «) and hence ¢(F) = «
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5.3.1

5.3.2

5.3 Filters from Prefilters

Definition
Let F be a prefilter on X. For a € C(F), we define,

fadg{l/o‘:Z/Ef}:{FQX:Ole\/IFEf},
and for a € (0, ¢(F)] we define,

fadéf{uﬁzﬂ<a, veF}

Theorem
Let F and G are prefilters on X. Then we have

1. F, for any o € C(F) and F* for any « € (0, ¢(F)| are filters on X,

2. Fy CFOif0<f < a<e(F)

3. Fa2Fsif0<fB<aand a€ C(F);and F* D FPif 0 < B < a < c(F),
4. Fo C Gy and F* C G if F C G,
5

. Fora € (0,¢(F)], Fo= U F".
0<y<a

PROOF.

(1) Let « € C(F). Then alx ¢ F. So, for v € F, v* # (). We also know F,, # 0.

Let u®*, v* € F,. Then p*Nv* = (uAv)® € F,.

Let u* € Fyand FF DO pu® Then 1pVu>p, lpVu € F and (1p V pu)* = F Therefore
FeFr,.

Hence F, is a filter.

For a € (0,¢(F)], F* # 0 and O ¢ F*.

Let v%, 7 € F where v, u € F and 3,7 < a. Then

(AP CvPnpland v A p e F.

Therefore F¢ is a filter base.

Clearly F* C< F® >. Let A €< F* > . Then 3 v € F and < «a such that A D 7.
Define p = 14 Vv > v then u € F. puf = A € F. Therefore < F* >= F*. Hence F is a
filter.

(2) Let v° € Fj then we have v € F.
0§6<a§c(]:):>u'867“.
Therefore Fg C F¢

(3) Let v# € Fg. Then we have v € F. Define g = 1,5 Vv > v then u € F. Since 0 < 8 < a.
So pu® = V8. Therefore v° € F,,. Hence Fp C Fa-

Let v € FP. Theny < Band v € F. Since 0 < 3 < a < ¢(F) and so v < a and v € F.
Therefore v¥ € F®. Hence FP C Fe.

(4) Let v* € F,. Then v € F and so v € G. Therefore v* € G,,.
Let v? € F*. Then O<aand v € F and so 0 < « and v € G. Therefore VB e ge.

(5) We have
0<y<a=F ' CF*= U FT'CF~
0<y<a

Let v% € F*. Then f < aand v € F. So 3 v: f < v < a such that v? € F7. Therefore

e U FY.Hence F*= U F7.
0<v<a 0<y<a

O

35



5.3.3 Theorem
Let F and G are filters on X and F and G are prefilters on X. Then we have

1. F=(F,)f = (F*)Pif 0< B <a,
2. F=Fy)p=F"gif0< < a,

3. (FY)P D Fif0< B<a<ce(F),

4. (FY) D2 Fif0< B <a<c(F),

5. (Fa)? D Fif0 < < aand a € C(F),

6. (Fa)p 2 Fif0< 8 <aand ac€ (0,c(F)],

7. ((F¥)*)® = F« for any a € (0, ¢(F)],

8. if FF e Fy and ¢(F) <y <1 then ylp € F.
Proor.

(1) Let F € F. Then alp € F, and for v < 3 < a, (alp)” = F € (F,)”. Therefore
F C (F,)?. We have
F, CF* = (F,)" C (F*)P.

So, F C (F,)P C (F>)5.
Let v7 € (F*)® then v < 3 and v € F°.
veF*=Vé<a, °cF.

Since 0 < 8 < a, so v € F. Therefore (F*)? C F.
Hence F = (F,)P = (F%).

(2) Let F € F. Then alp € F,and for 0 < 8 < a, (alp)? = F € (F,)3. Therefore
F C (Fa)s. We have
Fo CF* = (Fa)ﬁ c (Fa),@'

SoF C (Fu)p C (F)g.
Let v# € (F*)s. Then v € F°.
veF*=Vy<a vV el
Since 0 < 8 < a and so v? € F. Therefore (F*); C F.
Hence F = (F,)g = (F*)3.

(3) Let v € F. Thensince a < ¢(F)soV v < a, v € F*. Since 0 < f < a. So
Y v < B, v? € Fo. Therefore v € (F*)?. Hence F C (F)5.
)

(4) Let v € F. Thensincea < ¢(F)soV v < a, v € F* Since 0 < 8 < a. So
v> Pl € (F*)3. Therefore v € (F¥)z. Hence F C (F%)g.

(5) Let v € F. Then v® € F,. Since 0 < 3 < a. SoV v < 8, v? € F,. Therefore v € (F,)P.
Hence F C (F,)".

(6) Let v € F. Then v® € F,. Since 0 < 8 < a. So v > flya € (Fu)s. Therefore
v € (Fo)p. Hence F C (Fo)p.

(7) We have
(FY)* D F = ((F*)*)~ 2 F«.

Let v € ((F*)*)®. Then 3 < a and v € (F)*. SoV v < a, v? € F*. Therefore v € F.
Hence ((F*)*)“
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(8) Let F' € Fy. Then F =1 for some vy € F. We have

v>c(F)= Iljréffsup v.

Therefore 3 vy € F such that sup vy <. Let v = v Vvy. Then v € F and v° =29 Nvd D
F. Sosup v <sup vg < 7. Therefore v < v1p € F. g

The following theorem is very useful when we try to show two saturated prefilters are
equal.

5.3.4 Theorem
If F and G are saturated prefilters such that ¢(F) = ¢(G) = a and F# = G for all 3 € (0, q]
then F = G.

PROOF.

Let p € F and ¢ € Iy. We seek v € G such that v < p+ €. Then, since ¢ is arbitrary,
we will have V ¢ € Iy, u+ ¢ € F and since G is saturated so u € F.

Choose ag, a1,...,a, suchthat 0 = ap < g < ag < ... < oy = o with a; — ;1 < /4
for each i € {1,2,...,n}.

(i) Since u® € F® = G*. So I v, € Gand B < oy with (v])% = p®. Thus
Juv =i ANalx € G and B < a; with v]* C (v])5r = poo,

(ii) Since p®™ € Fo2 = G*. So I v € Gand B < a with (v4)% = p®'. Thus
Juy=vhNalyx € Gand B8y V oy < ag with 15> C (14)%2 C (44)%2 = ™. In general we

have:

For each i € {1,2,...,n}, 3 alx > v; € G and §; € [a;—1, ;) with uiﬁi C p~i-1. Let
V= A vi.

i€{1,2,....,n}

Then alx > v e G and V7 C Vf C pi-t for each I € {1,2,...,n}.
Thus Vi€ {1,2,...,n} and V € X we have:
v(z) > B = pu(x) > aim1 > oyl/de > B — 1/4e.

Now we have to show v < p+ €.
Let z € X and v(z) > . Then
(a)if 0 < B < By then (u+e)(z)>e>ar > 01 > 0.
(b) if 8; < B < Biy1 for some i € {1,2,...,n} then

v(z) > B> B = (pte)(x) = p(x)+e > B;—1/4e+e = B;+3/4e > a;—1+3/4e > a1 > Big1 > 5.
(c)if B, < B < « then

v(z) > B> P = (ute)(z) =u@)+e > fp—1/de+e=0,+3/4e > ap_1+3/4e > a > (.

Therefore in any case
v(iz) > 8= (n+e)(x) > 0.
Thus p(x) < (p+¢€)(z). But « is arbitrary therefore v < 4+ e.

5.3.5 Proposition
Let F be a saturated prefilter and ¢(F) = a. Then

F=[)F".

B<a
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5.3.6

5.3.7

PROOF.
Let G = N
B<a

saturated perfilters.

(FP)8. Then G is a saturated prefilter, as an arbitrary intersection of

tlx€G <=VfB<a, tly € (F5)P
= VhB<a Vy<f, (tix)Y € F°
= ViE<a Vy<pf, v<t
= Vi<a, <t
—t>a.

Therefore C(G) = [0,a) = C(G). Now we have to show V 3 € (0,a], F? = GP. Since G D F,
we have G8 D FPB.
On the other hand G C (F#)? and so G# C ((FP)#)? = F5. Therefore by above theorem
F=G= n (FP)s.
B<a
0

Theorem
Let F be a prefilter on X with ¢(F) = ¢ > 0 and F is a filter on X. Then

1. F is prime & Fy is an ultrafilter,

2. F is prime = Fy = F¢,

3. T is ultrafilter < . is prime, for any « € (0, 1],
4. T is ultrafilter < ¢ is prime, for any « € (0, 1],
5. if F is prime and F C G then G is prime.

PROOF.

(1)
(=)

Let AUB € Fo. Thenlaup € F. 1laup = 14 V1 € F. Since F is prime. So
1la € Forlg e F. Therefore A € Fy or B € Fy and so Fy is prime. That is Fy is ultra.

(<)
Let uVv € F.Then (uVvv)? = 0 Ur¥ € Fy. Since Fy is an ultrafiter. So p° €
Fo or ¥ € Fy. Therefore ;1 € F or v € F and hence F is prime.

(2) Fo C F¢ and Fy is ultra = Fy = F°.
(3) We have F = (Fo)o and by (1)

F = (F,)o is an ultrafilter <= F,, is prime .

(4) We have F = (F*)y and by (1)

F = (F)p is an ultrafilter <= F< is prime .

(5) We have F C G = Fy C Gy and F is prime <= Fy is ultra. Therefore Gy is ultra and
hence G is prime.
O

Lemma
If F is a prefilter on X and F is a filter on X then
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1. fNFlﬁ(f\/]FﬁQ:fo\/]F,

2. If F is an ultrafilter then
F ~TF @]:OQF@(}'\/E)O:IF
PROOF.
(1)
We(FVF)y =v>uAlpforsomepc F, FEF
= WO uWNFwithpueF, FEF
=10 € Fy VF.

Let A€ FoVF. Then A D u® N F for some yp € F, F€F. So AD (uA1p)? with pu €
F, F €F. Therefore A € (FVFy)o. Hence (FVFy)g=F VF.

(2) Let F is an ultrafilter. Then

F~F, <—VYveF, VFeF, vV1ip#0
= VveF, VFeF, °NF+#0
—=VveF LeF
— Fp CF.

F~Fy= (FVF)o=F VF =F. Clearly, (FVF,)g=F = F ~F,. 0

The following definition aims to characterises the collection of minimal prime prefilters.

5.3.8 Definitions
If F is a prefilter and F is filter on X we define,

P(F) def {K : K is an ultrafilter and F C K};

P(F) def {G : G is a prime prefilter and F C G};

P (F) o {G:G € P(F) and G is minimal }.

5.3.9 Lemma
1. P(F) has minimal elements,

2. F= N G,

GEP(F)

3. F= N G

GEPm(F)
PROOF.

(1) For G1,G> € P(F) define,
G 2G =G 206

Then P(F) is a partially ordered set. Let C be a non-empty chain in P(F). Then
H= grgcg is a prime prefilter and F C H.

Clearly F C H,

We have H # () and 0 ¢ H.

Let p,v € H. Then V G € C; u,vG = pAv e H.

Let pe Hand p <vthenvVGeC, pcGand pu<v=veH.

Therefore H is a prefilter.

Let uyWVrveHthenVGelC, uVveg. So

VGel, (neGorvegq).
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5.3.10

IfvgelC, pedthen ueH.

If 3 G' € C such that p ¢ G’ then v € G’

Therefore V G € Csuchthat G O G’ wehaverv € G and if G € C such that G C
G’ then u ¢ G, so we must again have v € G. Therefore v € H. Hence H is a prime
prefilter.

So, we have H € P(F) and an upper bound for C. By Zorn’s Lemma, (P(F), <) has a
maximal element. That is (P(F), C) has a minimal element. Therefore P, (F) # 0.

(2) Firat we have to show that

GeEP(F)<= GoeP(Fy)and Fo= N _Go.
GEP(F)

G e P(F) <= G is prime prefilter and F C G
<= Gy is ultra and Fy C Gy
<~ Gy € P(Fy).

We have

0= N F.
FeP(Fo)

F e P(Fy) = Fis an ultra filter and Fy CF
= (FVF1)o=F and F is ultra.
= F VF; is prime and F C F VI,
= FVF, € P(f)

That is we have
G eP(F)= Gy e P(Fp) and

FeP(Fy) = (FVF, € P(F) and (FVTFy)y =TF).
Therefore

Fo=_ N F= n
FeP(Fo) GEP(F)

Yo.
Clearly F C
GeEP(F)
Let p € ; Q(f)g. Then VG € P(F), u€G. So¥ G € P(F), u° € Go. Therefore u° € Fy
€

andsopu € F. Hence F= N G.
GEP(F)

(3) If G € Py (F) then G € P(F) and G is minimal.

So obviously, F = N G.
GEPm(F)

O

The following crucial theorem due to Lowen [48] characterises the mimimal prime pre-
filters.

Theorem
If F is a prefilter then

Pu(F)={FVF,:FeP(F)}.
PRrooOF.
Let G € Py, (F). Then G € P(F) and G is minimal. We have

G € P(F) = Go € P(Fy).

and
Go is ultra = (Gp)1 is prime = F V (Gp)1 is prime .
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5.3.11

5.3.12

5.3.13

Therefore F V (Go)1 € P(F). We have
Go={FCX:1p €G}.

and so
(Go)1 =<{lp:FeGy}>=<{lp: FCX, lp G} >CQG.

So (Go)1 € G and F C G. Therefore FV (Go)1 € G. But G is minimal. Hence G = FV (Gp)1.
That is, if G € Py, (F) then G = F V (Go)1 and Gy € P(Fy). Therefore

Pm(F) C{FVF, :FeP(F)}

Let F € P(Fy). Then F VF, € P(F).
If 3G € P,,(F) such that G C F V Fy then

ng\/(go)lc.}-\/Fl.

So (Go)1 € Fy = Gp C F. This is a contradiction, since F,Gy € P(Fp). Therefore
FVF, €P,(F). Hence
Pu(F)={FVF,:FeP(F)}.

Theorem
If F is a prefilter then 3G € Py, (F) with ¢(F) = ¢(G).

PROOF.

If ¢ = ¢(F) > 0 then choose F € P(F¢). Then we have F € P(Fy) and so FVIF; € P, (F).
Therefore ¢(F) > ¢«(FVFy). Let 0 < a < ¢(F) and p € FVFy. Then Iv € F, F €
F such that y > vAlp. Now v® € F¢ C F and so v*NF # . Let x € v*NF. Then sup u >
supvAlp > v(z) > «a. Since p is arbitrary we have ¢(FVF;) > « and since « is arbitrary we
conclude that ¢(F V F1) > ¢(F). Therefore ¢(F) = ¢(F VFy). If ¢(F) = 0 then choose F €
P(Fy). Therefore FVF; € P, (F) and so 0 = ¢(F) > ¢(FVF;). Therefore ¢(F) = ¢(FVFy).

O

For a prefilter we now see the definition of lower characteristic.

Definition
For a prefilter F we define the lower characteristic of F by

Ql

def .
F) = f
(%) ge%’i(r)c(g)

and it is easy to see that ¢(F) = ¢(F) when F is prime.

Lemma
If F is a prefilter with &(F) > 0 then

O<a<e(F)eVvelF, v*eF.
Proor.

We have
¢F) = inf ¢(F)= inf c(FVF)
GEPm (F) FeP(Fo)
= inf inf inf sup(v Alp).
FeP(Fo) veF FeF
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5.3.14

So
0<a<ée(F) <=VFeP(F), VveF, VFeF, v*NF #()

= VveF, VFeP(F), v*elF

—VveF, v*e n F=F.
FeP(Fo)

Proposition
If F is a prefilter with ¢(F) > 0 and F is a filter then

1 e(F) = inf supfa v € Fo} = suplas Fo = Fo),

2. If F = F then (F°), C F, where ¢ = &F) and ¢ = ¢(F),
3. &(F) > &(F),
4. ¢F,) = a and ¢(F*) > a, for a € (0,1].

ProoF.

(1) Let g = 11615_ sup{a : v* € F}. Then

0<a<eF) <=VvelF v*ekF
= VveF, a<sup{d: 1’ € F}
= a< inff sup{d : ° € Fo} = 3.
ve

That is a < &(F) <= a < . So &(F) = 8. Now we have

a<e(F) <—<=VveF, v*eF
<:>fozgf0
< a <sup{d: Fs C Fo} =sup{d: Fs = Fo}.

So & =sup{d : Fs = Fo}.

(2) let p € (F¢).. Then pu > cl,s where 3 < cand v € F. 3 < &= 1P € Fy. We intend to
show that u € F.

Let € € Ip and define 7. = (¢ +¢/2) Al and v. =4.1,5. Then p+¢ > v, and v. € F.
SinceAuﬁ € Fo and ¢(F) < v < 1. Therefore V ¢ € Iy, Jv. € F such that v, < p+e. Hence
neF=F.

(3) Let 0 < o < &(F), G € Pr(F) and p € G. Then IF € P(Fy) such that G = F VF; and
hence y > v A lp where v € F and F € F.

Now let v = sup (v. — ¢) for some family (v, : ¢ € Iy) € F. Choose 3 such that a <
eelo

B < &F) and let § = 3 — o Then we have v5 € F and v > v5 — 8. 3 < &F) = v§ € Fo C
(F)o C F and hence vy N F # . Chosse = € vy N F,

sup > sup l//\lF:SU.IP;V<y)ZV(I)ZV5($>—5>ﬁ—5=Oé.
ye

Since p is arbitrary, ¢(G) > a. Since G is arbitrary ¢(F) > « and since « is arbitrary,

c(F) = e(F).

(4) Let G € Pp(F,). Then IK € P((F,)o) such that G = F,, VK;. But (Fo)o = F. So
K € P(F) and

o(G) = c(Fa VK:) = inf inf sup (alp Alx)

= a. [ since FNK # ()]
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and so ¢(F,) = a. Therefore ¢(F<) = ¢(F,) > ¢(F,) = .

It is worth noting that inequality in 3 may be strict. This can be seen by letting
F =< {aV1p:a>0,F €F} > Where Fis a filter on a set X. Then
F =<{lp: F € F} >=F" and hence &F) =0 but ¢(F) = 1.

5.4 Images and Preimages

If f: X — Y | Fis a prefilter on X and G is a prefilter on Y then

def def _

FIFI = A{flWl :pe F}and fHGI = {f1 V] v egh.

5.4.1 Lemma
Let f: X — Y | F is a prefilter on X and G is a prefilter on Y. Then

1. f[F] is a prefilter base on Y,
2. f is sujective then f~1[G] is a prefilter base on X,
3. 1f o(F) = o(f1F]),
4. If f is injective then c¢(f~1[G]) = ¢(G),
5. If f is injective and p € IX then ¢(G, f[u]) = c(f 1G], 1),
6. If F is prime then < f[F] > is prime,
7. e(fIF]) = e(F).
Proor.

(1) Clearly f[F] # 0 and 0 ¢ f[F].
Let flu], flue] € f[F] with p1, u2 € F. Then flui|Aflp2] > fluiApe] with piAps € F.
Therefore f[F] is a prefilter base on Y.

(2) Clearly f|F] # 0. Since f is surjective. We have 0 ¢ f[F].
Let f=1[v1], f o] € f7YG] with v1,v9 € G. Then f=1 ] A f~ wa] = 71 Ao €

gl
Therefore f~1[G] is a prefilter base on X.
(3) We have
— f = 1] f .
c(F) Jnf sup p and c(f[F]) Jnf sup flu]
and
sup  flp] =sup flu](y) =sup  sup p(z)
yey yeY f(z)=y
=sup p(z) [since X = U f~{y}]
zeX yey
=sup p.

Therefore ¢(F) = c(f[F)).

(4) we have
of719] = inf sup f7ly] = inf sup v(f(x))
T
=c(G).
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5.5.1

5.5.2

5.5.3

(5) We have

G~ flu] =VveF, vAflul#0
—=VveF, fy]Au+#0 [since f is injective]
=[G~ n.

Since f is injective. So v A f[u] = f[f~[v] A p]. Therefore
sup v A flul =sup fIf YA =sup fHY] A p.

Hence
oG, flu)) = inf sup v A flu] = inf sup FHI A= c(f1G], w).

(6) Let v1 V vy €< f[F] >. Then 3u € F such that vy Ve > flu]. So f=iv V] >
F7HfIW] = p. Therefore p < f=ui] V f~1 o] € F. Since F is prime. So f~'[11] € F
or f7l[wy] € F. Therefore vy > f[f~1[]] € f[F]orva > f[fe]] € f[F]. Hence
vy €< f[F] > or 1n €< f[F] >.

(7) We have
oF) = Hegl,f(f) o(F) = Hegf(}‘) c(fIHD)
and
c(flH]) = inf c(G).
(H) =, _int _ c(0)
But

Pu(f[F]) € {f[H] - H € Pn(F)}-
Therefore ¢(F) < e(f[F]).

5.5 Convergence in Fuzzy Topological Space

Topological spaces provide the appropriate setting for the abstract study of continuity and
convergence. In [48] Lowen extended the theory of continuity and convergence in topological
spaces to the realm of fuzzy topological spaces.
We define the adherence and limit of a prefilter in a fuzzy topological space as follows.
Let (X, 7T) be a fuzzy topological space. Then

Definition
If F is a prefilter, then we define the adherence of F

adh F = inf 0.

veF

where 7 is the fuzzy topological closure of v.

Definition
If F is a prefilter then we define the limit of F,

ImF= inf adh G.
GEP (F)

Note inf adh G =0.
GEP(F)

Proposition
Let F and G be prefilters. Then
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1. If £ D G then adh F < adh G,
2. limF < adh F,

w

. If F is prime then lim F = adh F,

4. If F is a prefilter base then
adh < F >=adh F.

PROOF.
(1) We have
FOG= infv<infwu.
veF veg
Therefore
FDOG=adh F<adh G.

(2) We have

G € Pp(FF)=adh G <adh F.
Therefore

lim F= inf adh G <adh F.

GEPw (F)

(3) If F is prime then P,,(F) = {F}. Therefore lim F = adh F.
(4) we have

adh < F>= inf v and adh F =inf ».
veE<F> veEF

Clearly adh < F ><adh F. But Vu e< F >, dv € F such that v € pand so v < fi.

Therefore
inf g >inf D.
HELF> veF
Thus
adh < F >>adh F.
Therefore

adh < F >=adh F.

5.5.4 Theorem
Let f:(X,71) — (Y, 73) be a function. Then the following are equivalent

1. f is continuous,
2. For each prefilter on X, fladh F] < adh f[F],
3. For each prefilter on X, f[lim F] <lim f[F].

Proor.
(1) <= (2)
We have L
adh F = ;lféff @ and adh f[F] = Lréff flul-
and
fladh ) = flinf_p < inf_flg].
But

f is continuous <=V p € I'Y, f[a] < flul.
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Therefore consequently
f is continuous <= fladh F| < adh f[F].

The rest of the proof can be found in [48].

More information regarding prefilters can be found in [33, 64, 74].
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Chapter 6

Fuzzy Uniform Spaces

6.1 Introduction

In [52] Lowen introduced and studied the notion of a fuzzy uniform space. To define a fuzzy
uniform space first we have to define some basic definitions which are generalisations of the

standard notion.
If 0,7 € IX*X we define,
def
US(I’7y) = G(y’x)a
def
(cov)(z,y) = Sugw(% z) No(z,y).
zE
IfU,VCXxX and o =1y,¥ =1y then
(ly)s(z,y) =1 = 1y(y,z) =1
— (y,x2) €U
— (z,y) € Us
= (lv,)(z,y) = 1.

Therefore (1y)s = 1p,.
(Iy oly)(z,y) =1 <= sup ly(z,2) Aly(z,y) =1

zeX
<= JzeX: (z,2) €U and (z,y) € V

< (z,y) € VoU
= 1V0U(I,y) =1.

Therefore 1V o lU = 1VoU-
Therefore the above definitions are natural generalisations of the standard notions.

6.1.1 Definitions
If X is a set and D C I*X*X is called a fuzzy uniformity on X iff

1. D is a prefilter andf):D;

2.VoeD, VaxeX, olx,z) =1,
3.VoeD, o, €D;

4. VoeD, Veely, WeD:voyp<o+e.

We call (X, D) a fuzzy uniform space.

If X is a set and B C I*X*X is called a fuzzy uniform base on X iff

47



6.1.2

6.1.3

1. B is a prefilter base;

2.VoeB, VeeX, o(x,z) =1;
3.VoeB, Ve>0, WpeB:yp<os+c¢;
4. VoeB, Ve>0, WpeB:yYpoyy<o+e.

If D is a fuzzy uniformity on X, then we call that B is a base for D iff B is a prefilter
base and B = D.

Proposition R
(1) If B is a fuzzy uniform base then B is a fuzzy uniformity.
(2) If B is a base for a fuzzy uniformity D, then B is a fuzzy uniform base.

PROOF.

(1) Let B is a fuzzy uniform base.

Then B is a prefilter base. So B is a saturated prefilter.

Clearly Vo € B, V z € X, o(z,xz)=1.

Let 0 € Band e € Iy. Then 3o. € B such that ¢ > 0. — g/2. So g5 > (0c)s —€/2.
Since 0. € B, we have Ji). € B such that ¢, < (0.)s + /2. So 04 > (0.)s — /2 > Y. —&.

Therefore V ¢ € Iy, 05+ € B and so o, € B.

Let 0 € Band € € I,. Then Jo. € B such that ¢ > 0. — g/2. Since o. € B. So
3B such that 1 o) < o, + /2. Therefore ) € B such that ¢ o¢) <o +e¢.
Hence B is a fuzzy uniformity.

(2) We have B is a prefilter base and B is a fuzzy uniformity.

Clearly Vo e B, Vz € X, o(z,x) =1.

Let 0 € Bande € Iy. Then o 4+ ¢/2 € B and so o, + ¢/2 € B. Therefore 3 €
B such that o, +¢/2 > ¢ —¢/2= 1) < os +e.

Let o € B and € € Iy. Then o4¢/3 € Band so 3’ € B such that ¢/oy)’ < (o+¢/3)+¢/3.
We have B
Y € B =3 € B such that ¢’ > — /3.

So <p'+e/3=1op <Y oy)'+e/3 <o+e. Thatis Fp € B such that o) <o+e. O

Proposition
If D is a fuzzy uniformity on X then

Bdéf{aeD:azos}

is a fuzzy uniform base for D.

PROOF.

Clearly 0 ¢ B and B # ().

Let 0,1 € B. Then 0 = 0, and ) = ¢s. So (6 A)s = (o A).
Therefore B is a prefilter base.

Now we have to show B = D.

Let 0 € B. Then 3(¢. : € € Iy) € B such that

o >sup (Y. —e).
ec€ly

But B C D and D is a saturated prefilter. Therefore o € D.
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Conversly let o € D. Then o, € D. We have (0 A 0s)s = 0 A os. Therefore o Ao, € B.
But 0 > o Aos and so 0 €< B >C B. Hence B ="D.
O

The proof of the following proposition is straightforward.

6.1.4 Proposition
If 0 € D then
o< cooo and
o <o" for any n € N
where 0" =g oo o...00 (n factors).

6.2 Fuzzy Neighbourhood Spaces

It is shown in [50] that a fuzzy topology can be defined using a fuzzy neighbourhood system.
Here we only assemble some facts regarding neighbourhood spaces which are essential for
defining a fuzzy topology. More information regarding fuzzy neighbourhood spaces can be
found in [50].

6.2.1 Definitions
A collection (Ny) e x of prefilters on X is called a fuzzy neighbourhood system iff the following
conditions are fulfilled:

LVzeX, VuehN,, p) =1,
2.VzeX, Ny =N,

3.VezeX, VueN, Vee€lyIv,:2z€ X)suchthat V 2z € X, v, € N,

andVyeX,

sup v, (2) Ava(y) < u(y) +e.
zeX

N, is called a fuzzy neighbourhood prefilter in X and the elements of N, are called fuzzy
neighbourhoods of x.

A collection of prefilter bases (8y).cx on X is called a fuzzy neighbourhood base iff the
following conditions are fulfilled:

l.VeeX,Vuepf, plz)=1;

2.VzeX,VuepPy, Veely, Iv,;2€ X)suchthatVz € X, v, € 3,

andVyeX

sup va(2) Ava(y) < ply) + e
FAS

B is called a fuzzy neighbourhood base in x and elements of (3, are called basic fuzzy
neighbourhoods of x.

If N = (Nz)zex is a fuzzy neighbourhood system then we call 3 = (3;).cx is a base for N
iff VoeX, B, is a prefilter base and 3, = N,.

6.2.2 Proposition

If (B:)zex is a fuzzy neighbourhood base then (ﬁ;)me x is a fuzzy neighbourhood system
with (8:)zex as a base.
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PROOF.

(i) Clearly Vz € X, Vu € 6;;=< Be >, p(z) =1.
(ii) We also have V z € X, f3, is saturated.
(iii) Let € X, pu € B, and ¢ € Iy then I(\s : § € Iy) € (B,)% such that

= sup (As —6)
d€ly

= > Aejo —€/2.
We have x € X, \./p € B, and € € Iy and so I(v, : z € X) such that V z € X, v, € 3.

andVyeX,

sur;(vx(Z) Av2(y) < Aejaly) +6/2 < ply) + e

z€E
Therefore ~ R
VeeX, Vue by, Vecly, I(v.:z2€ X)such thatV z € X, v, € 5,
andVyelX,

sup v (2) Ava(y) < p(y) +e.
zeX

Hence (0;)zex is a fuzzy neighbourhood system with (8, ).cx as a basis.

6.2.3 Proposition
If (B:)zex is a base for the fuzzy neighbourhood system (N;)zex then (8:)zecx is a fuzzy
neighbourhood base.

PROOF.

Clearly Vx € X, ¥V pu € B C Ny, plz) =1. .
Let v € X, p€ By and e € Iy then (v, : 2 € X) such that Vz € X, v, € 3. =N,
and Vy € X,

sup v, (2) Av.(y) < p(y) +¢/2.
zeX

We haveVz € X, v, € ﬁ; and so
YV z € X,3\, € 3, such that v, > A, — /2.

So

Sup A (2) A Az (y) < sup va(2) Ava(y) +e/2 < ply) +¢
zeX zeX

Therefore Vo € X, Vu € By, Ve€lp, I\, :z€ X)such that V z € X, A\, € 5,
andVyeX

sup Az (2) A X (y) < u(y) +e.
zeX

Hence (8;)zex is a fuzzy neighbourhood base.

6.2.4 Theorem
If N'= (Ny)zex is a fuzzy neighbourhood system on X then the operation

I — X forpel®andze X
i(z) = inf Av(y) = inf A
fi(x) Jof, sup uly) Avly) = inf sup pAv

is a fuzzy closure operator.
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PROOF.

We have
0= inf sup 0(y) Av(y) =0.
Juf sup (y) Av(y)
So 0=0.
We have

i(x) = inf su Av(y).
() Jof, sup wy) Av(y)

Since v(z) =1, a(x) > p(z).

We have
pvVA(z) = nf. sup (Vv Ay) Av(y))
= jnf sup ((u(y) Av(y) Vv (Ay) Av(y))
= inf (sup u(y) Av(y) V sup Ay) Av(y)
veNg yeX yeX
2 inf u(y) Avly) v 32/{/1522 Ay) Av(y)
= i(x) vV A(z) = (& V A)(x)
and _
pvVA@) = inf (sgg n(y) Avly) v sup Ay) AV (y)
> dnfsup (uAv)V ANV ()

But v, € Ny = v AV € N,. So we have

pvA(x) 2 infosup ((1VA) AV)(y) = pVA(@).
veNz yeX

We have
(x) = Vig{ﬁlsgg B Av(y)
= inf sup (V'}relfvyzsgg n(z) AV (2)) Av(y))
= uier}\ffm 525 V,iélj{/y Sg)}g w(z) AV (2) Av(y).
Forve N, ande € Iy, (v, :2z€ X)such that V z € X, v, € N,
andV z e X

=i

sup vz (y) Avy(z) <v(z)+e.

yeX
Then
sup w()Av(z) +e > sup (z) A () + o)
zeX zeX
> sup pu(z) A (sup vz (y) Avy(z))
zeX yeX
= sup p(2) Ava(y) Avy(2).
z,yeX
So -
A(x) <sup inf sup p(z) AV'(2) Ava(y)
yex V'ENyzeX
< sup p(z) Avy(z) Avg(y)
y,2€X
<sup p(z) Av(z) +e¢
zeX
Therefore

is true for all v € N, and € € I, it follows that

(z) < p(z).

=i
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6.2.5

But we have shown that pi(z) > fi(x). Hence i = fi. O

Proposition

If B = (B:)zex is a base for the fuzzy neighbourhood system N = (N )zex then V u €
IX, ¥V 2 € X we have

g(z) = inf sup pAv= inf sup pAv

VEB, veE< B>

= inf supuAwv.
vEBs

PROOF.
Let € IX and z € X. Then

i(z) = inf s Av.
i(z) Jnf sup uAv

Since By C By C Be = N, and By C< By >C By = N,. So we have

g(x) < inf sup pAv < inf sup pAv
vEBs vEQs
and
a(z) < inf sup pAv < inf sup pAv.
veE<PBe> VEPs

But VA e N, and V ¢ € Iy, v € G, such that
A> v —c.

Therefore
= inf A X
() Jnf sup p

> inf su AN(v—e
2 inf sup p ( )

> inf sup pAv —e.
VEPBy
This is true for all € € I and hence

il = inf s A V.
fi(x) inf sup pAv

If N = (Np)zex is a fuzzy neighbourhood system then the above fuzzy closure operator
generates a fuzzy topology and is denoted by 7.

The fuzzy topology which is generated by a fuzzy neighbourhood system, will be called
a fuzzy neighbourhood space.

Not every fuzzy topological space is a fuzzy neighbourhood space. The reader can be
found more facts regarding fuzzy neighbourhood spaces in [50].

6.3 Fuzzy Uniform Topology

A fuzzy topology can be defined using a fuzzy closure operator. Here we find two fuzzy
closure operators one directly from a fuzzy uniform space and and the other from a neighbi-
urhood system which is generated from a fuzzy uniform space. Eventually we can see that
if the fuzzy uniform space is same then fuzzy topologies generated from two fuzzy closure
operators are same.
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First we define some natural generalisation of the standard notions.
For o € I**X | € I and 2 € X we define 0 < x > by

o<z >(y) < o(y,a)
and 0 < p > by

o< p>(x) o suppu Ao <z >= sug w(y) Aoy, z).
ye

IfAC X and U C X x X then

ly<la>(x)=1 <= sup la(y) Alu(y,z) =1
yeX
<~ JyeA:(yx)eU
— 2z ecU(A)
<~ 1U(A)(x) =1.

Therefore 1y < 14 >= 1y(4). Thus the definition of o < u > is a natural generalisation
of the standard notion.

Let o0 € IX*X and 3 € I,. Then

def
o = {(z,y) : o(z,y) > B}
In the following lemma we collect some basic facts.

6.3.1 Lemma

Let 0,9 € I"*X; vueIX, ecl, Bc€l,, x € X and n € N. Then
Hrv<o<v>,
(oc+e)<v><o<v>+e,
o< uVr>=oc< u>Vo<v>,
o<Yp<v>>=(coy) <v>,

yeX
(2)
(c+e)<v>(x) = 51€1p v(y) A (o +¢)(y, x)
< sup (v(s) +) A (o) + )
= (sup () Ao (y.2) +2

o<uVv>(xz) =sup (uVv)Ao<z>

=sup (Ao <z >)VVAc<z>)
sup uNo<x> V sup vAo<x>
=o<pu>(E)Vo<v>(z)

= (o< pu>Vo<v>)(z).
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c<p<v>>(x) =sup Y <v>YyAo<z>(y)

yeX

= sup (sup v(z) AY(z,y)) Ao(y, )
yeX zeX

= sup sup v(z) AY(z,y) Ao(y, ).
yeX zeX

(coy)<v>(xr) =supv(z)A(co)) <z >(2)

zeX

= sup v(2) A (sup ¥(z,y) Ao(y,2))
zeX yeX

— sup sup 1() A B(z,y) Aoy, )
zeX yeX

sup 0 < v > Ap(z) = sup(sup v(y) Ao(y,x)) A p(z)
zeX zeX yeX
= sup sup v(y) Ao(y,z) A p(x)
zeX yeX

= sup(sup u(z) Aos(z,y)) Av(y)
yeX xzeX

= sup o5 < p > (y) Av(y)
yeX

sup v(y) Ao(y,z) > 3
yeX

) =
<:>3y€X V()/\a(y, ) >0
— el (y,z)c
(z)xéaﬁ(yﬁ).

r€(o<r>P «—=o<v>(x

yeco<zr>’ —=o<z>{y >4
= 0(y,3) = 0s(2,9) > B
= (z,y) € 0]
<y € d?(x).

(z,y) € (6P <= Fz1,29,...,0n_1: (z,21) € 0P, (21,22) €0P, ..., (Tn_1,y) € 7P
< sup{o(z,z1) No(z1,22) A ... Ao(xp_1,y) s a; € X, €{1,2,...,n—=1}} >
— o"(x,y) > 0
= (2,y) € (6")".

6.3.2 Theorem
Let (X, D) be a fuzzy uniform space. Then the map: [X — X defined by

it <>

is a fuzzy closure operator.
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PROOF.

we have

0(z) = inf o <0 = inf_sup O(y) A =0.
(z) =nf o <0> (z) nf sup (y) No(y,x)

Therefore 0 = 0.
We have
p=inf o < pu>>p.
oeD

We have

=
<
T
I

info<pvre>
ceD

info<pu>Vo<v>

oceD

>inf o<p> Vinf o/ <v>
oceD o’'eD

=aVvi

and

:1nfc7<u> \/mfa <v>
o€D

= inf a<u>\/0 <V>
o,0'eD

=
<
V|

But 0,0’ e D=0 Ao’ €Dand o < pu>Vo' <v>>oc Ao <puVwv > Therefore

pver>inf o< puVr>=puVu.
oD

Hence
uvVv=np\Vru.
Let 0 € D and ¢ € Iy. Then J0’ € D such that 6’ oo’ <o +e¢.
Therefore for any € X we have,

o<p>(z) =sup pu(y) Aoy, )

yeX

> sup p(y) A (o' oo'(y,z) —¢)
yeX
Sup sup u(y) Ao’ (y,2) Ao’ (z,7) — ¢
yeX zeX
sup o'(2.2) A gt s () A (3.)) —
zeX
= sup o'(2,2) A fi(z)
ze

=o' <p>(z)—e

\%

Thus for any € € Iy and o € D there exists 0’ € Dsuchthat o < pu > (z) > o' < p> (z)—
Therefore
inf o < p>>inf o/ <j>.
oecD o’'eD

That is p(z) > f(x). Hence i = fi.
6.3.3 Proposition
If B is a base for the fuzzy uniformity D then for all x4 € IX we have

fp =info<pu>= inf o<p>
oeB ce<B>

=info<pu>.
ceB
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PROOF.

SinceBQBQDandBQ<B>§D. Soforuelxwehave

p<inf o< p><inf o< p>
UEB ceB

and

p< inf o<pu><info<pu>.
ce<B> oeB

Let € € Iy and o € D then ) € B such that
o> —e.

Therefore

i = inf >
A=l <

>.f < > —c.

which proves that
o> inf o <p >
pzin U< n

Hence
o=inf b < p>.
=i Bw %

The above fuzzy closure operatoer defines a fuzzy topology
m={c":0=6}={1-0:0=05}
associateed with D and 7p is called the fuzzy uniform topology.

6.3.4 Theorem
Let (X, D) be a fuzzy uniform space. For € X define,

Dxdéf{a<m>:ael)}.
Then (D;)zex is a fuzzy neighbourhood system.

PROOF.

First we have to show D, is a prefilter.
oc<z>(z)=0(r,z)=1s00¢ D, and D, # 0.
Let o <x >, <x>€D,. Then 0,9 € D and so o A € D
o<z>N)<z>=(0cAY) <x>ED,.

Let o <z >€Dyando <z ><pu. ThenoecDandVye X, o<a>(y) =o(y,z) <

1(y)-
Now define 1) € IX*X by

o(y,z) ifz#=x
1/’(9’2)_{”8)) if z =u.

So ¢ > 0. Therefore 1 € D such that ¢ <z >= pu € D,. Hence D, is a prefilter.
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wehave Ve e X, VoeD, o<z > (z) =1

LetVeely, o<ax>+e€D,. ThenVee€ly, (c+e)<z>=0<a>+4c€D,.
SoVe €l (0 +¢) € D. Since D is saturated prefiter and therefore o € D. Hence D, is
saturated.

Let z € X, 0 € D and € € Iy. Then 3¢ € D such that oy <o+ €.
Therefore (1) < z >: z € X) such that V z € X, ¥ < z >€ D,.
and for y € X

sup Y < x> (2) AN < z>(y)
zeX

= sup P(y,2) Np(z, x)
zeX

Yoi(y,x)
o(y,x) +e¢
o<z>(y) +e.

A

Hence (D,)zex is a fuzzy neighbourhood system. O

Thus (D, )zex is a fuzzy neighbourhood system and therefore the operator

) — inf N
() Jnf sup pAv

is a fuzzy closure operator. This is precisely we have earlier because
=inf o <p> = inf No<x>
alz) =info<p>(z)=inf sup pAo <z
= inf A .
VIQDI sup puAv
Therefore a fuzzy uniform topology is a fuzzy neighbourhood space.

6.3.5 Lemma
Let (X, D) be a fuzzy uniform space and v € IX. Then

1. o(z) = ¢(Dy,v),
2. sup ¥ =sup v,

3. v=inf o <v>.

oeD
Proor.
(1) We have
v(x) :(iyréfDo<u>(sc):Cifréstup VAo <x>
:Higlf)wsup vAp

and

¢(Dy,v) =c(DV <v>)

;IE%L sup pAv.

(2) We have

v< V= sup v <sup V.

For each x € X,
v(x) = ¢(Dy,v) < sup v.

Therefore
sup v < sup v.

(3) We have
r=inf o<v><inf o <v>.
oeD oc€D
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Let 0 € D and € € Iy. Then 3¢ € D such that ¥ o) < 0+ ¢ and so

Y <v> :ign%§<zp<z/>>
€
<Y <Pp<v>>=thorp <v>
<(oc+e)<v>
<o <v>+e.

We have show that V ¢ € Iy, V o € D, 3¢ € D such that
Yp<v><o<v>te.

Therefore
inf Yy <v><inf o <v>=r.
PYeD oc€D

6.4 Convergence in Fuzzy Uniform Topology

We have seen convergence in a fuzzy topological space and here we see convergence in a
fuzzy uniform space. For this we simply use the fuzzy topology which is associated with the
particular fuzzy uniform space.

Let (X, D) be a fuzzy uniform space then we have fuzzy topology 7p associated with D.
If F is a prefiler on X then we have

adh F =inf ©
veF
and
lim F= inf adh G.
GEPm(F)
6.4.1 Lemma

Let (X, D) be a fuzzy uniform space, F a prefilter on X and z € X. Then
1. (adh F)(z) = ¢(D,, F),

2 (im F)@) = inf _c(Dr.0)

3. sup adh F < ¢(F),
4. sup lim F < &(F),

5. adh F= sup adh G.
GEPm(F)

PROOF.

For z € X we have (1)

(adh F)(x) =1inf v(z)=inf inf o <v > (z)

veF veFoeD
=inf inf sup vAo <z >
veEFo€eD

=c(FVDy) =c(Dy, F).
(2) For x € X we have

lim F)(z)= inf adh F(z)= inf ¢(Ds,Q).
(im 7)(z) GePon(F) @) gel7>nm<;r)c( 9)
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6.5.1

6.5.2

(3) If x € X then
(adh F)(z) = ¢(Dy, F) < ¢(F)

= sup adh F < ¢(F)
(4) If z € X then

lim F — inf oD,

(im F)e) = nf _cD2)
< inf ¢(F)=¢e(F)
GEPm (F)

= sup lim F < &(F).
(5) For each G € P, (F), adh G <adh Fandso sup adh G <adh F.
GEPm(F)
To prove the reverse inequality let x € X.
If (adh F)(z) = 0 then clearly (adh F)(z) <( sup adh G)(x).
GEPw (F)

If (adh F)(z) > 0 then choose « such that (adh F)(z) > « > 0. Therefore ¢(D,, F)
¢(Dy V F) > a. So choose an ultra filter F O (D, V F),. Now we have Fy C F,
(DyVF)o CF.

Let G = F VF;. Then G € P,,(F) and

1Nl

(adh G)(z) =¢(G,D;) =c((FVF)VD,)
=inf inf inf sup vAlp Ao <z >
veFFeFoeD

= inf inf inf No <z >)(y).
Wl A < w2

Therefore
vAo<xz>€FVD,andso FN(vAo <z >)*#0.
It follows that sup (vAc < x >)(y) > a and hence (adh G)(z) > a. Thus sup (adh G)(x) >
yeFr

GEPm(F)
« and since « is arbitrary,

(adh F)(z) < sup (adh G)(x).
GEPm(F)

Since x is arbitrary, the result follows.

6.5 Uniformly Continuous Functions
We extend the notion of uniformly continuity in uniform spaces in a natural way as follows:

Definition
Let (X, D) and (Y, &) be fuzzy uniform spaces and f: X — Y a mapping. f is said to be
uniformly uniformly continuous

iftvye& JoeD, : (f x fllo] <y
itV e, (fxf) 'Y eD.

Proposition
Let (X,D) and (Y, ) are fuzzy uniform spaces and B and C are bases for D and & respec-

tively. If f: X — Y is a mapping. Then f is uniformly continuous if and only if

V€& Vel Jo€Bsuchthat o —e < (f x f) ]
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6.5.3

6.5.4

PROOF.
We have

f is uniformly continuous <=V¢ €&, Joe€D: (f x f)lo] <y
= VyYel JoeD: o< (f x f) ]

But we have B=D and C = €.
(=)

Let ¢ € Cand ¢ € Ip. Then ¢ +¢/2 € €. Therefore 3o’ € D : o' < (f x f)7 o +
e/2] = (f x f)~t[] + &/2. Since o’ € D. So Jo € B such that 0/ > o — /2. Therefore
o—¢e/2<0" <(fx f) Y] +¢/2. Hence 0 —e < (f x f)"[y)].

(=)
Letw € £ ThenV d € Iy, Js € C: ¢ > s—4. Fore € Iy, Jo. € B such that o, —e <

(f x f)7 ). Therefore oc < (f x f)™ e +& < (f x f)7 [ + 2] = (f x f)~'[¥] + 2e.
Thus V € € Iy, Jo. € B such that o. — 2e < (f x f)7![¢)]. Therefore o = sup (0. — 2¢) <

e€ly
(f x f)7[¥]. Hence o € D such that o < (f x f)" L[] )
O

Corollary
Let (X,D) and (Y, &) are fuzzy uniform spaces and f : X — Y a mapping. Then f is
uniformly continuous if and only if

Vi €& Vecly Jo€Dsuchthat o —e < (f x f) ]

PRrOOF.

Since each fuzzy uniformity is a basis for itself, this follows the result.
Theorem
Let (X,D) and (Y,€) are fuzzy uniform spacs and f : (X,D) — (Y,€) is a uniformly
continuous function. Then [ : (X, 7p) — (Y, 7¢) is continuous.
Proor.

Let p € IX and y € f~(X). Then

flul(y) = Lnefﬂ < flul > (y)
= jpnfgsup (flW Ay <y >)(2)
€&zcy

= inf su su x) NY(z,
inf sup (f(a:)liz (@) AY(z,9))

= Eggilelg w(x) AY(f(x),y).

Therefore V 2’ € f~({y}),
Flul(y) = inf_sup p(x) A (f(@), (@),

Ye€pex
Since f is uniformly continuous we have V ¢ € £, 3o € D such that o < (f x f)~![¢]. Thus
Va2 € X, oz, z’) <¢(f(x), f(z')). Hence
FTE(y) = inf sup p(x) Ao(z,2') = p(a’).
YEEre X

Therefore

fluly) = sup  f(a’) = f]
v'ef=({y})

Hence f[u] > f[ji]. Since pu € IX is arbitrary we have f is continuous.
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6.5.5 Lemma
If f:(X,D1) — (Y,D3) and g : (Y,D3) — (Z,Ds) are two uniformly continuous func-
tions. Then (go f): (X,D1) — (Z, D3) is uniformly continuous.

PROOF.

Let ¢ € D3. Then (g x g)~![¢] € Dy and

(fx N Hgx ) Wl =g xg)o(fx )7l =((gof)olgo f)) ' [¥] € D1

Therefore g o f is uniformly continuous.

6.6 The a-Level Uniformities

Investigating a prefilter by its a-levels is a very useful device used in [49, 62, 9]. First we
see the a-level uniformities from a fuzzy uniformity.
If (X, D) is a fuzzy uniform space then for each o € Iy we define

Dadéf{aﬂ:0§5<a, o € D}.

6.6.1 Proposition
Let (X, D) be a fuzzy uniform space and « € Iy. Then D* is a uniformity on X.

PROOF.

(i) Since D is a prefilter. Therefore D is a filter.

(i) Let U € D* Then 30 € Dand 0 < 8 < a such that U = of. Since V z €
X, o(z,z) =1and so A CU.
(iii) Let U € D*. Then 30 € Dand 0 < 8 < « such that U = oP. We have U; =
s = (05)?. But 0, € D and 0 < 3 < . Therefore U, € D.
(iv) Let U € D*. Then 30 € D and 0 < 3 < a such that U = o°. Let ¢ = (a — 3)/2
and v = (3a+203)/5. Then € > 0. So 3¢ € D such that Yoy <o+e. We have 5 < v < a.
SoV =47 € D¥and VoV CU since:

(o’

(,y) eVoV <« 3z: (x,2),(z,y) €V

— sté;)){ V(x,z) Nb(z,y) =po(x,y) >

= (o0 +e)(z,y) >y
= o(x,y) > («+96)/10 > 3
— (v,y) €0l =U.

The uniformity D will be referred to as the a-level uniformity of D.
We also have for 0 < < a <1

DPCcp*CPD'and D= U D
0<y<a

Thus a fuzzy uniformity D generates a family (D* : « € Ij) of uniformities which become
stronger as « increases.
We intend to build a fuzzy uniformity with a predetermined a-level uniformities.

6.6.2 Theorem
Let (D(«) : @ € (0,1)) be a family of uniformities on X satisfying
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(a) 0<f<a<l=DB) CD(a),

(b) D(a) = 0<L~}J<a D(y) for each « € (0,1).
Let
D={occI™¥*:Vac(0,1),V3<a, o cD(a)}.

Then D is the unique fuzzy uniformity on X such that D* = D(«a) for each o € (0,1).

Proor.
(i) D is a saturated prefilter.

Let 0 € D and 0 < 3 < 1. Choose a such that 3 < a < 1. Then ¢ € D(a) and so {(z,z) :
x € X} C of and hence o(z,z) > 3 for each x € X. Since 3 is arbitrary we have

VaeeX, olx,z) =1

In particular, o # 0.

Let 01,00 € Dand 0 < 3 < o < 1. Then o, 05 € D(a) and so o N0l = (o1 A 0m)? €
D(«). Thus o1 Aoy € D.

Let 0 € D. Then o € D. Since if 0 < 3 < a < 1 then (05)? = (0%); € D(a).

Let c €D, 0 <9 and 0 < 3 < a < 1. Then o C 9° and since o € D(a), ¥* € D().
Consequently ¢ € D.

Let 0 = sup (0. — ) € D with each o, € D and let 0 < 8 < a < 1. We note that
eelp

o(z,y) > <= Jeel,:0.(x,y) —e> P < (z,y) € Uloﬁ*ﬂ.
eclp

In otherwords, o = U o£Fh.
ec€ly

Choose e € Io such that 5 < 3+ & < a. Then o£*7 C ¢ with o£*7 € D(a) and so
o8 € D(a). Thus ¢ € D and we have shown that D C D from which it follows that D = D.

(i) VoeD, Ve >0, I € Dsuch that Yop <o +e.

Let ¢ € D, € > 0 and choose «g,a1,...,a, such that 0 = ap < a1 < ... <, = 1
and o; — ;1 < € for each ¢ € {1,2,...,n}. Fori =0,1,2,...,(n — 1) we have 0% €
D(aiq1 and so FUa,,, € D(aiy1) such that U,,,, o Uy, € 0%. Let U}, = U,, and

U, = _QIUaj. Then since for each j < I, Uy, € D(a) € D(c;, we have Uy, € D(a;) and
o

U/, sup 7seteqU&i sup seteq...sup seteqU,, . So we can state:

Vie{l,2,...,n}, U,, € D(e; : Uy,0U,, C ot and U,, sup seteqU,, sup seteq...sup seteqU,,,

Let
Upy =X x X
and let
P = sup ozian__l.
i€{1,2,....,n} ‘

Then ¢ € D since if 0 < f < a < 1 then a; < o < 41 for some I. Thus 8 < a;41 and
hence ¢% sup seteqip®+t = U,, € D(a;) C D(a). It follows that 1% € D(a) and so 9 € D.
If o(z,y) > ap—o then o(z,y) + & > ap—2 + (, — ap—2) = a,, = 1 and hence we have
(pov)(z,y) <o(x,y) +e.
Since (z,y) ¢ 0% we have

If o(x,y) < ap_s then Fi < n—2: ;1 < o(z,y) < a;.
(,y) ¢ Uq,y, © Ua,,, and for no z do we have (z,2) € Uy,,, and (2,y) € U,,,. In
otherwords
vz ((1’,2) ¢ UOéi+1 or (Zvy) ¢ Uai+1)'
Thus V z

P(x,2) < i1 or Y(2,y) < g
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6.6.3

Consequently,

Yo(z,y) =sup ¢(x,2) ANY(z,y) < aipy < @i +e <o(z,y) +e

(iii) D* = D(«) for each a € (0, 1).

Let U € D*. Then U = ¢ for some 0 € D and 3 < a and so 0 € D(a). Thus we have
D% C D(a).

On the other hand, if U € D(a0 then U € D(B) for some 8 < « since D(a) = ﬁL<J D(3).

Let 0 = Blxxx V 1y. To show that 0 € D we let § < 1 and 0 < v < § and show that
o7 € D(J). If v < B we have 07 = X x X and if ¥ > 3 then 07 =U € D(B) C D(v). So in
both cases we have 07D(y) C D(§). Thus U = ¢” and hence U € D and we have shown
that D(«) C D
(iv) D is unique.
We invoke (5.3.4 ) and claim that there is precisely one fuzzy uniformities whose a-level
are the D(a)’s.
O

It follows that a fuzzy uniformity is uniquely determined by its family of a-level unifor-
mities.

It is shown that the convergence of a prefilter can be expressed in terms of the convergence
of its a-levels.

Theorem
Let (X, D) be a fuzzy uniform space, F a prefiter on X, z € X and a < &(F). Then

(im F)(x) > a <= Fy — = w.r.t D%

PROOF.

D is a uniformity on X. Therefore x € X
DY ={U(x):UeD} ={o(x):0<p<a, 0 €D}
is a neighbourhood base at z. We can also write
DY ={o%(x):0< B <a, o €D}

we first prove the result for a prime prefilter . In this case we have lim F = adh F, ¢(F) =
c(F) and Fy is an ultrafilter.
We have

(adh F)(z) > a <= inf inf o<v>(z)>a
veF oeD

= Vi<a VveF,VoeDvho<z>>[

—=VoecD VB<a, VveF, vPn(o<az>)P#10
«—=VoeD VB<a,VFEcF, FNno(x)#0since Fy = F
VYV eEDY, VFeF, FAV #0

—=VvVVeDI Uek

— Dy C Fo

<— Fo — x w.r.t DO

We have Fy = N Go. Now
GEPm (F)

(lim F)(x) > a <=V GePu(F), (adh G)(z) > «
= VGeP(F), Go — x wrt D
VG E€PuF), Dy C G

= DJ C N Go = Fo
GEPm (F)
<~ Fyp — x w.r.t D°.
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6.6.4

6.6.5

Next we characterise closedness in terms of the a-levels.

Theorem
If (X, D) is a fuzzy uniform space and p € IX then

1 is D -closed <=V « € Iy, j1q is D% -closed.

PROOF.

Let p be a D-closed, « € Iy and let z € cl,(vy), the D*—closure of p,. We have to show
that « € 4.
So let 8 < «a be a arbitrary and show u(x) > (. Now since p is D—closed and so

= [ = inf = inf .
w(x) = p(x) CI,%DU<'U>(JC) inf ' sup UANo < x>

Let 0 € D. Then o” € D So we have x € 0°(uuo) C o?(1”) and hence 3y € p? such
that o(y,x) > . Thus
pho <z >=py) No(y,x) > B

Since o € D is arbitrary, u(z) > . Therefore u(x) > a.

(<)

Let z € X and o < fi(x). Then

agﬁ(x):(ifréfp sup pho<z> <=VfE<a, VoeD, < pho<z>
= VpE<a,VoeD, Fyeu Cug: oy,z) >3
V<o, VoeD, z€d’(ug)
= VE<a, YU eD* xe€U(ug)
=V <a, x€cdy(ug) =g
= VE<a, px)>p
= u(z) > a.

Therefore u(x) > fi(x). Since z is arbitrary. Therefore p > fi and hence p = fi.

From the following theorem we establish a fuzzy uniformity from a uniformity.

Theorem
Let (X, D) be a uniform space. Then

D'={ocel*™X . Vacl, 0D}
is a fuzzy uniformity on X.

PROOF.

(i) Since D is a filter. So D! is a saturated prefiter.

(i) Let c e D! and x € X. ThenV a € I, 0* €D. SoV a € I, (z,z) € 0®. Therefore
o(z,z)=1.

(iii) Let o € D'. ThenV o € I1, 0® € D and so (¢*)s € D. Therefore V o € I, (05)* =
(0%)s € D. Hence o4 € DL

(iv) Let c € D! and ¢ € Iy. ThenV « € I, 0“ € D. Take § = 1 — ¢ € I;. Therefore
0% €D. So 3U € D such that U o U C 0%. Now take ¢ = 1y then ¢ € D',

If ¥ o ¢(x,y) = 0 then clearly Y o) < o +e.
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6.6.6

6.6.7

If Y o(z,y) = 1 then 3z : (2,2),(2,y) € U and so (x,y) € Uo U = (x,y) € ¢° =
o(z,y) > 4.
Therefore o(z,y) +€ > d+e=1. So o) < o+ e. Hence the result.

Theorem
Let (X,D) and (Y,E) be uniform spaces. Then

f:(X,D) — (Y,E) is uniformly continuous <= f: (X,D') — (Y, E') is uniformly continuous.
Proor.
Let v € X x X and « € I;. Then
(,y) € (f x /)= W) <= (f x f)(z,y) € *
= ((f < f)(x,y)) >

= (f x /) W=, )>a
— (@) e ((F x ) ).

the)refore (f > )= @) = ((f x )~ eD™.
=

Let f: (X,D) — (Y,E) be uniformly continuous. Then VU € E, (f x f)~(U) € D.
Let ¢ € E'. ThenV o € I, ¢ € E. So

(F x TN = (f x )~ (@) €D.
Thus V « € I, (f x f)~1[¢])® € D. Therefore (f x f)~[¢] € D'. Hence f is (D! — E!)

uniformly continuous.
(<)

Let f: (X,D!) — (Y, E!) be uniformly continuous. Then V ) € E, (f x f)~1[¢)] € D!.
Let U € E. Then 1y € E!. Therefore (f x f)~![1y € D. Take a € I; then

((f < H7HwD™ = (f x () = (f x /)~ (U) € D.

Therefore f is (D — E) uniformly continuous.

We obtain an a-level theorem for uniform continuity.

Theorem

Let (X, D) and (Y, €) be fuzzy uniform spaces. Then

(1) f: (X,D) — (Y,€) is uniformly continuous = V a € (0,1), f : (X,D%) —
(Y, E%) is uniformly continuous,

(2)Vae(0,1), f:(X,D¥% — (Y,E%) is uniformly continuous = f : (X, D) — (Y, &) is

uniformly continuous.
PrOOF.

(1) Let o € Ipand U € €% Then 3 € £ and B < « such that U = ¢®. Since f is
uniformly continuous and 9 € £. So

(fx H=O) = (f x )= @) = ((f x H' W)’ € D
Therefore f is D* — £* uniformly continuous.

(2) Let ¥ € €, a € (0,1) and 8 < a. Then ¢” € £ and so
(f x )W) = ((f x /)" [¥])” e D
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Thus
() Vae(0,1),V3<a, (fx f)~1)? eD

Now D is completely determined by its a-level; in other words
D={occI™¥*:Vac(0,1),Vp<a, o c D}

and so

b)oceD = VYac(0,1),Vs<a, oD

It follows from (a) and (b) that (f x f)“[¢)] € D and hence f is D — £ uniformly
continuous.

O

More information regarding fuzzy uniform space can be found in [31, 34, 35, 36, 41, 42, 44]
and regarding fuzzy neighbourhood space can be found in [?, ?, 5, 7, 7, 38, 39, 68, 69, 70,
72, 73, 78].
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Chapter 7

Generalised Filters

7.1 Introduction

In [16] the notion of generalised filter is introduced and studied. We summarize in in this
chapter most of the results from [16].

7.1.1 Definition
We call a non-zero function f : 2% — I a generalised filter (or a g-filter) on X iff

L f(0) =0
2. VA,BC X, f(ANB) > f(A) A f(B):

3. VA BC X, ACB= f(A4) < f(B).

Of course, the requirement that f be non-zero is equivalent to requiring that f(X) > 0.

For f:2X — I and A C X, we define

()(A) = sup f(B)

BCA
If f is non-zero and satisfies:
1. f(0) = 0;
2. VA, B C X, f(A)Af(B) < (f)(AN B).
we shall call f a generalised filter base (or a g-filter base) on X.
Naturally, a g-filter is a g-filter base. Furthermore:

7.1.2 Theorem
If X is a set and f is a g-filter base on X then (f) is a g-filter.

PROOF.

(i) (£ ) :iuc%f(A) = f(0) =0, {f)(X) = sup f(A) >0.

ACX

(i) Let A, B C X. If (f)(A) A (f)(B) = 0 then (f)(A) A (f)(B) < (f)(AN B). So let

a < (f)(A) A (f)(B).
Then:

a<sup f(U)Asup f(V) =3TFUCA IVCB, a<f(UAFV)(HUNV)
UcA VCB
S AW CUNV CANB, a< f(W)
= a< (f)(ANB).
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7.1.3

7.1.4

7.1.5

7.1.6

Thus (f)(A) A (F)(B) < (f) (AN B).

(iii) If A C B then:
(f)(A) = sup f(U) < sup f(U) = (f)(B).

UCA UCB

Definition
If f is a g-filter base on X, we define the characteristic, c¢(f), of f by:

e(f) = sup f(A).

ACX
It follows from definition that ¢(f) > 0.
Just as for prefilters, we have:

Lemma
If X is a set and f is a g-filter base on X then:

PROOF.

c({f)) = sup (f)(A) = sup sup f(B) = sup f(B) = c(f).

ACX ACXBCA BCX

The proof of the following lemma is straightforward.

Lemma
Let f be a g-filter on X and let A, B C X. Then
Loe(f) = f(X);

2. f(ANB) = f(A) A f(B).

If f is a g-filter (base) on X with ¢(f) = ¢ then for 0 < a < ¢, we define the (upper)
a-level filter (base), f*, associated with f by:

PP X f(F) > a)

and for 0 < a < ¢, we define the (lower) a-level filter (base), fo, associated with f by:

fo P C X f(F) > a)
Theorem
If f is a g-filter (base) on X with ¢(f) = ¢ and:
(a) 0 < a <c, then f¢ is a filter (base) on X;
(b) 0 < a < ¢, then f, is a filter (base) on X.

PROOF.

(a) Let f be a g-filter on X. f(X)=c>a= X € f* Thus f* # 0.
If F € f* then f(F)> a >0 and hence F # 0.
If A,B € f* then f(A)A f(B) = f(AN B) > «a and hence AN B € f«.
Finally, if A € f* and A C B then f(B) > f(A) > « and hence B € f*.
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The proofs of the remaining three assertions are equally simple.
O

It is an easy exercise to show that the a-level filters decrease as « increases and we record
this as a lemma.

7.1.7 Lemma
If f is a g-filter (base) with ¢(f) = cand 0 < a < 5 < ¢ then
fecficrrc

The notion of a g-filter is a strict extension of the notion of a filter in the sense that we
can associate a g-filter with every filter and there are g-filters which are not merely copies
of filters. More precisely:

7.1.8 Theorem
Let X be a set, let F'(X) denote the collection of all filters on X and let G(X) denote the
collection of all g-filters on X. Let

P F(X)— GX), F 1p.
Then ) is injective but not surjective.

Proor.
The proof that 1p is a g-filter is left as an exercise.

To see that 9 is not surjective, let X = {1,2,3} and consider

f:2X 1
where
f©@ =0
f({2h) =rf({2,3h) =f({3}) =0
fH{1h) = f{1.2}) = f{L.3}) = f(X) =3

Alternatively, let

3 .
dﬁf 1 if I/ = {1}
9(F) = { 0 otherwise

and let f = (g). Then f is a g-filter and, of course, f cannot be the characteristic function
of a filter.
O

We note the following examples of g-filters, leaving the checking to the reader.

7.1.9 Examples

(a) Let X = {1,2,3} and define f by

f(Fy =0if1¢F
fA) =r({1,3}) =3
J{L2}) =3
f({17273}) =1
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(b) FornENletUndéf{meN:mZn}. Let f:2Y — I be defined by

1 .
def [ =3~ if{n:U, CF}#0
F) < min{n:U,,CF}
J(E) { 0 otherwise

Alternatively, let

1 .
dﬁf n if I = Un
g(F) = { 0 otherwise

and let f = (g).

(c) Let X be aset, 0 < a<1andlet a € X. Define f, o by

def [ aifa€e F
foulF) = { 0 otherwise

In other words
foaa = algayy

Alternatively, let

dof [ aif F'={a}
9(F) = { 0 otherwise

and let f = (g).
This g-filter has the special property that, for all A, B C X

fa,a(A U B) = fa,a(A) vV foz,a(B)'

If h: X — Y is a function and f € I isa g-filter on X then we define the direct image
of f, denoted h(f) by
h(f):2" =1, B~ f(h™'[B]).

In other words

7.1.10 Theorem
If h: X - Y is a function and f is a g-filter on X then h(f) is a g-filter on Y.

PROOF.

() h(£H)@) = F(7HO]) = f(0) = 0, A(/)(Y) = f(h7[Y]) = f(X) > 0.
(ii) If A, B € 2Y then:

(iii) If A C B then:
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7.2 G-filters from Prefilters

Let F be a prefilter on X with ¢(F) = ¢ > 0. For F' C X define

Sr(F) < {a e (0,d: F e Fo}.

7.2.1 Lemma
Let F be a prefilter with ¢(F) = ¢ > 0. Then Sg(F) = 0 or Sx(F) is an interval of form

(B, ¢l
PROOF.

If Sz(F) # () then there exists some a € Sx(F).
If a <y <cthen FeF*CF"andso~yeSg(F).
Since
Fr= U FI
0<B<a

we have:
a€Sp(F) =FeFy = U Fp
0<B<a

=3p<a, FecFP
=3 <a, feSe(F).

This lemma allows us to define, for F' C X:

() 9 { (c)— inf Sx(F) g g;g;g i (Z).

We now need to check that the object defined above is indeed a g-filter.

7.2.2 Theorem
If F is a prefilter with ¢(F) = ¢ > 0 then fr is a g-filter.

PROOF.

(a)
Va < c(F), D¢ F* =Va < c(F), ag¢ Se(D)

(b) Let A, B C X. Then:

a< fr(A)A fr(B) =inf Sp(A) <c—aand inf Sg(B)<c—a
=c—a€ Sr(A) and c—a € Sx(B)
= A, Be Fee
= ANBeF«
=c—acSr(ANDB)
=inf SF(ANB)<c—«
=c—inf Sx(ANB)=fr(ANB) > a.

Thus
fr(ANB) = fr(A) A f£(B).
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(c) Let AC B C X. Then:

fr(A) >a =c—inf Sr(A) >«
=inf Sr(A) <c—«
=c—a€Sg(A4)
=AeF”
= BeF*
= Cc—ac S]:(B)
=inf Sr(B)<c—a
= c—inf Sx(B) = fx(B) > a.

It follows that fr(A) < fx(B).

7.3 Prefilters from G-filters

Our next task is to show that a g-filter gives rise to a prefilter. However, we first discover
the connection between the characteristic of a prefilter and the g-filter that it generates.

7.3.1 Lemma

If F is a prefilter on X with ¢(F) = ¢ > 0 then:

c(fF) = e(F).
PROOF.

Let ¢ = ¢(F). Then:
C(f]:) = f]:(X) = c —inf S}‘(X)

Now
Va<e, X € F* =VYa<e ac Sr(X)
= inf S]:(X):O
= c(fr)=fr(X)=c

For a g-filter f with ¢(f) = ¢ > 0 we define:

Frver¥:vo<a<e V8<a, v’ e [0}

Of course, we need to check that this does produce a prefilter.

7.3.2 Theorem

If f is a g-filter with ¢(f) > 0 then Fy is a prefilter.

PROOF.

(a) We observe that
VB <c(f), 0° ={x e X:0(x)> B} =0.

It follows that
Vo<a<e V3<a, 0P ¢ fo@

and this means that 0 ¢ Fy.
On the other hand, since ¢ = ¢(f) = f(X) > 0 we have

Vo<a<e V3<a, (1x)P =X e fo@
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7.3.3

7.3.4

and so 1x € Fy.
(b) Let u,v € Fy. It follows from:
VB <c(f), v’ = (vAp)?

that v A p € Fy.
(c)Let v € Fand v < p. Let 0 < a<¢, B <. Then v? € fe=*. Since v C uf we have

fWP) =z (V) 2 c—a.

Thus pu € Fy.

The following lemma simplifies some of the work later on.

Lemma
If f is a g-filter with ¢(f) = ¢ > 0 then:

Fr={vel*:V0<y<e vV € fosl)

PROOF.

Let us define ;
gL fvel*:Yvo<y<e V€ fos}.

Let v € Fy. To show that v € G let 0 < < ¢. Choose a such that v < a < ¢. Then
V7 € f¢* Since « is arbitrary, we have

Vy<a<e f(U)>c—a

and hence f(v7) > ¢ — . In other words, V7 € f._,.

Conversely, let v € G. To show that v € F¢ let 0 < o < ¢,0 < 8 < a. Then we have
0<pB<c Thus v’ € f._5 and so f(v°) > c— B> c— a. Therefore v € fe=.
d

The correlation between g-filters and prefilters is not completely straightforward. In fact,
as we shall see, the prefilter associated with a g-filter is rather special.

Theorem
If f is a g-filter then the associated prefilter F; is saturated.

PROOF.

Suppose that
Ve >0, v+ee Fy.

We show that v € F;. To this end, we let a < ¢(f) and 3 < a and show that v? € fe=,
Choose 7y such that 3 < v < o and let € = v — 3. Then, since v + ¢ € F; we have

(v+e) = w+e)lfte =l ¢ fomo.

O

We saw, in Lemma 7.3.1, the connection between the characteristic of a prefilter and the
g-filter that it generates. Let us now find the connection between a g-filter and the prefilter
that it generates.
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7.3.5

7.3.6

7.3.7

Theorem
Let f be a g-filter on X. Then:

o(Fy) = c(f).
PROOF.
Let ¢(f) = ¢. Then:
WweFp V0<fB<a<e vPefe =WweF, V0<B<a<c P#£0
=>WeF, V0<fB<a<c supr>f

=Yv e Fy, supv>c
= inf sup v =—c(F¢) > c.
veEFy p (f)i

On the other hand,
Va<e VB<a, (clx)’ =X e fe@
and so clx € Fy. Thus

o(Fy) = Vigjﬁ_f sup v < sup clx = c.

O

The use of a-level theorems has proved to be very useful in various situations. See, for
example [82, 83, 39]. We therefore investigate the a-levels of g-filters.

Lemma
Let f be a g-filter with ¢(f) = ¢ and let « € (0, ¢]. Then

f’fa — foOz.
PROOF.

Let F € (F;)®. Then there exists v € Fy, 3 < a such that F' = v, Since v € Fy, we
have v° = F € fe=@.

Conversely, if F' € f¢~% then f(F) “i>ce—a Letv = (¢c—1t)lx V1p. We intend to
invoke Lemma 7.3.3 to show that v € F;. To this end, let 0 < v < c.

Ifyee—t,c) thenv? = Fandso f(v")=f(F)=t>c—~.

Ifye[0,c—t) then v" = X and so f(v7) = f(X)=c>c—7.

We therefore have v7 € f._, for all y € [0,¢) and sov € Fyand F = v with c—t < a.
Thus F' € F¥.

O
Lemma
If F is a prefilter on X with ¢(F) = ¢ > 0 then, for «a € [0, ¢):
(fr) = o
PRroor.
Ae(fr)* <= fr(A)=c—inf Sr(4) >«
< inf Sr(A) <c—«
<= c—a€Sr(4)
— AcFe~
O

We now establish the g-filter analogue of Theorem 5.3.2(5)
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7.3.8

7.3.9

7.3.10

7.3.11

7.3.12

Lemma
If fis a g-filter with ¢(f) = c and 0 < « < ¢ then:

o=y g
c>B>a

PrROOF.
If F € f* choose 3 such that a < 3 < f(F). Then F € f8 and so F € BU f8.
>a

Conversely, let F € U fP. Then F € f? for some 3 > a. Thus f(F) > 3 > a and

c>B>a
hence F € f<.
O

Corollary
If fis a g-filter with ¢(f) = c and 0 < « < ¢ then:

c—a U cf,B'
f 0<B<a f

In [9] we saw that saturated prefilters are specified by their a-level filters. We show that
a similar situation pertains for g-filters

Lemma
If f and g are g-filters with ¢(f) # ¢(g) then f # g.

Lemma
Let f and g be g-filters with ¢(f) = ¢(g) = ¢. Then:

Va<e fY=¢° < f=g.
PROOF.
Va<ec f*=g% <= Va<c¢ VACX, A€ f* <— Aecg®
— VACX, Va<g (f(A) >a < ¢g(4) > a)

— VACX, f(A) =g(A)
— f=g.

O

We have seen that to each g-filter there corresponds a saturated prefilter and, conversely,
to each prefilter there corresponds a g-filter. This inspires the following theorem.

Theorem
Let
S(X) def {F e QIX : F is a saturated prefilter on X },
G(X) Y {f € I*" . fis a gfilter on X }.
Then

¥:S8(X) = G(X), Frfr

is a bijection.
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PROOF.

We first show that ¢ is injective. To this end, let F,G € S(X) with F # G.
If ¢(F) # ¢(G) then:

and so fr # fg.
If ¢(F) = ¢(G) = c then:
Ja <e, F*#GY.

This follows from the fact that saturated prefilters are completely determined by their a-
level filters [9]: Theorem 2 and [?]: Theorem 11). Suppose that F' € F*\ G* Then
a € Sy(F)\ Sg(F). Thus inf Sz(F) < a and o < inf Sg(F'). Thus

f}-(F):c—infSJ:(F)>c—aZc—inng(F):fg(F).

So, once again, fr # fg.
In order to show that ¢ is surjective, let f € G(X) and let ¢(F) = ¢. Then:

Fr={vel*:Ya<c VB<a, v/ e foy.
Now, appealing to Lemmas 7.3.6 and 7.3.7, we have
Va e [0,¢), (fz,)" = (Fp)e = fele=) = g
It therefore follows from Lemma 7.3.11 that

O(Fy) = fr, =1

We extract the following corollaries.

7.3.13 Corollary
If f is a g-filter on X then:

7.3.14 Corollary
If F is a saturated prefilter on X then:

Fiy=F.

PROOF.

Let ¢ : S — G as in the theorem. Then:

and

"/}(fff) = f(]:ff) = f}'-
Thus it follows from the injectivity of ¢ that F = Fy,.
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7.3.15

7.3.16

O

We have developed the g-filter analogues of various prefilter notions and it is natural
therefore to seek a g-filter analogue of the saturation operator. In other words, if f is a g-
filter, we seek a definition of f, the saturation of f, which is consistent with the theory which
we have developed thus far. We would require, among other things, that the saturation of
the g-filter associated with a prefilter is the g-filter associated with the saturation of the
prefilter. In symbols:

fr=1Fz
However, we have the following lemma.
Lemma
If F is a prefilter then:
fr= Tz
Proor.
For FF C X:

= fr(F)
O
Thus, for a prefilter F
fr=1Jr.
The most natural definition of fwhich accomplishes this is the simple
2 def
F= T

In this sense, g-filters are already saturated. This explains why, in [15], the definition
of a generalised uniformity did not include a saturation condition. The situation is also
illustrated by the following theorem which extends Theorem 7.3.4.

Theorem
If F is a prefilter then:

Fip = F.
PROOF.

From Theorem 7.3.4 we know that Fy, is a saturated prefilter and so, according to [29],
Theorem 11, we must show that

Vo < o) = ol F), (Fp)* = (F)*

Now N
(Fpr) = (f) " = Fo = Fo.

O

From this last result we obtain the following characterisation of the saturation of a
prefilter.
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7.3.17

7.4.1

7.4.2

Corollary
If F is a prefilter with ¢(F) = ¢ > 0 then:

ﬁ:{VEIX:VO<a§c, V6 < a, VP e FOY.
PRrROOF.

veF — veFr,
= Y0<a<ceVB<a, vPe (fr) e =Fc

7.4 Prime G-Filters

We seek a suitable definition of a prime g-filter which ties in with the theory of prime
prefilters.

Definition
We call a g-filter f on X prime if

VA,BC X, [(AUB) = f(A)V f(B).

For example:

for a € X, a € Iy, it is straightforward to check that f = f, , defined earlier is a g-filter
and that f is prime.

The Theorem 5.3.10, which characterises the minimal prime prefilters finer than a given
prefilter, has found a number of applications. With this in mind, we attempt to construct a
similar theory of prime g-filters.

We first find the connection between prime g-filters and ultrafilters.

Lemma
Let F be a filter on X and let 0 < o < 1. Then

F is an ultrafilter <= «lp is a prime g-filter.

PRroor.
(=)
Let F be an ultrafilter. If AU B € F then alp(A U B) = a. Furthermore, since F is an
ultrafilter, A € F or B € F. Thus
alp(A)V alp(B) = a = alp(AU B).
If AUB ¢ F then 1g(AU B) = 0. Since F is a filter, A ¢ F and B ¢ F and hence
Oél]p‘(A) \Y Ozl[F(B) =0= al]F(A U B)

(<)
Let aly be prime and let AU B € F. Then

alp(AUB) = a = alp(4) V alp(B).

Therefore
alp(4) = aor alp(B) =«

and so A € For B € F. Thus F is an ultrafilter.
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7.4.3 Theorem
Let f be a g-filter with ¢(f) = ¢. Then

fis prime <= f. is an ultrafilter.

PROOF.
(=)
AUBe f. < f(AUB)=f(A)Vf(B)=c
— f(A)=cor f(B)=c
< Ac f,or Bef.
(<)
If o < ¢ then

a< f(AUB) = AUBE€ f*=f.
= f(AUB)=cand A€ f,or B€ f,
= f(A)V f(B)=c= f(AUB)

7.4.4 Corollary
If f is a prime g-filter with ¢(f) = ¢ then f. = f°.

PrOOF.
We have f. C f° and f. is an ultrafilter.

The reader can check that if A C X, a > 0 and F = ({A}) then
aly is prime <= A is a singleton.
If F is a filter then we define

P(F) o {K:F CK, K is an ultrafilter}

We now investigate the situation with regard to prime g-filters finer than a given g-filter.

7.4.5 Lemma
If f is a g-filter then

F € P(f°) = 1 is a prime g-filter and f < 1p.
Proor.

Let g = 1p. Then, by Lemma 7.4.2, g is prime.
If AC X and f(A) >0 then A€ fO CF. Thus g(4) =1> f(A) and so f <g.

7.4.6 Corollary
If f is a g-filter, @ > ¢ = ¢(f) and F € P(f°) then alp is a prime g-filter with f < alp.

PROOF.
It follows from lemma 7.4.2 that ol is prime. Furthermore, if A C X then

f(A)>0 = AefOCF
= alp(A) =a >c= f(X) > f(A)
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7.4.7 Theorem
If f is a prime g-filter with ¢(f) = ¢ and F = f, then

f = Cl]F.

PROOF.

Let AC X. If f(A) >0 then A € f° = f. =F and hence f(A4) = c = clg (A).
If f(A) =0 then A ¢ F and so f(A) =0 = clp(A).

Thus prime g-filters are precisely those g-filters of the form aly with F an ultrafilter.
If f is a g-filter on X, let

P(f) def {g: g is a prime g-filter and f < g.}
We now aim for the g-filter equivalent of Lowen’s Theorem 5.3.10.

7.4.8 Theorem
If f is a g-filter with ¢(f) = ¢ then

P(f) =A{alp : F € P(f°), a>c}

PROOF.

Let g € P(f) with ¢(9) = @ and F = g,. Then, by Theorem 7.4.7, ¢ = aly with F an
ultrafilter. Furthermore, since f < g, we have ¢(f) < a = c¢(g) and F D f°.
Conversely, if g = aly then, by Corollary 7.4.8, g € P(f).

For a g-filter f let us define
P (f) def {g : g is a minimal prime g-filter and f < g}.

It is now an easy matter to obtain a characterisation of the minimal prime g-filters which
are finer than a given g-filter.

7.4.9 Corollary
If f is a g-filter with ¢(f) = ¢ then

Prn(f) = {clr : F € P(f°)}
PROOF.

Let g € Ppu(f). Then g = aly for some o > ¢ and some F € P(f°). If a > ¢ then we
can choose § such that ¢ < 8 < « and then h = fly € P(f) with h < g and h # g which

contradicts the minimality of g.
O

Our next task is to find the relationship between prime prefilters and prime g-filters. We
first need the following lemma.

7.4.10 Lemma
Let (I, <) be a totally ordered set and let (X, <) be a partially ordered set. Let

e (1<) = (X, %)
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7.4.11

7.4.12

be decreasing functions in the sense that
Va,B €1, (a <= ¢(f) = ela), ¥(B) 2 ().
Let F' C X have the property
Ve, (x€F, z 3y, =>yeF).
Then
Vael, (p(a) e Foryp(a) e F) < (NVael, p(a)e F)or Va eI, ¢(a) € F).

PROOF.

We only have to show the forward implication so suppose that Ja € T such that ¢(a) & F.
We must show that V3 € I, ¢(8) € F. Now

pla) € F = ¢Y(a) € F.

Thus if f < a then
P(a) 24(B) = P(B) € F.

On the other hand, if o < 3 then

o(B) 2 p(a) = () & F( otherwise p(a) € F. )
= Y(P) € F.

Corollary
Let I C R be an interval, X a set and let ¢, ¢ : I — P(X) be functions with the property
that

Va,B €1, (a <8 = ¢(B) Cpla), ¥(B) C¥(a)).
and let F be a filter on X. Then

Vael, (p(a) eFor (o) eF) <= (Vael,pla)eF)or (Vel, p(a)eF).

Theorem
Let f be a prime g-filter on a set X with ¢(f) = ¢. Then F; is also prime.

PROOF.

Let u Vv € Fy. Then, according to Lemma 7.3.3, Theorem ?? and Corollary 77,

Vy € [076), (:U'\/V)A/ =p Uy’ 6f07'y:fc déf]F

with ' an ultrafilter on X. We therefore have
Vy €[0,¢), (W €F orv? €F).
We now invoke Corollary 7.4.11 and claim that
(Vv €[0,¢), u¥ € F) or (Vy € [0,¢), v¥ € F).

This, together with Lemma 7.3.3, shows that g € F or v € F.
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7.4.13 Theorem
Let F be a prime prefilter on a set X with ¢(F) = ¢. Then fr is also prime.

PRroOOF.
We need to show that, for A, B C X

Jr(AUB) < f2(4) v [2(B).
To this end let 0 < a < fr(AU B). Then

a<c—inf SF(AUB) <= c—aecSr(AUB)
<— AUBeF*=F
«— AcFyor BeFy (since Fy is an ultrafilter)
< c—aecSr(A)orc—ac Sr(B)
= inf Sr(A) <c—aor inf SF(B)<c—a
= [r(A) Zzaor f5(B) > a
= fr(A)V [2(B) > a.

Since « is arbitrary, we are done.

d
7.4.14 Corollary
If f is a g-filter and F is a prefilter then
fis prime <= F; is prime
F is prime <= fr is prime.
ProOOF.
The proof follows immediately from 7?7, 7?7, 7.4.12 and 7.4.13.
d

Finally, we check that prime g-filters are preserved by functions.

7.4.15 Theorem
Let h: X — Y and let f be a prime g-filter on X. Then h(f) is a prime g-filter on Y.

PROOF.

We saw in Theorem 3.6 that h(f) is a g-filter on Y. Now let A, B € 2¥. Then
h(F)(AUB) = f(h~'[AUB]) = f(h~'[AJuh™[B]) = f(h AV f(h™'[B]) = h(f)(A)Vh(f)(B).

Thus h(f) is prime.
O
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8.1.1

8.1.2

Chapter 8

Generalised Uniform Spaces

8.1 Introduction

In [15] the notion of a generalised uniform space is introduced and studied. Here we study
the generalised uniform space with the aid of generalised filters.

Let X be a set and U C P(X x X) = 2%*X then we define
A={(zx,z):x € X} and Us = {(z,y) : (y,x) € U}.

We define .
U={VCXxX:VoVCU}

Definition

If X is a set then a function d : 2X*X

— [ is generalised uniformitiy on X iff
1. d is a g-filter and ¢(d) = 1;
2.VUCXxX,dU)>0=ACU;
3.VUCX xX, dUs) >dU);
4. VUCX x X, dU) < sup d(Vv).
veu

we call (X, d) a generalised uniform space (or g-uniform space).

The following lemma establish a generalised uniform space from a uniform space.

Lemma

If (X, D) is a uniform space then 1p : 2X*X

— I is a generalised uniform space.

PROOF.

1p is a g-filter and 1p(X x X) = 1.

IfUCX x X and 1p(U) >0 then A CU.

Let U C X x X. Then if 1p(U) > 0 then U € D and so Us € D. Therefore 1p(Us) >
1p(U).

Let U C X x X. If 1p(U) > 0 then U € D and so 3V € D such that V € U. Therefore
sup 1D(V) > 1D(U)

veUu
O

Next we see the a-level uniformities from a generalised uniformity.
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8.1.3

8.1.4

8.1.5

Theorem
Let (X, d) be a generalised uniform space. Then for each o € Iy

d*={U e X xX:d{U) > a}
is a uniformity on X.

PROOF.

Let o € I;. Since ¢(d) =1, d* is a filter.
Let U € d*. Then d(U) >a>0=ACU.
Let U € d*. Then d(Uy) > d(U) > a = U, € d°.

Let U € d*. Then sup d(V) > d(U) > a. Therefore 3V € U such that d(V') > «. Thus
veU
JV € d® such that VoV C U.
Hence the result.
The uniformity d® will be referred to as the a-level uniformity of d.
Our next task to build a fuzzy uniformity from a generalised uniformity. This can be
done using previous theorem with theorem 6.6.2.

U
Theorem
Let (X, d) be a generalised uniform space. Then
Dy Yo e XX :Vae(0,1),VB<a, o ed ).
is a fuzzy uniformity on X.
PrOOF.
We have d“ is a uniformity for each a € I5.
Let d(a) = d'=@ for each a € Iy. Then we have
0<pf<a<l=dp) Cda).
and for each «a € I,
dla)=d""*= U d"P= U d(B) by7.3.10.
(Oé) 0<B<a 0<B<a (6) Y
Therefore
Dy={ocec ¥ :Vac(0,1),V3<a, o cd(a)}.
is a fuzzy uniformity on X.
O

Now we try to establish a generalised uniformity from a fuzzy uniformity.

Let (X, D) be a fuzzy uniform space. Then D is a saturated prefilter with ¢(D) = 1. For
U C X x X we have
Sp(U) ={a € (0,1]: U € D*}.

and
g1 inf Sp(U) if Sp(U) # 0
P71 o0 if Sp(U) =10

Theorem

Let (X, D) be a fuzzy uniform space. Then dp : 2X*X

— [ is a generalised uniformity.
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8.1.6

8.1.7

8.1.8

PROOF.

(i) We have dp is a g-filter and dp(X x X) = 1.

(i) Let U C X x X and dp(U) > 0. Then Sp(U) # (. Therefore U € D! = A C U.

(iii) Let U € X x X and dp(U) > 0. Then 38 < a such that Sp(U) = (8, 1]. Therefore
Voae (6,1, Ue D* and so Us € D* and hence Sp(Us) = (B,1]. Therefore dp(U) =
dp (Us).

(iv)let U € X xX and a < dp(U). Theninf Sp(U) < 1—a. Therefore 1—a € Sp(U) =

U e D= 3V e D' such that VoV CU. Thus V € U and 1—a € Sp(V). Thereofore
dp(V)>1—(1—a)=a. So sup dp(V) > «. Since « is arbitrary, sup dp(V) > dp(U).

Veu VeUu
Hence the result.

d

Theorem
The collection of fuzzy uniform spaces is in a one-to-one correspondence with the collection
of generalised uniform spaces.

PROOF.

Let |FUS| be the collection of fuzzy uniform spaces and |GUS| be the collection of
generalised uniform spaces. Then define

Let <X17D1) # (XQ,DQ).

If X, # X then clearly (X1,dp,) # (X2,dp,).

If Dy # D then we have dp, # dp,.

Consequently v is injective.

To see 1 is surjective, let (X, D) € |GUS|. Then d is generalised filter on X.
By 7.3.13, (X, Dy) = (X,dp,) = (X, d).

Therefore 1) is bijective.

|
Corollary
Let (X, D) be a fuzzy uniform space and (X, d) be a generalised uniform space. Then
Dy, =D and dp, = d.
Proor.
Since D is saturated prefiter and by (7.3.14) and (7.3.15) the result follows.
O
Proposition
Let (X, D) be a uniform space. Then
Vael, (1Ip)*=D.
Proor.
Let o € I;. Then
Ue(1p)* <= 1p(U) >a <= 1p(U) >0« U € D.
O
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8.2 Uniformly Continuous Functions

8.2.1 Definition
Let (X,d) and (Y, e) be generalised uniform spaces and f : X — Y be a mapping. Then f
is said to be uniformly continuous if

YV CY XY, d((f x [)(V)) = e(V).
We obtain a-level theorem for uniformly continuous.

8.2.2 Theorem
Let (X, d) and (Y, e) be generalised uniform spaces. Then

(a) f:(X,d) — (Y,e) is uniformly continuous = V o € I, f : (X,d*) — (Y,e®) is
uniformly continuous.

(b) Va e (0,1), f:(X,d*) — (Y,e%) is uniformly continuous = f : (X,d) — (Y, e) is
uniformly continuous.

PROOF.

f is d — e uniformly continuous
YV Y XY, d(f x (V) = e(V)
= VVCY XY, Vae(0,1), (e(V)>a=d({(fx (V) >a)
= VVCY XY, Vae(0,1), (Veer= (fx ) (V)ed)
—Vae(0,1), f:(X,d*) — (Y,e*) is uniformly continuous.

To complete the proof we only have to show, if f is d — e uniformly continuous then
f:(X,d%) — (Y, €% is uniformly continuous. This can be proved by taking o = 0 in the
above result.

O

The following three theorems simpilifies some of the the work later on when we map a
morphism of a category into a morphim of another category.

8.2.3 Theorem
Let (X,D) and (Y, E) be uniform spaces. Then

f:(X,D) — (Y,E) is uniformly continuous = f: (X, 1p) — (Y, 1g) is uniformly continuous.

Proor.
Let VCY x Y. Then
Ig(V)=1=VeE= (fx )" (V)eD=1p((fx )~ (V) =1
It follows that VV C Y x Y, 1p((f x f)~(V)) > 1g(V) and hence that f is 1p — 1g

uniformly continuous.

O

8.2.4 Theorem
Let (X,d) and (Y, e) be generalised uniform spaces. Then

f:(X,d) — (Y,e) is uniformly continuous <= f: (X,Dgq) — (Y, D,) is uniformly continuous.
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PROOF.

f is d — e uniformly continuous
<~ Vaec(0,1), f:(X,d*) — (Y,e*) is uniformly continuous
<~ f:(X,D4) — (Y, D. is uniformly continuous (by 6.6.7).

8.2.5 Theorem
Let (X, D) and (Y, €) be fuzzy uniform spaces. Then

f:(X,D) — (Y, &) is uniformly continuous <= f: (X,dp) — (Y, dg) is uniformly continuous .

Proor.
f is D — £ uniformly continuous
<~ Vac(0,1), fis D* — £* uniformly continuous

<= VYaec(0,1), fisdy ®—dg * uniformly continuous
<~ Vaec(0,1), fis dp — dg uniformly continuous.

87



9.1.1

9.1.2

Chapter 9

Fuzzy Filters

9.1 Inroduction

In [22], the notion of a fuzzy filter is introduced and studied. We adopt a slightly different
definition of a fuzzy filter. In [28] some special propeties of fuzzy filters can be found. Some
results are from J.Gutiérrez through private communication.

Definition
We call a non-zero function ¢ : IX — I a fuzzy filter or a f-filter on X if ¢ satifies the
following conditions.

L. ¢(0) =0;
2. Vu,v € I%, p(uAv) > () Ap(v);

3. Vv eI, p<v= o) < ).

Of course, the condition that ¢ is non-zero is equivalent to the condition (1) > 0.
This definition of a fuzzy filter differs from the definition in [22], where it is required that

p(1) =1L
If o : I — I is a function and p € IX, we define

def

() (p) = sup o(v).

We call a non-zero function ¢ : IX — I a fuzzy filter base or a f-filter base on X if ¢
satisfies the following conditions.

L. ¢(0) =0;
2. Yy, v € I, (1) Ap(ve) < (p) (11 Avg).
It follows immediately that a fuzzy filter is a fuzzy filter base.

Theorem
If X is a set and ¢ is a fuzzy filter base on X then (y) is a fuzzy filter on X.

PROOF.
(i) (»)(0) = sup p(v) = ¢(0) =0.
(ii) Let i, v € IX. Tf {2) (1) A (2)(v) = 0 then {i2) (1) A (@) (¥) < () (11 A v). So let

0 <a<(p)(p) Alp)(¥).
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Then

0 < o < sup @(p1) A sup p(v1).
Hmi<p v1<v

So there exists p1 < g and v1 < v such that
0 <a<p(u)Ap(vi) < (@) (1 Avr).

Thus there exists ¥ < p3 Av; < pAv such that 0 < a < (). Therefore a < (@) (uAv)
and hence, since « is arbitrary, it follows that

(@) (1) A ) (V) < (@) (A w).
(iii) Let g < v. Then

{0) (1) = sup () < sup p(u1) = (p)(¥)-

p1<p p1<v

9.1.3 Definition
We define the characteristic, c(¢), of a fuzzy filter ¢ by
def

c(p) = sup p(v).
velX

9.1.4 Theorem
Let ¢ be a fuzzy filter base on a set X . Then

PROOF.

c({p)) = sup (p)(v) = sup sup () = sup p(u) = c(p).
velX velX u<v nerx

9.1.5 Lemma
Let ¢ be fuzzy filter on a set X and let u,v € IX. Then

L c(p) = (1);

2. p(pAv) = o(u) Np).
Proor.
(1) Let ¢ be fuzzy filter. Then we have

p<v= o) <o)

Therefore c(p) = sup ¢(v) = p(1).
velX
(2) We have o(p Av) > o(u) Ap(v). But pAv < pand pAv <v. Consequently,

p(pAv) <o(p) Ap).
0

Remark When we try to show ¢ : IX — I is a fuzzy filter it is enough to show that ¢
satisfies the following conditions.

(1) ¢(0) = 0;

)V v e I*, p(uAv) = o) Ap).
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9.1.6 Examples
(1) Let 0 # p € IX. For each v € I we define,

_Joa ifv>p
‘p“(”)_{o if v 2 p.
then ¢, is a fuzzy filter on X, with ¢(¢) = a.

(2) For each p € I we define
¢(p) = inf 4.
then ¢ is a fuzzy filter on X with ¢(p) = 1.
Since:

»(0) =0 and ¢(1) = 1.
inf pAv = zlg)f( (LAv)(z) = xé\x (u(x) Av(x) '
= (IGAX w(x)) A (mé\X v(z)) =inf pAinf v.
Therefore p(p A v) = @(p) A (V).
(3) Let 29 € X be fixed and for each v € IX we define

Pao (1) = p1(20)

Then ¢4, is a fuzzy filter on X with c¢(p) = 1.
(4) Let F be a prefiter on X with ¢(F) = 1. For each pu € I we define

o) = 1 — *(F).

Then ¢ is a fuzzy filter on X with ¢(p) = 1.
Since:

p(0)=1—-¢(F)=1-1=0.

p()=1-c(F)=1-0=1.
Let A={acl:p+acF}, B={acl:v+aecF}and
C={a€l:uAv+aecF} Now we have to show

inf C' = (inf A) A (inf B).

acelC =uANv+ackF
>put+acFandv+acF
=ac€Aand a € B.
Therefore C C A and C C B. Hence inf C > inf A and inf C > inf B.
If inf C' > inf A then Jv : inf C' > ~v > inf A. Now we have to show inf C' = inf B.
Assume that inf C' > inf B then 33 : inf C > 3 > inf B. Therefore

infC>pFVy>infAand infC>pV~y>infB

and hence fV~y € AandV~y € B. Thus u+8Vv~y € Fandv+8V~y € F. So
(L+BVYY)ANW+BVy)=puAv+ V. Therefore 5V~ € C and so BV > inf C. This is
a contradiction. Therefore inf C' = (inf A) A (inf B). So

1—infC =1- (inf A) A (inf B)
= (1 —inf A) A (1 —inf B).

Therefore
el Av) = o(p) Ap(v).
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9.1.7 Definition
A fuzzy filter ¢ is said to be prime if it satisfies,

Vv eI, p(uVv)= o) Vo).

9.1.8 Definition
A fuzzy filter ¢ is said to be stratified if
Vael0,1], plalx) =aAe(l).

9.1.9 Proposition
Given a fuzzy stratified filter ¢, if for any p € I we define,

S0 — inf
@) Elglow(u+€)

then ¢ is also a fuzzy stratified filter finer than that ¢ which will be called the saturated
hull of ¢.

PrOOF.
Let ¢ be a fuzzy stratified filter and
@(p) = inf p(p+e).
e€ly
Then
P(0) = inf e Ap(l) =0.

ecly

p

=

>

S
|

Inf p(uAv+e)

= inf p(u+eAv+e)
e€el,

Eléllf(J o(p+e) A Elél]fo p(v+e)
@) A p(v).

Plalx) = inf plalx +¢e) = inf (a+e)Ap(l) =aAe(l) =aA@(l).
e€ly ecly
Finally, since ¢ is non-decreasing, it follows that ¢ is finer than ¢.

9.1.10 Definition
A fuzzy filter ¢ is said to be saturated if it is stratified and @ = .

9.1.11 Proposition
A fuzzy stratified filter ¢ on X is saturated iff for each family (uc)-c7, € IX we have

p(sup(pe —¢€)) > inf p(ue).

ec€ly eelo
Proor.
(=)
Let ¢ be saturated, {u:}ecr, € I and p = sup(pe — ). Then
e€lyp

o) = ¢(p) = inf o(u+e).
e€ly
But we have Ve € Iy, u+¢€ > pie.
Therefore V € € Iy, o(p+¢) > p(ue) and hence

e(p) = inf p(p+e)

e€lp

> i .
> Jélffo o(pte)
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9.2.1

9.2.2

(<)
Conversly, if for each family {u.}eer, C I,

p(sup(pe —€)) > inf o(u.).
eely e€ly

Then for any p € I, we can consider the family {u + e}.cs, € I and we have

p(sup(p+e—¢)) > inf p(u+e).
ecly eely

Thus ¢(u) > @(u). Therefore p(u) = (1) and hence ¢ = @.

9.2 Fuzzy Filters with Characteristic 1

We will see in chapter 10 that a super uniformity is a fuzzy filter with characteristic 1 plus
other conditions. So let’s investigate some properties of fuzzy filters with characteristic 1.

Proposition
Let ¢ be a fuzzy filter on X with ¢(¢) = 1. For each « € (0, 1] the collection

Qo ={pel™: o) >a}

is a prefilter. Furthermore the family {@4}acr, is non-increasing and for a € Iy, ¢, =

N .
B<a¢ﬂ

PROOF.

Let a € Iy. Then
1€ ¢, and 0 € ¢, and so ¢, # 0.

Let p, v € @q. Then ¢(u) > o and ¢(v) > a. Therefore p(p Av) = p(p) A p(v) > o
and hence p A v € p,.

Let 4 € ¢q and p < v. Then ¢(u) > a and p(p) < @(v). Therefore p(u) > a and so
VE @y

Hence ¢, is a prefilter.

It is easy to see that

0<pf<a<sl=pg2 g,

Let o € Iy. Then V 3 < o, 9o C ¢g. Therefore ¢, C Bﬁ 8.
<a
Let p € ﬁﬁ wg. Then V 8 < o, p € pg. Therefore V. g < a, p(p) > B and so
<«
o(p) > supf = a. So p € p, and hence p, = ﬁﬂ v3.

B<a <a
O

We call ¢, the a-level prefilter of the given fuzzy filter ¢ and the construction

Y — {Soa}aelo

will be called the decomposition of ¢ into the system of its a-level prefilters.
Lemma
Let {F(a)}ae(0,1) be a non-increasing collection of prefilters on a set X. Then for u € IX

let
A, ={a€(0,1): pe Fla)}.

Then A, =0 or3 3 (0,1): A, =(0,8) or A, = (0, 3]
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9.2.3

Proor.
Let A, # 0andB € A,,. Then p € F(B). If a < 8 then p € F(5) C F(a).

Proposition
Let {F(a)}ae(0,1) be a non-increasing collection of prefilters on a set X. If for any p € I
we define

¢(u) = sup{a € (0,1) : p € F(a)}

then ¢ is a fuzzy filter with c(¢) = 1.
Furthermore F(a) is exactly the a-level prefilter ¢, of ¢ iff the collection {Fq}ac(o,1)
satisfies the condition that any o € (0,1), F(a) = ﬁﬂ F(B).
<«

Proor.
Let {F(a)}ae(o,1) be a non-increasing collection of prefilters. Then

0<a<p<l=F(a)DF(p),

©(0) =sup® =0 and (1) =sup(0,1) = 1.

We have to show
e(uAv) = () Ap(v). That is sup A, =sup A, Asup A4,.

Now
a€Ain = pAveF(a)
= p € F(a) and v € F(a)
=acA,andacA,.

Therefore A,r, € A, and Ayn, C A,. Hence supAyn, < sup A, and sup Aya, <
sup 4,.

If supAun, < supA, then 38 : supA,n, < B < supA,. Now we have to show
sup A ny =sup 4,.

Assume that sup A, < sup A, then 3 v :sup A, < v < sup A,. Therefore

sup Auny < A7y <supA, and sup Aun, < BAY <supA,

and hence BA~vy € A,and 5 Ay € A,. Therefore p € F(BA~) and v € F(B A7)
and so p Av € F(BA~). Hence A~y < supAyun,. This is a contradiction. Therefore
sup A ny =sup A, A A,. Thus

P Av) = o(p) A e).

Therefore ¢ is a fuzzy filter.
=)
If F(«) is exactly the a-level prefilter ¢, of ¢ then by above proposition for any a € (0, 1)

Fla)= N F(P).

B<a

(<)
Let the collection {F(a)}ae(0,1) satisfy the condition that any a € Iy, F(a) = N F(B).

Let v € (0,1). Then

Fn) =0 FB) and y = {ue I () >4}

Now we have to show F(v) = ¢,.
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Let € F(v). ThenV 8 <, p € F(B). Therefore
o(p)=sup{a€lp:pe Fla)} >1.

Therefore i € ¢ .
Let 1 € .. Then ¢(p) > ~. Thus

sup{a € Iy : p € Fa)} > 7.

Therefore V oo < v, u € F(a) and hence p € F(7).

9.2.4 Proposition
Let ¢ be a fuzzy filter on X with ¢(¢) = 1. If ¢ is prime then for all « € Iy, @, is prime.
ProOF.
Let o € Iy, uVv € @qo. Then (V) > a.
Therefore p(uV v) = ¢(p) V o(r) > o and hence

p(p) = aor p(v) = a.
Thus
U E Qo OT V € Qq.

Hence ¢, is prime prefilter.

9.2.5 Proposition
Let {F(a)}ae(0,1) be a non-increasing collection of prefilters on X. If for all a € (0,1), F(a)
is prime, then the fuzzy filter generated by this collection is prime.

PROOF.

We have
o(pu) =sup{a € (0,1): p € F(a)} =sup A,

is a fuzzy filter. Then

ac€An, =pVreF(a)
= p € F(a) or v € F(a) [Since F(a) is prime ]
=>puelF,orveyp,.

Therefore
AMVV C AH or A;L\/l/ cA,
and so
sup A,y <sup A, or sup Ay, <supA,.
Thus
sup A, vy <supA, V supA,.
We have

acA,=>ac A

Therefore A, C Ay, and so sup A, < sup A,y,. Similarly sup A, < sup A,y,. Therefore
supA, V supA, < supA,y,. Hence supA, V supA, = supA,v,. Thus o(pVv) =

p(p) v ev). -

The proof of the following lemma is straightforward.
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9.2.6

9.2.7

9.2.8

9.2.9

Lemma
Let ¢ be fuzzy filter with ¢(¢) = 1. then

Y ael0,1], olalx) = a.

Proposition
Let ¢ be a fuzzy filter on X with ¢(p) = 1. If ¢ is stratified then for all a € Iy, C(ps) =
[0, ).

PROOF.

Let a € Iy. Then
pa ={n eI :p(n) > a}
is a prefilter. we have
Clpa) ={B€1:plx € @a}.

Let v < a. Then ¢(vylx) =+ < a. Therefore y1x ¢ po. Thus v € C(pq).
Let v > a. Then ¢(y1lx) = > . Therefore y1x € ¢,. Thus v ¢ C(¢a).
Hence C(p,) = [0, ).

Proposition
Let {F(a)}ae(0,1) be a non-increasing collection of prefilters on X. If forall a € (0,1), C(F(a)) =
[0, ) then the fuzzy filter generated by this collection is stratified.

PROOF.

Let {F(a)}ae(0,1) be a non-increasing collection of prefilters on X and for any a € (0,1),

C(F(a) =10, ).
Thus
{Bel:plx ¢ Fla)} =1[0,a).
Let
@(p) =sup{a € (0,1) : p € F(a)}.

Then ¢ is a fuzzy filter with ¢(¢) = 1. Now we have to show that Vv € I, p(ylx) =1.
Let v € I. Then
v1x ¢ F(a) for v < «

and
vlx € F(a) for v > a.

Therefore
e(y1x) = sup(0,7] = 7.
Hence f is stratified.

Proposition
Let ¢ be a fuzzy filter on X with ¢(p) = 1. If ¢ is saturated, then for all a € Iy, ¢, is
saturated.
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9.2.10

9.2.11

9.2.12

PROOF.
Let aelpand Ve € Iy, p+¢€ € po. Then
Veel, olpu+e)>a.

Since ¢ is a saturated fuzzy filter and so

pp) = Infp(p+e) 2 o

Therefore € p,. Hence ¢, is a saturated prefilter.

Proposition

Let {F(a)}ae(o,1) be a non-increasing collection of prefilters on X such that for each o €
(0,1), C(F(a)) = [0,a). If for all @ € (0,1), F(a) is saturated, then the fuzzy filter
generated by the collection is saturated.

PROOF.

Let {F(a)}ac(0,1) be a non-increasing collection of saturated prefilters on X and for each
a€(0,1), C(F(a)) =[0,«). Then we have

p(p) = sup{a € (0,1) - p € Fla)}

is a stratified fuzzy filter.
Let v < inIf o(u+¢€). ThenV e € Iy, o(pu+¢e) >~ and hence
eclp

Veely, p+eeF(a).

But F(v) is saturated. So p € F() and hence ¢(u) > v. Consequently,

o(p) > Eigjfo p(p+e) = o).

Hence ¢(p) = @(p). Thus ¢ is saturated.

g
Proposition
Let ¢ be fuzzy filter with ¢(¢) = 1. Then for all « € Iy, we have o = Pq.-
PrOOF.
Let a € Ip. Then
LE Y, =Veely p+ec€p,
—=Veel, o(p+e)>a
= ¢(p) = inf p(p+e)=a
e€ly
= U E Pg-
d

Proposition
Let {F(a)}ae(o,1) be a non-increasing collection of prefilters on X such that for each a €
(0,1), C(F(a)) = [0,a). The saturated hull of the fuzzy filter generated {F(a)}ae(o,1) is

—

just the fuzzy filter generated by {F(c)}ac(0,1)-
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9.3.1

PROOF.

For p € IX, let
¢(p) =sup{a € (0,1) : p € F(a)}

and

—

p(n) =sup{a € (0,1) : p € Fla)}.

Now we have to show 3(p) = ¢(y).
Let v < &(u). Then p € F(v). Therefore

Veely pteecF(y).

So
Veely, plp+e)>a.

Therefore
@(n) = inf o(p+e) > 1.
eely

Hence $(1) > $(j).
On the other hand let v < @(p). Then

Veely, olpt+e)>.

So
Veely, p+eeF(y).

Therefore ;o € .ﬂ:y/) and hence $(u) > ~. Consequently, () > @(1).
Hence ¢(p) = @(1)-

9.3 Fuzzy Filters From G-Filters and G-Filters From
Fuzzy Filters

If f:2% — I is a g-filter we define ¢, : I — I by

d o
wf(p) = sup f(u®) A
a€e(0,1)

If o : I — I is a f-filter we define f, : 2% — I by

Fo(A) & (1),

Theorem
Let X be a set, f a g-filter on X and ¢ a f-filter on X. Then

1. ¢y is a stratified f-filter and c(¢y) = c(f);
2. If f is prime then so is @y;

. fo is a g-filter and ¢(f,) = c(p);

. If ¢ is prime then so is f,;

oy =1

' R

3
4

o Ot
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PROOF.

(1)

Firstly:

clpr) =¢r(1) = sup f(A1")Aa= sup f(X)Aa=f(X)=c(f)
a€e(0,1) a€(0,1)

0r(0)= sup f(0°)AB= sup fFD)AB=0
B€(0,1) B€(0,1)

and for a € (0, 1] we have:

prlaly) = sup flaly)AB= sup f(X)AB=f(X)Aa=c(f)Na=clps)Aa.
Be(0,1) Be(0,a)

If or(p) A @p(v) >t then there exists ag,as > t such that f(u®) > ¢ and f(v*?) > t.
Let o = oy A ao. Then o > t and

F(Av)®) = fp® nv®) = f(u®) Af®) = F(u™) A F2) > t.

Therefore

pr(unv)= sup f((uA))YABZ f((pAv)*) Aa>t.
B€(0,1)
Consequently
er(uAv) > pp(p) Nep(v).
Let u < v. Then for each a € (0,1) we have u® C v®. Hence

ep(p) = sup f(u*)ANa< sup f(r*)Aa=ps).
ae(0,1) ae(0,1)

sup f((uVv)®) Aa
a€e(0,1)
= sup f(p*Ur¥) A«
a€e(0,1)
= sup (f(p)V f(r?)) Ao
a€e(0,1)
sup ((f(u*) Ae) vV (f(r®) Aa))
a€e(0,1)
= sup (f(u®)Aa)V sup (f(v°)Aa)
ae(0,1) ae(0,1)

=pr(n) Vpr(v).

pr(pVv)

fe(0) = ¢(19) = 0.

st(A NB)=¢(lanp) = p(laNlp) = f«o(A) A f@(B)-
If A C B then
Jo(A) = (1a) < (1) = fo(B).

Finally,
c(fo) = fo(X) = p(c1) = c(e).

(4)

fo(AUB) = o(laup) = ¢(1aVig) =¢(la) V(1) = fo(A)V fo(B).

98



(5)
Let A C X Then

fo;(A) = ¢@f(1a) = sup f(1%) Na= sup f(A)Aa=f(A).
ae(0,1) ae(0,1)

(6)
Let p € IX. Then

¢r, ()= sup fo(u*)Aa= sup p(lue)Aa= sup @(laialx) <o sup 1,ahalx) = o(u).
a€(0,1) a€(0,1) a€(0,1) a€e(0,1)

d

We have seen how to obtain a fuzzy filter from a g-filter and vice-versa. We now show
that
=

is an injective function.

9.3.2 Theorem
If f and g are different g-filters then ¢ and ¢, are different.

Proor.
If f # g then there exists A such that « of f(A) > g(A) ' 3. Let 1 41, Then

pr(n) =sup f(A) Ay
’yE(O,l)
=sup a A7y
v€(0,1)
=a>pf

= ¢g(n)-
d

So the collection of all g-filters on a set X embeds into the collection of all fuzzy filters
on X.
More information regarding fuzzy filter can be found in [20, 21, 22, 40].
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Chapter 10

Super Uniform Spaces

10.1 Introduction

In [28] the notion of a super uniformity introduced and studied.

10.1.1 Definition
A fuzzy a-uniformity with o € Iy on X is a subset UY* C I**X which satisfies the following
conditions:

1. U™ is a saturated prefilter with characteristic set [0, );

2. VoeU*, Vee X, o(x,x) > q;

3. Voel* o, e U,

4. VoeU* Veecly, WpeU*:Yop <o+e.

We call (X,U%) a fuzzy a-uniform space and the elements of U%, fuzzy a-entourages.

Note: For a = 1 they are the fuzzy uniformities on X.

10.1.2 Definition
A fuzzy a-uniform base with o € Iy on X is a subset B* C I*X*X which satifies the following
conditions:

1. B* is a prefilter base with characteristic set [0, «);
2. VoeBY VeeX, olx,z) >

3.VoeBY Veely, WpeB¥:yp<o,+e¢;

4. VoeB* Veely, WpeB: Ypoyp <o+e.

10.1.3 Definition

A super uniformity on X is a function § : IX*X

— I which satifies the following conditions:

1. ¢ is a saturated fuzzy filter;

2. VoeI™™X info(x,x) > d(0);
zeX

3. VoeIX*X §(a)=06(os);
4. Yo eIX*X Veecly, Wel*X*X :9poyp—e<oand §(o) < ().
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Note From the definition we can conclude that

0(c) > inf =info.
(o) > L1yn€X<7(a:,y) inf o

10.1.4 Proposition
If § is a super uniformity on X, then for all a € Iy, 6, = {0 € IX*X : §(0) > a} is a fuzzy
a-uniformity. Moreover, d, = N dg.
<o
PROOF.

Let 0 : IX*X — I be a super uniformity and o € Iy. Then
(i) 0 is a saturated fuzzy filter. Therefore

6o = {0 € I*** 1 5(0) > a}.

is a saturated prefilter with C(d,) = [0, @).
(ii) Let 0 € 04 and x € X. Then

> i > > Q.
o(x,z) > Ilg( o(x,z) > (o) >«

(iii) Let 0 € §,. Then
0(os) =6(0) > a= 05 € 04

(iv) Let 0 € 64 and € € Iy. Then Fp € I*X such that
Yo —e<oand (o) <o(v).

Thus ¢ € 6, such that Yo <o +¢.
Since ¢ is a fuzzy filter. So we have for a € Iy,

0o = N bp.
¢ ﬂ<o¢ﬁ

Hence the result.

10.1.5 Proposition
Let {U*}oe(0,1) be a non-increasing collection of fuzzy a-uniformity on a setX such that for
each a € (0,1),U* = Bﬁ UP. Tf for each o € IX*X we define
<a
0(c) =sup{a € (0,1): 0 € U}
Then § is a super uniformity.

PROOF.

Let {U*}4e(0,1) be a non-increasing collection of fuzzy a-uniformities on a setX such
that for each « € (0,1),U* = 60 UP. Then for each o € [X*X
<«

0(c) =sup{a € (0,1): 0 € U}
is a saturated fuzzy fiter.

Let 0 € I**X and v < §(0). Then 0 € U” and hence V = € X, o(z,z) > 7. So

inf > 7.
inf o) 2
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Therefore

: S .
wlgg( o(z,z) > (o)

We have

d(o) =sup{a € (0,1):0€ U}
sup{a € (0,1) : 0, € U~}
=4(0s).

Let 0 € I"*X and ¢ € Iy. Let §(0) =a > 0. ThenV 3 < a, o € UP. So

ce nUP=U".
B<a

Therefore Jip € U® such that 1) o ¢ < 0 + ¢ and we have 6(0) = a < §(v).

10.1.6 Theorem
Let {D()}ae(0,1) be a non-decreasing collection of uniformities on a set X. For each a €
(0,1) let
D(a)={o e I*** .V < a,Vy < f,07 €eD(B)} = N (D(B))".

B<a

Then:

1. D(«) is a fuzzy a-uniformity, which we call the fuzzy a-uniformity associated with the
collection {D()}ae(0,1)s

2. The family {D(a)}ae(0,1) is non-increasing,

3. Vae(0,1), Da) = N D).

a'<a
Furthermore, if for each o € IX*X we define
0(c) =sup{a € (0,1): 0 € D(a)},

we obtain a super uniformity ¢ such that for each a € (0,1) the corresponding a-level
uniformities are

6o = {0 € I**¥ :5(0) > a} =D(a) and 6, = QlD(a).

We call § the super uniformity generated by the collection {ID(c)}qae(0,1)-

Proor.
(a) We shall first prove that for each « € (0,1) the collection
D(a) ={o € I"*X VB < a,Vy < 8,07 € D(B)} is a fuzzy a-uniformity.

CD(a) ={tel:tlx ¢D@)}={tel:F<a,Iv <P, (t1x)" €D(P)}
={tel:P<a,Iy<ft<y}={tel:P<at<pt={tel:t<a}
=0, ).

D(a) = Bﬂ (D(B))? is a saturated prefilter because it is an intersection of saturated
<a

prefilters.

Let 0 € D(a) and © € X. For each 8 < a and each v < 8 we have ¢7 € D(3) and hence
(z,z) € 07. Thus for each f < « and each v < 8 we have o(x,z) > 7. So for each § < «
we have o(z,x) > 8 and hence o(z,z) > a.
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10.1.7

Let 0 € D(«). Since (07)s = (05)”. Therefore o5 € D(w).

Let 0 € D(a), € € Iy and choose ag,ay, ..., such that 0 = ap < a1 < @y < -+ <
o, = a and a; — ;1 < ge for each i € {1,...,n}.

For i€ {0,1,...,n—1} we have 0% € D(a;41) and so there exists Uy, ,
that Uy, 0 Us,,, C 0%

Let U}, = Uy, and U, = Q‘Ua]. for each i € {2,...,n}. Then, since for each i €
71<i

S D(ai+1) such

{1,...,n} and cach j € {1,...,i}, Ua, € D(a;) € D(a;), we have U/, € D(a;) and U, D
UL, 2---2 U, . So we can state that:
for any ¢ € {1,...,n}, there exists U,, € D(e;) such that U,, o Uy, C 0%~ and U,, 2

Uy D+ D U,,. Let

Upy =X x X
and let
Y= sup olx Aly, .
ie{l,....,n} -

Thus ¢ € D(a) since if 0 < v < [ < « then for some i € {0,...,n — 1} we have
a; < B < ajy1. Thus v < a1 and hence 7 D 1, , = Us, € D(y) € D(B). It follows
that 7 € D(B) and so ¢ € D(a).

If o(x,y) > ay_o then o(z,y) + & > ap—2 + (@n — @p—2) = @, = o and hence we have

(Yo)(z,y) <a<o(zy) te.
If o(z,y) < ay—_2 there exists some i < n — 2 such that a;—1 < o(z,y) < ;. Since

(z,y) ¢ 0% we have (z,y) ¢ Ua,,, ©Us,,, and so for no z € X do we have (z,z) € U
and (z,y) € U,

i1 Qit1
air.- In other words, for each z € X either (z,2) ¢ U,,,, or (2,9) ¢ Ua,,,-
Thus for each z € X either ¥(z, 2) < a;41 or ¥(z,y) < a;41. Consequently,

¢ © 1/J(1’7y) = Supr(xaz) A ’(/J(z?y) < Qi1 < 0G—1 +e< U($7y) +e
zE

Therefore there exists ¢ € D(a) such that o) < o+ ¢.

For each « € (0,1) we have

Q D(a') ={oecI™X Vo' <a, V3 <o Vy<pB,07eD(B)}
={oc e I**X V3 < a,Vy< B,07€D(B)} =D(a).

We now appeal to (10.1.5) and claim that the mapping defined for each o € IX*X by
d(c) =sup{a € (0,1): 0 € D(c)}

is a super uniformity such that for each o € (0, 1) the corresponding a-level uniformities
are

6o = {0 € I**¥ 1 §(0) > a} =D(a) and §; = Qléa = QlD(a).

In particular, for a fuzzy uniformity D, the collection {D(a) = D},e(0,1), is a non-
decreasing collection of uniformities and in that case, the fuzzy a-uniformity associated
with this collection is D(«) = ﬁﬂ (D)8,

<a

O

The proof of the following corollary is straightforward.

Corollary
Let (X,D) be uniform space. Then the super uniformity dp generated by the collection

{D(OZ) = ]D)}OLG(O,I) is

op(o) =sup{a € (0,1):0 € 59 DA} = sup{a : @ € D*} = sup{ar : 0® € D}.
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10.1.8

10.1.9

10.1.10

Definition
A non-decreasing collection of uniformities {D(c)}ae(0,1) is said to be generated from below
if for each e € (0,1) we have D(a) = U D(&/).

a’'<a

In the case {D(a) = D*}4e(0,1), Where D is a fuzzy uniformity, it is easy to check that
it is generated from below.

Theorem
The super uniformities generated by two different, non-decreasing collections of uniformities,
which are generated from below, are different.

PROOF.

Let {D(a)}ae(0,1) and {Dl/ )}ae(o,1) two different non-decreasing collections of uniformi-
ties which are generated from below. Then there exists o € (0,1) and U C X x X such that
U € D(a) —D'(a). Since U € D(a) = U D(c'), there exists o’ < a such that U € D(a).

a’<a

We now consider oy = (alx Aly) Va'ly € XXX,
*If B € [a,a) and v < 3 then
~ _J U ifv>a
TUT] XxX ify<al

Thus in any case oy” € D(o’) C D(G).
xIf B < a' and v < B then oy = X x X € D(B).

Therefore, for each § < « and each v < § we have o7 € D(f), hence oy € D(a) and
so 6(oy) > a.

On the other hand we know U ¢ D'(«). Thus for each o/ € (&, ) there exists v and
B such that o/ <y < <o’ <aand oy? =U ¢ D'(B). Thus oy ¢ D'(¢”) and therefore
8 (o) < . Consequently § and ¢’ are different.

Theorem
Let (X, ) be super uniform space. Then

Ds={c":a<1, é(c) =1}
is a uniformity on X.

PROOF.

If 0 = ) € Dy then o < alx. Therefore §(0) =1 < §(alx) = « and this contradiction
shows () ¢ Ds. §(1) =1 and 0% = X x X for any a < 1. Therefore X x X € Dy.

Let 0% € Ds and 0® C U. Then 0 < alx V 1,c < alx V 1y. Therefore (o) =1 <
§(alx V1) and for 8 € [a, 1) we have (alx V 1y)? = U € Ds.

Let 0@, 9" € Ds. Then 6(o A9) =1 and (o A)*V8 € Ds. But (o A)*VF C o NyP.
Therefore o® N ” € Dj.

Let 0® € Ds. For each x € X we know that o(z,z) > d(c) =1 > « and so (z,z) € o®.
Therefore A C o%.

Let 0 € Ds. Since (0%)s = (05)%, we have (0%)s € Ds.

Let 0 € Ds. We therefore have o € IX*X and ¢ = 1*7’1 > 0. Thus Jp € [X*X
such that ¢ o9 < o + ¢ and 6(¢) > 6(0c) = 1. Hence for § = 2 € (a,1) we have
PP oypB C (horp)P C (0 +¢)? =0P¢ =0 Thus I? € Ds such that ° oy C 0.

g
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10.1.11 Theorem
Let (X, ) be a super uniform space. Then

Ds={oc € XX §(o) =1}
is a fuzzy uniformity on X.

Proor.
We have 0 ¢ Ds since 6(0) =0. 6(1) =1 and so 1 € Ds.
Let 0,1 € Ds. Then 6(c) =1 and §(¢b) = 1. So
d(oNY)=68(c)Ad(Y) =1.

Therefore o A Y € Ds.

Let 0 € Ds and ¢ < . Then 1 = §(0) < d(¢). Therefore ¢ € Ds. Hence Djs is a
prefilter.

Let Ve€ly, 0+ec€Ds. ThenVeely, §(c+e)=1. So

d(oc) =1inf §(c +¢) =1.

e€ly
Therefore o € Ds and hence D, is a saturated prefiter.

Let 0 € Ds and x € X. Then

o(z,z) > (o) = 1.

Let 0 € Ds. Then 6(os) = 0(0) =1 and so o5 € Ds.

Let 0 € Ds, € € Ip. Then 3¢ € IX*X such that o) —e < o and 1 = §(a) < 6(¢)).
Therefore 1) € Dy such that ¥ o 9 < o + &. Therefore Dj is a fuzzy uniform space.
O

10.2 Uniformly Continuous Functions

10.2.1 Definition
Let (X,U%) and (Y,V?) be two fuzzy a-uniform spaces. Then a mapping [ : (X,U%) —
(Y, V) is said to be a uniformly continuous if

VeV, (f x )l e ue.
That is, V ¢ € V*, Jo € U“ such that (f x f)[o] < .

10.2.2 Definition
Let (X,0x) and (Y, dy) be super uniform spaces. Then a mapping f : (X,dx) — (Y, dy)
is said to be uniformly continuous if

Ve I, Sx((f x f)7Hw]) > 6y (¥).

10.2.3 Proposition
Let (X,dx) and (Y, dy) be super uniform spaces. Then

1. f: (X,dx) — (Y,0y) is uniformly continuous = V a € Iy, f : (X,(0x)a) —
(Y, (0y)o) is uniformly continuous.

2. Vae(0,1), f:(X,(0x)a) — (Y, (dy)a) is uniformly continuous = f: (X,dx) —
(Y, dy) is uniformly continuous.
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10.2.4

10.2.5

10.2.6

Proor.
(1) Let ¢ € (0y)a. Then 6y (1)) > . Therefore

Sx((f x )~ ) = by [¢] > o

Thus (f x f)7' Y] € (0x)a-
(2) Let v € IY*Y and a € (0,1) such that &y () > a. Then ¥ € (dy), and hence

(f < [)7'Y] € (0x)a- Thus ox((f x f)~'[¢)]) = a. Therefore 5x ((f x f)~'[¢]) > oy ().
O

Theorem
Let (X,D) and (Y,E) be uniform spaces. If f: (X,D) — (Y,E) is uniformly continuous
then f: (X,0p) — (Y, 0g) is uniformly continuous.

PROOF.

Let f: (X,D) — (Y,E) be uniformly continuous and ¢ € IY*Y.
If 6g () = sup{a : * € E} > t then ¢* € E and so (f x f)~ (¢*) € D. Therefore

((f x HT'D" = (f x /)~ (v") € D.
So dp((f x f)~H¢]) > t. Consequently,

So((f x /)7 [¥]) = ().

Theorem
Let (X,dx) and (Y,dy) be super uniform spaces. If f : (X,0x) — (Y,dy) is uniformly
continuous then f: (X,Ds,) — (Y, Ds,.) is uniformly continuous.

Proor.
Let ¢ € Ds,.. Then 6y () = 1. Therefore

Sx((f x /)7 ¥]) = oy [¥] = 1.

and

(f x /)=(W*) = ((f x /)" [¥])* € Dey.

Theorem

Given a fuzzy uniformity D on a set X, dp denote the super uniformity generated by
the collection {D*},ec(0,1)- Suppose (X,D) and (Y, &) are fuzzy uniform spaces and f :
(X,D) — (Y, &) is uniformly continuous then f : (X,dp) — (Y, d¢).

PROOF.

Let f: (X,D) — (Y, &) is uniformly continuous and 1 € IY <Y,
If 6¢(¢)) > o then ¢ € E(a). Thatis V f < o, Vv < B, ¢ € 7 and so 3 ¢ €
& and ' < 8 such that 7 =7 . Now (f x f)"![¢'] € D and so

(Fx HTHN = (Fx £~ @) = (fx )W) = (f x )~ )" € D°.
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Therefore 6p((f x f)71[¢]) > a. Consequently,

8e () < dp((f x f)~'[¥]).

10.2.7 Theorem
Let (X,0x) and (Y, dy) be super uniform spaces. If f: (X,Dx) — (Y,dy) is uniformly
continuous then f: (X, Ds, ) — (Y, Ds,.) is uniformly continuous.

PROOF.

Let ¢ € Ds,.. Then dy (1)) = 1. Therefore
Sx((f x f)~' ) = by (¥) = 1.

Hence (f x f)7![¢] € Dsy.
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11.1.1

Chapter 11

Categorical Embeddings

In this chapter we establish categorical embeddings from the category of uniform spaces
into the categories of fuzzy uniform spaces, generalised uniform spaces and super uniform
spaces. We also obtain categorical embeddings from the categories of fuzzy uniform spaces
and generalised uniform spaces into the category of super uniform spaces. We show that
the category of fuzzy uniform spaces and the category of generalised uniform spaces are
isomorphic. These categorical relations are introduced and studied in [29)].

11.1 Embedding into the Category of Fuzzy Uniform
Spaces

Let US denote the category of uniform spaces with uniformly continuous maps and let FUS
denote the category of fuzzy uniform spaces with uniformly continuous maps.

Theorem
Let
wy :US — FUS, (X,D) — (X,D")

and let wy leave maps unchanged.
Let
iy FUS — US, (X,D) — (X,D")

and let iy leave maps unchanged.
Then

(a) wy is a functor,

(b) iy is a functor,

(¢) iy owy = idys,

(d) wy is co-adjoint.
Proor.

(a) We have if f : (X,D) — (Y,E) is uniformly continuous in US then f : (X,D!) —
(Y, E!) is uniformly continuous in FUS.

Clearly wy preserves compositions and identites.

Therefore wy is a functor.

(b) We have if f: (X, D) — (Y, &) is a uniformly continuous in FUS then f: (X,D!) —
(Y, EL) is uniformly continuous in US.

Clearly Iy preserves compositions and identities.
Therefore Ij; is a functor.
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11.2.1

(c) Since (D) = D, we have
(Iy cwy)((X, D)) = Iy (X, D') = (X, (D")!) = (X, D).

Therefore Iy o wy = idys.
(d) We have idx : (X, (D')!) — (X, D) is uniformly continuous, since D C (D!).
We also have
f:(Y,D'Y) — (X, D) is uniformly continuous
< f:(Y,D) — (X, D") is uniformly continuous [ since (D!)! = D)
< f:(V,D') — (X, (D")?!) is uniformly continuous.

US & FUS
(X,D)
x, 7Y <L (v.p) idxt N
(X0 < (D)

For (X,D) € Ob(FUS), ((X,D'),idx) is a wy- co-universal arrow with domain (X, D).
Therefore wy; is a co-adjoint. wy embeds the category US as a coreflective subcategory

of FUS.
O

11.2 Embedding into the Category of Generalised Uni-
form Spaces

Let GU S denote the category of generalised uniform spaces with uniformly continuous maps.

Theorem
Let
EUZUS—>GUS, (X,]D))’—?(X,lﬂj))

and let ey leaves maps unchanged.
Let
i GUS — US, (X,d) — (X,d%)

and let vy leaves maps unchanged.
Then

ey is a functor,

(a)
(b) v is a functor,
(¢) Y oev =idys,

(d) ey is co-adjoint.
Proor.

(a) We have

(i) If f: (X,D) — (Y,E) is uniformly continuous then f : (X,1p) — (Y,1g) is
uniformly continuous.

(ii) ey preserves compositions and identities.

Therefore ey is a functor.

(b) We have
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() If f: (X,d) — (Y, e) is uniformly continuous then f : (X,d°) — (Y, ) is uniformly
continuous.

(ii) vy preserves compositions and identities.

Therefore vy is a functor.

(¢) We have
(v o ev)((X, D)) =y ((X,1p)) = (X,1p) = (X, D).

(d) First we have to show d < 140.
Uecd «=dU)>0.
We have d(U) > 0 = 14 (U) = 1 and hence
d < 1go.

So we have idx : (X,140) — (X, d) is uniformly continuous.

We also have

Y, 1p) — (X, d) is uniformly continuous

: (Y,D) — (X,d°) is uniformly continuous [ Since 1% = D]
: (Y, 1p) — (X, 140) is uniformly continuous.

[
= f
= f

US = GUS
YU
(X,d)

(X,d%) <L (v, D) idx? NS
(X.lo) < (V1)

For (X, d) € Ob(GUS), ((X,d"),idx) is a ey- co-universal arrow with codomain (X, d).
Therefore ey is a co-adjoint. €y embeds the category US as a coreflective subcategory

of FUS.
O

Next we establish an isomorphim between FUS and GUS.

11.2.2 Theorem

FUS=2GUS

PROOF.

Let
F:FUS — GUS, (X,D) — (X,dp)

and F' leaves maps unchanged.

We have seen in 8.1.6 that F'is bijective. We also have:

(a) if f: (X, D) — (Y, &) is uniformly continuous then F(f) = f : (X,dp) — (Y,d¢)
is uniformly continuous.

(b) F preserves composition and identities.

Therefore F' is functor. Now we have to show there is functor G : GUS — FUS such
that Go F = idpys and F o G = idgys. Let

G:GUS — FUS, (X,d) — (X,Dy)

G leaves maps unchanged.
We have
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11.3.1

(a) If f:(X,d) — (Y, e) is uniformly continuous then G(f) = f : (X,Dq) — (Y, D,)
is uniformly continuous.

(b) G preserves compositions and identities.

Therefore G is a functor. Now we have

(Go F)((X,D)) = G((X,dp)) = (X, Da,,) = (X, D),
(FoG)((X,d)) = F((X,Da)) = (X, dp,) = (X,d).

Hence the result.

11.3 Embeddings into the Category of Super Uniform
Spaces

Let SUS denote the category of super uniform spaces with uniformly continuous maps.

Theorem
Let
Ay :US — SUS, (X,D) — (X, dp)

and let Ay leaves maps unchanged.
let
ky : SUS — US, (X,0) — (X, Dy)

and let ky leaves maps unchanged.
Then

(a) Ay is a functor,

(c

(d) Ay embeds the category US as a coreflective subcategory of SUS,

)

(b) kv is a functor,
) ku oAy =idys,
)

(e) If o € I’™*X such that (o) = 1 then &p, (o) = 1.
ProOOF.

(a) We have

if f:(X,D) — (Y,E) is uniformly continuous then f : (X, dp) — (Y, 0g) is uniformly
continuous.

Ay preserves compositions and identities.

Therefore Ay is a functor.

(b) We have

if f:(X,0x) — (Y,dy) is uniformly continuous then f : (X,Ds,) — (Y,Ds, is
uniformly continuous.

ky preserves compositions and identities.

Therefore ky is a functor.

(c) We have
(kv © Av)((X, D)) = ky ((X,dp)) = (X, Ds, ).

Now we have to show D = Ds,. We have

UeDs, < 3Ja<l, JoelX :ép(oc)=1and U = o"
= 3Ja, Jo :U=0"andV <1, €D
= U =% € D.
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11.3.2

Conversly if U € D, let ¢ = 1yy. Then ¢® = U for all a € (0,1) and so op(U) = 1. Tt
follows that U = ¢® € Ds,.

(d) The injectivity of Ay on morphisms follows from Theorem (10.1.9), together with the
fact that \y leaves underlying maps unchanged.

(e) If 6(o) = 1 then for all a < 1, 0* € Ds and so o € (Ds)!. Therefore

dps (o) =sup{a: o€ (Ds)*} = 1.

Theorem
Let
ep: FUS — SUS, (X,D) — (X,dp)

and let ep leaves maps unchanged.
Let
’)/FISUS—>FUS, (X,(S)i—)(X,'D(;)

and let yp leaves maps unchanged.
Then

(a) ep is a functor,

(b) ~F is a functor,

d) ep embeds the category FUS as a coreflective subcategory of SUS),

)
)
(¢) yroer =idpus,
(d)
) eFowy = Au,
)

(e
(f) If o € IX*X such that §(o) = 1 then op,(c) = 1.

PROOF.

(a) We have

if f:(X,D) — (Y,&) is uniformly continuous then f : (X,dp) — (Y, dg) is uniformly
continuous.

e preserves compositions and identities.

Therefore ey is a functor.

(b) We have

if f:(X,0x) — (Y,0y) is uniformly continuous then f : (X,Ds, — (Y, Dy, ) is
uniformly continuous.

vF preserves compositions and identities.

Therefore v is a functor.

(c) We have
(vroer)(X, D)) = vr((X,0p)) = (X, Dsy,).

Now we have to show that D5, = D. We have
Ds, ={0e€I*X . dplo)=1}={cec X :Va<l, ceD()}
={oecI®X:Va<l,VB<a, Vy<p,0” €D’}
={oec XX . V3<1, Vy<g, 0¥ €D}

For any o € D and for any v < 3 < 1 we have 07 € D and so D C D(s5,)- Thus for
each a € (0, 1] we have D C (D(s,))°.
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On the other hand, for each o € (0, 1],
(Dsp))* = {c” :d' <a,0€ Dispy} = {o% 1 <a,V8 < 1,¥y < B,07 € D’} C D°.

Therefore for each o € (0,1], (D(s5,))* = D* and so D(s,,) = D [See Theorem 5.3.4].

(d) The injectivity of e on morphisms follows from Theorem (10.1.9), together with the
fact that ep leaves underlying maps unchanged.
(e) For each (X,D) € |[US| we have

(er owr)((X, D)) = ep((X, D)) = (X, 0p)

and dp1 is the super uniformity generated by the collection {(D')*},c(0,1y- But for each
a € (0,1) we have
MYHYe ={s?:B<a,0eD'} =D

and so dp: is the super uniformity generated by D. That is,

(er 0wu)(X, D)) = (X, dp1) = (X,05) = Au((X,D)).

(f) If 6(0) =1 then 0 € Ds = Ql((D(g)a)o‘. That is, dp, (o) = 1.

We have seen that there is a functor ¢z which embeds the category FUS into the category
SUS, thereby making SUS an extension of FUS. The categorical isomorphism

F:.FUS—-GUS, G:GUS— FUS
between FUS and GUS is established in [11.1.2]. We can therefore define
eq:GUS — SUS

by
ea=¢croQG

and it follows that e¢ is a functor which embeds the category GUS into SUS. If we define
Yo =Fonp

then
Ya o eq = tdgus

and also
EGOEy = )\U-

Thus SUS is also an extension of the category GUS.
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