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Abstract

The notion of a filter F ∈ 22X

has been extended to that of a : prefilter F ∈ 2IX

,
generalised filter f ∈ I2X

and fuzzy filter ϕ ∈ IIX

. A uniformity is a filter with some
other conditions and the notion of a uniformity D ∈ 22X×X

has been extended to that of
a : fuzzy uniformity D ∈ 2IX×X

, generalised uniformity d ∈ I2X×X

and super uniformity
δ ∈ IIX×X

. We establish categorical embeddings from the category of uniform spaces into the
categories of fuzzy uniform spaces, generalised uniform spaces and super uniform spaces and
also categorical embeddings into the category of super uniform spaces from the categories
of fuzzy uniform spaces and generalised uniform spaces.
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PREFACE

Since the notion of a fuzzy set was introduced by Zadeh [84], there have been attempts
to extend useful mathematical notions to this wider setting, replacing sets by fuzzy sets.
The study of uniform space notion is facilitated by the notion of a filter. In [52] Lowen
introduced the notion of a fuzzy uniform space. This was accomplished with the aid of a
filters on IX which Lowen [48] called prefilters. The notions of prefilter and fuzzy uniform
space are extentions of filter and uniform space. We prove that the category of uniform
spaces is embedded into the category of fuzzy uniform spaces.

The notion of a fuzzy filter is introduced in [22] and then a new generalised form of
uniformity, called super uniformity, is defined and studied. It is based on the concept of
fuzzy filter. In [15] the notion of a generalised uniform space is introduced and studied using
prefilters, which are not the most natural analogue of the filter notion in this situation.
With the collaboration of Burton and Gutiérrez we introduced and studied the notion of a
generalised filter in [16]. In Chapter 8, we rewrite the basic theory of generalised uniform
spaces with the aid of generalised filters.

We can see that the notion of a generalised uniform space and the notion of a super
uniform space are extentions of uniform space and the category of uniform spaces is embed-
ded into the categories of generalised uniform spaces and super uniform spaces. We prove
that the category of generalised uniform spaces and the category of fuzzy uniform spaces
are isomorphic. We also show that the categories of fuzzy uniform spaces and generalised
unifrom spaces are embedded into the category of super uniform spaces. We first establish
consistent notation. We have also slightly changed a few definitions and strengthened some
theorems. This lead us to establish a nice categorical connection between the categories of
uniform spaces, fuzzy uniform spaces, generalised uniform spaces and super uniform spaces.

Chapters 1 and 2 introduce basic results in fuzzy sets and fuzzy topology. Chapter 1
gives the introduction to fuzzy sets and deals with crisp subsets associated with a fuzzy
set and fuzzy sets induced by maps. The second chapter is concerned with fuzzy topology:
the fuzzy closure operator is a very useful tool to define a topology. We also see in this
chapter continuous functions between fuzzy uniform spaces. In chapters 3 and 4 we record
the standard results on filters and uniform spaces, since they give and an idea for consequent
results in later chapters.

Chapter 5 explores the fundamental ideas of prefiters. We get prefilters from filters and
filters from prefilters. We see the images and preimages of filters under a map and study
convergence in fuzzy topological space. In chapter 6 we defined fuzzy topology as a prefilter
plus other conditions. We deal some basic results in fuzzy neighbourhood spaces which are
essential to find a fuzzy closure operator and then obtain a fuzzy topology from it. We find
fuzzy topologies from fuzzy uniform space directly and from fuzzy neighbourhood spaces.
Next we deal with convergence in uniform topology and uniformly continuous functions
between fuzzy uniform spaces. In the last section we deal with α-level uniformities which
turned out to be very useful for subsequent results.

Chapter 7 is concened with generalised filters: definitions, generalised filters from pre-
filters and prefilters from generalised filters and prime generalised filters. In Chapter 8 we
deal with generalised uniform spaces and uniformly continuous functions between generalised
uniform spaces. We will see fuzzy filters in Chapter 10 with more emphasis given to a fuzzy
filter with characteristic value 1. We also obtain fuzzy filters from generalised filters and
generalised filters from fuzzy filters. In Chapter 10 we give definitions for α-uniformities and
super uniformities. Then we see uniformly continuous functions between α-uniform spaces
and super uniform spaces.

Chapter 11 is the centeral chapter which connects the categories of uniform spaces, fuzzy
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uniform spaces, generalised uniform spaces and super uniform spaces. Here we see that
fuzzy uniform spaces, generalised uniform spaces and super uniform spaces are extentions of
uniform space using categorical embeddings from the category of uniform spaces into these
categories. We can also obtain categorical embeddings into the category of super uniform
spaces from the categories of fuzzy uniform spaces and generalised uniform spaces. Also
we show that the category of fuzzy uniform spaces and the category of generalised uniform
spaces are isomorphic.
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Chapter 1

Fuzzy Sets

1.1 Introduction

The role of set theory has been formulated in the development of modern mathematics.
However usual observables in our daily lives and conversation as well as scientific experi-
mentation constitute ill-defined sets. For example, the set of old people, the class of tall
men, the class of large numbers, the set of low temperatures etc.

In order to try to develop a theory for such ill-defined sets L.A. Zadeh [84] defined the
notion of a fuzzy set as follows.

1.1.1 Definition
Let X be a set. A fuzzy set on X is a map from X into [0, 1]. That is, if µ is a fuzzy set on
X then µ ∈ IX . Where I = [0, 1] and IX denotes the collection of all maps from X into I.

Since the notion of a fuzzy set was introduced the basic theorems of set theory have been
extended to produce a calculus of fuzzy sets.
Lattice-dependent subsets

The unit interval I = [0, 1] can be replaced with a complete lattice L.
Let X be a set and L be a complete lattice. Then an L-subset of X is a map from X to

L.
Order-structure of L-subsets

LX is equipped with order-theoretic structure induced from L, and so is a complete lattice.
For example,

µ ≤ ν ⇔ ∀ x ∈ X, µ(x) ≤ ν(x);

(
∨

j∈J

µj)(x) ≡
∨

j∈J

µj(x), x ∈ X;

(
∧

j∈J

µj)(x) ≡
∧

j∈J

µj(x), x ∈ X.

L is de Morgan iff L admits an order-reversing involution

′ : L −→ L (a′′ = a, a ≤ b ⇒ a′ ≥ b′)

in which case LX is also de Morgan.

Remark
I is a complete de Morgan lattice, and so is IX .

If X is a set and A ⊆ X, then we define the characteristic function of A, denoted 1A by

1A
def=

{
1 if x ∈ A
0 if x /∈ A.
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Note that 1A ∈ {0, 1}X = 2X and there is a natural bijection between P(X) and 2X . If A′

denotes the complement of A, we see that:
∀ x ∈ X, 1∅(x) = 0;
∀ x ∈ X, 1X(x) = 1;
∀ x ∈ X, 1A′(x) = 1− 1A(x);
∀ x ∈ X, 1A∪B(x) = 1A(x) ∨ 1B(x);
∀ x ∈ X, 1A∩B(x) = 1A(x) ∧ 1B(x);
A ⊆ B ⇒ 1A ≤ 1B .

Algebra on IX

IX is equipped with order-theoretic structure induced from I.
The empty fuzzy set 0 is : ∀ x ∈ X, 0(x) = 0;
The whole fuzzy set 1 is : ∀ x ∈ X, 1(x) = 1;
µ = ν ⇔ ∀ x ∈ X, µ(x) = ν(x);
µ ≤ ν ⇔ ∀ x ∈ X, µ(x) ≤ ν(x);
(µ ∨ ν)(x) ≡ µ(x) ∨ ν(x), x ∈ X;
(µ ∧ ν)(x) ≡ µ(x) ∧ ν(x), x ∈ X;
(

∨
j∈J

µj)(x) ≡ ∨
j∈J

µj(x), x ∈ X;

(
∧

j∈J

µj)(x) ≡ ∧
j∈J

µj(x), x ∈ X;

µ′(x) ≡ µ(x)′ = 1− µ(x), x ∈ X.

In the case where I is the closed unit interval, we remind ourselves of the following basic
facts:

1.1.2 Theorem
1. If f ∈ IX×Y then,

sup
(x,y)∈X×Y

f(x, y) = sup
x∈X

sup
y∈Y

f(x, y);

inf
(x,y)∈X×Y

f(x, y) = inf
x∈X

inf
y∈Y

f(x, y);

sup
x∈X

inf
y∈Y

f(x, y) ≤ inf
y∈Y

sup
x∈X

f(x, y).

2. If X, Y ⊆ I then,
sup X ∧ sup Y = sup

x∈X
sup
y∈Y

x ∧ y;

inf X ∨ inf Y = inf
x∈X

inf
y∈Y

x ∨ y.

3. If µ, ν ∈ IX then
sup (µ ∧ ν) ≤ sup µ ∧ sup ν.

4. If ν ∈ IX and A,B ⊆ X then

sup
x∈A

ν(x) ∧ sup
y∈B

ν(y) = sup
x∈A

sup
y∈B

(ν(x) ∧ ν(y)).
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1.2 Crisp Subsets of X Associated With a Fuzzy Set

If µ ∈ IX and α ∈ I we define,

µα def= {x ∈ X : µ(x) > α};

µα
def= {x ∈ X : µ(x) ≥ α}.

These are the so-called α-level(or cut), strong and weak respectively. If a theory is to be
fuzzified (for example group theory), a very useful type of theorem to have avilable is one
which relates a property (such as normality) to its fuzzy analogue. Very often the theorem
takes the form

µ is fuzzy− P ⇔ ∀ α ∈ I, µα is P.

Or some variation of this. These α-levels theorems are extremly useful.

1.2.1 Lemma
If µ, ν ∈ IX then,

µ = ν ⇔ ∀ α ∈ I, µα = να

⇔ ∀ α ∈ (0, 1), µα = να.

Proof.

(⇐)
Let x ∈ X and µ(x) = α. If ν(x) > α then x ∈ να and so x ∈ µα. Therefore µ(x) > α.

This is a contradiction. Hence ν(x) ≤ α. If ν(x) < α then ∃β such that ν(x) < β < α.
Therefore x ∈ µβ and so x ∈ νβ and hence ν(x) > β. This is a contradiction. Hence
ν(x) = α. Since x is arbitrary. Therefore ∀ x ∈ X, ν(x) = µ(x). That is µ = ν.

Assume ∀ α ∈ (0, 1), µα = να. Now we have to show ∀ α ∈ [0, 1], µα = να. That
is µ1 = ν1 and µ0 = ν0. But clearly µ1 = ∅ = ν1 Let x ∈ µ0 then µ(x) > 0. So ∃α >
0 such that µ(x) > α > 0. Therefore x ∈ µα = να ⇒ ν(x) > α > 0 ⇒ x ∈ ν0 and hence
µ0 ⊆ ν0. Similarly ν0 ⊆ µ0. Therefore µ0 = νo.

¤

1.2.2 Lemma
If µ ∈ IX then,

µ = sup
α∈(0,1)

α1µα .

Proof.

If x ∈ X then

α1µα(x) =
{

α if µ(x) > α
0 if µ(x) ≤ α.

Let x ∈ X and µ(x) = β. Then

α1µα(x) =
{

α if β > α
0 if β ≤ α.

Therefore
sup

α∈(0,1)

α1µα(x) = β.

¤
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1.2.3 Lemma
If µ, ν, µ(j), ν(j) ∈ IX , j ∈ J then

1. (µ ∧ ν)α = µα ∩ να;

2. (µ ∨ ν)α = µα ∪ µα;

3. (µ ∧ ν)α = µα ∩ να;

4. (µ ∨ ν)α = µα ∪ να;

5.
⋃

j∈J

µ(j)α ⊆ (
∨

j∈J

µ(j))α;

6. (
∧

j∈J

µ(j))α =
⋂

j∈J

µ(j)α;

7.
⋃

j∈J

µ(j)α = (
∨

j∈J

µ(j))α;

8. (
∧

j∈J

µ(j))α ⊆ ⋂
j∈J

µα;

9.
⋂

k∈K

µαk
= µα where α = sup

k∈K
αk;

10.
⋃

k∈K

µαk = µα where α = inf
k∈K

αk;

11. (µ′)α = (µ1−α)′;

12. (µ′)α = (µ1−α)′;

13. µα =
⋂

β<α

µβ ;

14. µα =
⋃

β>α

µβ .

Proof.

(1)
x ∈ (µ ∧ ν)α ⇐⇒ (µ ∧ ν)(x) > α

⇐⇒ µ(x) > α and ν(x) > α
⇐⇒ x ∈ µα ∩ να.

(2)
x ∈ (µ ∨ ν)α ⇐⇒ (µ ∨ ν)(x) > α

⇐⇒ µ(x) > α or ν(x) > α
⇐⇒ x ∈ µα ∪ να.

(3)
x ∈ (µ ∧ ν)α ⇐⇒ (µ ∧ ν)(x) ≥ α

⇐⇒ µ(x) ≥ α and ν(x) ≥ α
⇐⇒ x ∈ µα ∩ να.

(4)
x ∈ (µ ∨ ν)α ⇐⇒ (µ ∨ ν)(x) ≥ α

⇐⇒ µ(x) ≥ α or ν(x) ≥ α
⇐⇒ x ∈ µα ∪ να.

(5)
x ∈ ∪

j∈J
µ(j)α ⇐⇒ ∃j0 ∈ J such that x ∈ µ(j0)α

⇐⇒ µ(j0)(x) ≥ α
=⇒ ( ∨

j∈J
µ(j))(x) ≥ α

⇐⇒ x ∈ ( ∨
j∈J

µ(j))α.

4



(6)
x ∈ ( ∧

j∈J
µ(j))α ⇐⇒ ∀ j ∈ J, µ(j)(x) ≥ α

⇐⇒ ∀ j ∈ J, x ∈ µ(j)α

⇐⇒ x ∈ ∩
j∈J

µ(j)α.

(7)
x ∈ ∪

j∈J
µ(j)α ⇐⇒ ∃j0 ∈ J such that µ(j0)(x) > α

⇐⇒ ( ∨
j∈J

µ(j))(x) > α

⇐⇒ x ∈ ( ∨
j∈J

µ(j))α.

(8)
x ∈ ( ∧

j∈J
µ(j))α ⇐⇒ ∧

j∈J
µ(j)(x) > α

=⇒ ∀ j ∈ J, µ(j)(x) > α
⇐⇒ x ∈ ∩

j∈J
µ(j)α.

(9)
x ∈ ∩

k∈K
µαk

⇐⇒ ∀ k ∈ K, µ(x) ≥ αk

⇐⇒ µ(x) ≥ sup
k∈K

αk

⇐⇒ x ∈ µsup
k∈K

αk
.

(10)
x ∈ ∪

k∈K
µαk ⇐⇒ ∃k0 ∈ K such that µ(x) > αk0

⇐⇒ µ(x) > inf
k∈K

αk

⇐⇒ x ∈ µ
inf
k∈K

αk
.

(11)
x ∈ (µ′)α ⇐⇒ µ′(x) ≥ α ⇐⇒ 1− µ(x) ≥ α

⇐⇒ µ(x) ≤ α ⇐⇒ µ(x) 6> 1− α
⇐⇒ x ∈ (µ1−α)′.

(12)
x ∈ (µ′)α ⇐⇒ µ′(x) > α ⇐⇒ µ(x) < 1− α

⇐⇒ µ(x) 6≥ 1− α ⇐⇒ x ∈ (µ1−α)′.

(13)
x ∈ ∩

β<α
µβ ⇐⇒ ∀ β < α, µ(x) > β

⇐⇒ µ(x) ≥ sup
β<α

β = α

⇐⇒ x ∈ µα.

(14)
x ∈ ∪

β>α
µβ ⇐⇒ ∃β0 > α such that µ(x) ≥ β0

⇐⇒ µ(x) > α
⇐⇒ x ∈ µα.

¤
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1.3 Fuzzy Sets Induced by Maps

For a function
f : X −→ Y

there corresponds a function
f→ : P(X) −→ P(Y )

where f→(A) = {f(x) : x ∈ A} is called the direct image of A ⊆ X; and a function

f← : P(Y ) −→ P(X)

where f←(B) = {x ∈ X : f(x) ∈ B} is called the preimage of B ⊆ Y .
We define the analogues of these as follows.
If X and Y are sets, f ∈ Y X , µ ∈ IX and ν ∈ IY we define the direct image of µ, denoted
by f [µ] and the preimage of ν denoted by f−1[ν]as follows:
For y ∈ Y ,

f [µ](y) def= sup
f(x)=y

µ(x)

with the convention that sup ∅ = 0 and

f−1[ν] def= ν ◦ f.

It is straightforward to check these definitions reduce to usual ones in the case where
µ = 1A and ν = 1B with A ⊆ X and B ⊆ Y .

1.3.1 Theorem
Let X,Y, Z be sets and let f ∈ Y X , g ∈ ZY , µ ∈ IX , ν ∈ IY and λ ∈ IZ .
Let (µj : j ∈ J) ∈ (IX)J and (νj : j ∈ J) ∈ (IY )J . Then

1. (g ◦ f)[µ] = g[f [µ]];

2. (g ◦ f)−1[λ] = f−1[g−1[λ]];

3. f−1[ ∨
j∈J

νj ] = ∨
j∈J

f−1[νj ];

4. f−1[ ∧
j∈J

νj ] = ∧
j∈J

f−1[νj ];

5. f−1[ν′] = (f−1[ν])′;

6. ν1 ≤ ν2 ⇒ f−1[ν1] ≤ f−1[ν2];

7. f [ ∨
j∈J

µj ] = ∨
j∈J

f [µj ];

8. f [ ∧
j∈J

µj ] ≤ ∧
j∈J

f [µj ];

9. f [µ]′ ≤ f [µ′], provided f is surjective;

10. µ1 ≤ µ2 ⇒ f [µ1] ≤ f [µ2];

11. f [f−1[ν]] ≤ ν, with equality if f is surjective;

12. µ ≤ f−1[f [µ]], with equality if f is injective;

13. f [f−1[ν] ∧ µ] ≤ ν ∧ f [µ], with equality if f is injective.
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Proof.

(1)
g[f [µ]](z) = sup

g(y)=z

f [µ](y) = sup
g(y)=z

sup
f(x)=y

µ(x)

= sup
g◦f(x)=z

µ(x) = (g ◦ f)[ν](z).

(2)
(g ◦ f)−1[λ](x) = λ((g ◦ f)(x)) = λ(g(f(x))) = g−1[λ](f(x))

= f−1[g−1[λ]](x).

(3)
f−1[ ∨

j∈J
νj ](x) = ( ∨

j∈J
νj)(f(x)) = ∨

j∈J
νj(f(x))

= ∨
j∈J

(f−1[νj ](x)) = ( ∨
j∈J

f−1[νj ])(x).

(4)
f−1[ ∧

j∈J
νj ](x) = ( ∧

j∈J
νj)(f(x)) = ∧

j∈J
νj(f(x))

= ∧
j∈J

(f−1[νj ](x)) = ( ∧
j∈J

f−1[νj ])(x).

(5)
f−1[ν′](x) = ν′(f(x)) = ν(f(x))′ = (f−1[ν](x))′

= (f−1[ν])′(x).

(6)
f−1[ν1](x) = ν1(f(x)) ≤ ν2(f(x)) = f−1[ν2](x).

(7)
f [ ∨

j∈J
µj ](y) = sup

f(x)=y

( ∨
j∈J

µj)(x) = ∨
f(x)=y

∨
j∈J

µj(x)

= ∨
j∈J

∨
f(x)=y

µj(x) = ∨
j∈J

(f [µj ](y))

= ( ∨
j∈J

f [µj ])(y).

(8)
f [ ∧

j∈J
µj ](y) = sup

f(x)=y

( ∧
jinJ

µj)(x) = ∨
f(x)=y

∧
j∈J

µj(x)

≤ ∧
j∈J

∨
f(x)=y

µj(x)

= ∧
j∈J

(f [µj ](y))

= ( ∧
j∈J

f [µj ])(y).

(9)
f [µ]′(y) = f [µ](y)′ = 1− f [µ](y)

= 1− sup
f(x)=y

µ(x)

≤ sup
f(x)=y

1− µ(x) [ since f is surjective ]

= sup
f(x)=y

µ′(x) = f [µ′](y).

(10)
f [µ1](y) = sup

f(x)=y

µ1(x) ≤ sup
f(x)=y

µ2(x) = f [µ2](y).

(11)
f [f−1[ν]](y) = sup

f(x)=y

f−1[ν](x) = sup
f(x)=y

ν(f(x)) ≤ ν(y).

If f is surjective then f←({y}) 6= ∅ and so

f [f−1[ν]](y) = ν(y).

7



(12)
f−1[f [µ]](x) = f [µ](f(x)) = sup

f(z)=f(x)

µ(z) ≥ µ(x).

If f is injective then f(x) = f(z) ⇒ z = x and therefore

f−1[f [µ]](x) = µ(x).

(13)
f [f−1[ν] ∧ µ](y) = sup

f(x)=y

(f−1[ν] ∧ µ)(x)

= ∨
f(x)=y

(ν(f(x)) ∧ µ(x))

≤ ν(y) ∧ ( ∨
f(x)=y

µ(x))

= ν(y) ∧ f [µ](y)
= (ν ∧ f [µ])(y).

If f is injective then f←({y}) is a singlton set and therefore

f [f−1[ν] ∧ µ] = ν ∧ f [µ].

¤

More information regarding fuzzy set can be found in [23, ?, 25, 26, 32, 46, 49, 59, 60,
71, 85].
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Chapter 2

Fuzzy Topology

2.1 Definitions and Fundamental Properties

In [19], Chang introduced the notion of a fuzzy topology as follows.

2.1.1 Definition
A fuzzy topology on X is a subset T of IX satisfying

1. 0, 1 ∈ T ;

2. µ, ν ∈ T ⇒ µ ∧ ν ∈ T ;

3. ∀j ∈ J, µj ∈ T ⇒ ∨
j∈J

µj ∈ T .

(X, T ) is called a fuzzy topological space (f.t.s) and the members of T the fuzzy open sets
of X.

If T1 and T2 are fuzzy topologies on X then if T1 ⊆ T2 we say T1 is coarser than T2 or T2

is finer than T1.

In [44] Lowen defines a subset T ⊆ IX to be a fuzzy topology on X if (1),(2),(3) hold as
well as:

(4) ∀ α ∈ I, α1X ∈ T .

2.1.2 Examples
1. The discrete fuzzy topology on X: T = IX .

2. The indiscrete fuzzy topology on X: T = {0, 1}.
3. Any topology τ on X generates a fuzzy topology on X — identify with the open sets

their characteristic functions.

4. Given a topological space (X, τ), the family Tn of all lower semi continuous functions
on X into [0, 1] is a fuzzy topology on X which contains τ . We call Tn the natural
fuzzy topology on a topological space (X, τ).

2.1.3 Definition
A fuzzy set µ in a f.t.s (X, T ) is T -closed (fuzzy closed) iff µ′ = 1− µ ∈ T .

2.1.4 Definition
The fuzzy interior µ◦ of a fuzzy set µ is the join of all members of T contained in µ.
That is,

µ◦ = ∨{ν ∈ IX : ν ∈ T , ν ≤ µ}.
This is the largest fuzzy open set contained in µ and

µ is open iff µ = µ◦.
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2.1.5 Definition
The fuzzy closure µ̄ of a fuzzy set µ is the meet of all T -closed sets which contain µ.
That is,

µ̄ = ∧{ν ∈ IX : ν′ ∈ T , µ ≤ ν}.
Thus µ̄ is the smallest T -closed set which contains µ and

µ is closed iff µ = µ̄.

2.1.6 Proposition
(1) µ̄′ = (µ′)◦ and (µ◦)′ = (µ′);
(2) 0̄ = 0, µ ≤ µ̄, ¯̄µ = µ and µ ∨ ν = µ̄ ∨ ν̄.

Proof

(1) a) Let C be the set of all T - closed sets which contain µ. Then ∀ ν ∈ C, µ ≤ ν and
ν′ ∈ T .
It is easy to show that {ν′ : ν ∈ C} is the set of all T -open sets contanied in µ′. Therefore

µ̄ = ∧
ν∈C

ν and (µ′)◦ = ∨
ν∈C

ν′.

So
(µ̄)′ = ( ∧

ν∈C
ν)′ = ∨

ν∈C
ν′.

Hence µ̄′ = (µ′)◦.

b) Let C be the set of all T -open sets which are contained in µ. Then ∀ ν ∈ C, ν ∈ T and ν ≤ µ.
It is easy to show that {ν′ : ν ∈ C} is the set of all T -closed sets which contain µ′. Therefore

µ◦ = ∨
ν∈C

ν and µ̄′ = ∧
ν∈C

ν′

and so
(µ◦)′ = ( ∨

ν∈C
ν)′ = ∧

ν∈C
ν′.

Hence, (µ◦)′ = µ̄′.

(2) We have 0′ = 1 ∈ T . So 0̄ = 0.
We have µ̄ = ∧{ν ∈ IX : ν′ ∈ T , ν ≥ µ} ≥ µ and so µ̄′ = ∨{ν′ ∈ IX : ν′ ∈ T ν ≥ µ} ∈

T . Therefore µ̄ is closed ⇒ µ̄ = ¯̄µ.

Let A = {ξ ∈ IX : ξ′ ∈ T , µ ≤ ξ} and B = {η ∈ IX : η′ ∈ T , ν ≤ η}. Then

µ̄ ∨ ν̄ = ( ∧
ξ∈A

ξ) ∨ ( ∧
η∈B

η) = ∧
ξ∈A
η∈B

(ξ ∨ η).

But µ ∨ ν ≤ ξ ∨ η and (ξ ∨ η)′ ∈ T .
If λ ∈ IX is such that µ ∨ ν ≤ λ and λ′ ∈ T then µ ≤ λ, λ′ ∈ T and ν ≤ λ, λ′ ∈ T .

Therefore there exists ξ ∈ A, η ∈ B such that λ = ξ and λ = η. Thus λ = ξ ∨ η.
Therefore

µ ∨ ν = ∧
ξ∈A
η∈B

(ξ ∨ η).

Hence
µ ∨ ν = µ̄ ∨ ν̄.

¤
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2.2 Fuzzy Closure Operator

In [53] the notion of a fuzzy closure operator is introduced. We adopt a slightly different
definition of a fuzzy closure operator.

2.2.1 Definition
A fuzzy closure operator on X is a map ¯: IX −→ IX which fulfills the following properties

1. 0 = 0̄;

2. ∀ µ ∈ IX , µ ≤ µ̄;

3. ∀ µ, ν ∈ IX , µ ∨ ν = µ̄ ∨ ν̄;

4. ∀ µ ∈ IX , ¯̄µ = µ̄.

This definition of fuzzy closure operator differs from the definition in [53], where it is
required that

∀α ∈ I, α1X = α1X .

It is shown that a fuzzy topology can be defined using a closure operator.

2.2.2 Theorem
If the map ¯: IX −→ IX is fuzzy closure operator then T = {µ′ : µ = µ̄} is a fuzzy topology
on X whose closure operation is just the operation µ −→ µ̄.

Proof

We have 0 = 0̄ ⇒ 0′ = 1 ∈ T .
Since 1 ≤ 1̄. So 1 = 1̄ ⇒ 1′ = 0 ∈ T .
Let µ, ν ∈ T . Then µ′ = µ̄′, ν′ = ν̄′ and

(µ ∧ ν)′ = µ′ ∨ ν′ = µ̄′ ∨ ν̄′ = µ′ ∨ ν′ = (µ ∧ ν)′.
Therefore

((µ ∧ ν)′)′ = µ ∧ ν ∈ T .

If µ ≤ ν then ν = µ ∨ ν and hence

ν̄ = µ ∨ ν = µ̄ ∨ ν̄

So µ̄ ≤ ν̄.
Let νj ∈ T for each j ∈ J . Then

∧
j∈J

ν′j ≤ ν′j ⇒ ∧
j∈J

ν′j ≤ ν̄′j .

Therefore
∧

j∈J
ν′j ≤ ∧

j∈J
ν̄′j = ∧

j∈J
ν′j

and hence
∧

j∈J
ν′j = ∧

j∈J
ν′j .

Hence
( ∧
j∈J

ν′j)
′ = ∨

j∈J
νj ∈ T .

It remains to show that the resulting closure operation is just the operation µ −→ µ̄.
Let F = {µ′ : µ ∈ T } = {µ : µ = µ̄}.
We have to show that for each µ ∈ IX , µ̄ is the smallest element of F containing µ.
Now ¯̄µ = µ̄ ⇒ µ̄ ∈ F and we have µ ≤ µ̄.
If ν ∈ F and µ ≤ ν then

µ̄ ≤ ν̄ = ν.

Thus µ̄ is the smallest element of F containing µ. ¤
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2.3 Continuous Functions

In [19], the notion of a continuous function between fuzzy topological spaces is introduced
and studied.

2.3.1 Definition
Let (X, T1) and (Y, T2) be two fuzzy topological spaces. A function f : (X, T1) −→ (Y, T2)
is continuous iff ∀ ν ∈ T2, f−1[ν] ∈ T1.

2.3.2 Proposition
If f : (X, T1) −→ (Y, T2) and g : (Y, T2) −→ (Z, T3) are continuous functions then
g ◦ f : (X, T1) −→ (Z, T3) is continuous.

Proof.

Let λ ∈ T3. Then (g ◦ f)−1[λ] = f−1[g−1[λ]] and, since g is continuous, g−1[λ] ∈ T2.
Since f is continuous, f−1[g−1[λ]] ∈ T1. Therefore (g ◦ f) is continuous. ¤

2.3.3 Theorem
Let f : (X, T1) −→ (Y, T2) be a function. Then the the following are equivalent

1. f is continuous,

2. For each T2-closed ν, f−1[ν] is T1-closed,

3. For each ν ∈ IY , f−1[ν] ≤ f−1[ν̄],

4. For each µ ∈ IX , f [µ̄] ≤ f [µ].

Proof.

(1) ⇒ (2)
Let ν′ ∈ T2. Then f−1[ν′] ∈ T1 and (f−1[ν])′ = f−1[ν′] ∈ T1.
Therefore f−1[ν] is T1 − closed .

(2) ⇒ (1)
Let ν ∈ T2. Then ν′ is T2 − closed and so f−1[ν′] = (f−1[ν])′ is T1 − closed . Thus

f−1[ν] ∈ T1 and hence f is continuous.

(2) ⇒ (4)
For µ ∈ IX ,

f [µ] = ∧{ν ∈ IY : ν′ ∈ T2, ν ≥ f [µ]}.
Therefore

f−1[f [µ]] = ∧{f−1[ν] : ν ∈ IY , ν′ ∈ T2, ν ≥ f [µ]} and

µ̄ = ∧{λ ∈ IX : λ′ ∈ T1, λ ≥ µ}.
But

ν′ ∈ T2 ⇒ (f−1[ν])′ ∈ T1

and
ν ≥ f [µ] ⇒ µ ≤ f−1[f [µ]] ≤ f−1[ν].

Thus
f−1[f [µ] ≥ µ̄

and so
f [µ] ≥ f [f−1[f [µ]]] ≥ f [µ̄].

That is:
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f [µ] ≥ f [µ̄].

(4) ⇒ (3)
For ν ∈ IY , f−1[ν] ∈ IX .
Therefore

f [f−1[ν]] ≤ f [f−1[ν]] ≤ ν̄

and so
f−1[ν̄] ≥ f−1[f [f−1[ν]]] ≥ f−1[ν].

Thus

f−1[ν̄] ≥ f−1[ν].

(3) ⇒ (2)
Let ν′ ∈ T2. Then ν ∈ IY and

f−1[ν] ≤ f−1[ν̄] = f−1[ν].

Therefore
f−1[ν] = f−1[ν]

and hence
f−1[ν] is T1 − closed.

¤

More information regarding fuzzy topology can be found in [61, 65, 77, 79, 80].
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Chapter 3

Filters

3.1 Introduction

The facts regarding fiters can be found in [8, 81] but, for convenience, we record the basics
in this chapter. We will see the similar results for prefiters, generalised filters and fuzzy
filters in the chapters 5,7 and 9 respectively.

3.1.1 Definitions
If X is a set, we call F ⊆ P(X) a filter on X iff

1. F 6= ∅ and ∅ 6∈ F;

2. ∀ F, G ∈ F, F ∩G ∈ F;

3. ∀ F ∈ F, F ⊆ G ⇒ G ∈ F.

If X is a set, we call B ⊆ P(X) a filter base on X iff

1. B 6= ∅ and ∅ /∈ B;

2. ∀ F, G ∈ B, ∃B ∈ B : B ⊆ F ∩G.

For S ⊆ P(X),
< S >

def= {Y ⊆ X : ∃S ∈ S such that S ⊆ Y }.
If A ⊆ X then < {A} > is a filter on X.
If F and G are filters on X, we say that G is finer than F or F is coarser than G, if F ⊆ G.
If a filter F is such that there exists a set A with F =< {A} >, we call F a principal filter.
Note that

A ⊆ B ⇒< {B} >⊆< {A} > .

We therefore expect principal filters which are generated by a singleton to be maximal. In
other words x ∈ X ⇒< {{x}} > is maximal.

We say that a filter F is fixed iff ∩F 6= ∅ and free if ∩F = ∅.

We call B ⊆ F to be a base for F iff < B >= F.

3.1.2 Proposition
1. If B is a filter base then < B > is a filter.

2. If F is a filter and B ⊆ F satisfies < B >= F then B is a filter base.
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3.1.3 Examples

1. If (X, τ) is a topological space we define the neighbourhood filter Nx by

Nx =< {U : U ∈ τ, x ∈ U} > .

It is straightforward to check that Nx is a fixed filter.
2. Let (X, τ) be a topological space and let ∅ 6= A ⊆ X. Define

F def= {F ⊆ X : A ⊆ F ◦}.
Then F is a filter and F ⊆< {A} > .
3. On the real line R we have the free filter

< {(a,∞) : a ∈ R} > .

4. Let X be an infinite set. Define

F def=< {Ac : A is finite } > .

It is easy to check that F is a filter.
5. On the natural numbers N we have the free filter

< {(n,∞) : n ∈ N} > .

6. On R2 we have the free filter

< {Br : 0 < r < ∞} >

where
Br

def= {(x, y) :
√

x2 + y2 < r}.

3.2 Ultrafilters
3.2.1 Definition

Filters which are maximal (with respect to inclusion) are called ultrafilters. In other words,
for a filter F,

F is ultra ⇐⇒ (F ⊆ G, G is a filter ⇒ F = G).

3.2.2 Proposition
A principal filter F =< {A} > is ultra iff A is a singleton.

Proof.

Let F =< {A} > be an ultrafilter and let x, y ∈ A. Then F ⊆< {{x}} > and F ⊆<
{{y}} >. So, since F is maximal,

F =< {{x}} >=< {{y}} > .

We therefore obtain
{x} ⊆ {y} ⊆ {x}

and from this we deduce that x = y.
On the other hand, let F =< {x} >, F ⊆ G and G ∈ G. Then {x} ∈ F ⊆ G and G ∈ G

and so {x} ∩G 6= ∅. This means that {x} ⊆ G and so G ∈ F. ¤

Here is a surprising and useful characterisation of ultrafilters.
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3.2.3 Theorem
Let F be a filter on a set X. Then

F is ultra ⇐⇒ ∀A ⊆ X, A ∈ F or Ac ∈ F.

Proof.

Let F be an ultrafilter, A ⊆ X and A 6∈ F. Define

G = {F ∩Ac : F ∈ F}.

Then G is a filter base since:
(i) A 6∈ F⇒ ∀F ∈ F, F 6⊆ A ⇒ ∀F ∈ F, F ∩Ac 6= ø.

(ii) If F∩Ac, G∩Ac ∈ G with F, G ∈ F then F∩G ∈ F and so F∩G 6⊆ A. Thus F∩G∩Ac 6= ∅.
We have F ⊆< G > and hence F =< G >. Now X ∈ F and so X ∩Ac = Ac ∈ F.

Conversely, let F ⊆ G with G a filter and let G ∈ G. If G 6∈ F then Gc ∈ F and hence
Gc ∈ G. But then G ∩ Gc = ∅ ∈ G and this contradiction establishes that G ∈ F. Thus
F = G and so F is maximal. ¤

The following result will be appealed to many times and we note, in passing, that the Axiom
of Choice is required.

3.2.4 Theorem
Every filter is contained in an ultrafilter.

Proof.

Let F be a filter on a set X and define

S def= {G : G is a filter and F ⊆ G}.

Inclusion is a partial ordering on S. Let C be a chain in S. Then it is easy to check that
H def= ∪C is a filter on X and H is an upper bound for C. We appeal to Zorn’s Lemma to
deduce that S has a maximal element G. Then F ⊆ G and G is maximal. ¤

3.2.5 Definition
If F is a filter on a set X, we say that

F is prime ⇐⇒ (F ∪G ∈ F⇒ F ∈ F or G ∈ F).

3.2.6 Theorem
A filter is ultra iff it is prime.

Proof.

Let F be an ultrafilter, F ∪G ∈ F, F 6∈ F. Define

G def= {H : H ∪ F ∈ F}.

It is straighforward to check that G is a filter and G ∈ G. Furthermore, if K ∈ F then
K ⊆ K ∪ F ∈ F and so K ∈ G. Consequently we have F ⊆ G and, since F is ultra, F = G.
Thus G ∈ F since G ∈ G.

To prove the converse, let A ⊆ X. Then A ∪ Ac = X ∈ F and hence A ∈ F or Ac ∈ F.
Thus, F is ultra. ¤
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3.2.7 Theorem
Let F be a filter on a set X. Then

F = ∩P(F).
Where

P(F) def= {K : K is an ultrafilter and F ⊆ K}.
Proof.

The inclusion F ⊆ ∩P(F) is obvious so we show that ∩P(F) ⊆ F. To this end let K ∈
∩P(F). If K 6∈ F then for each F ∈ F, F 6⊆ K. Thus we have

∀F ∈ F, F ∩Kc 6= ∅.

Let
K def=< {F ∩Kc : F ∈ F} > .

It is easy to see that K is a filter containing F. Let H be an ultrafilter containing K. We
therefore have

F ⊆ K ⊆ H ∈ P(F).

Now Kc = X ∩ Kc ∈ K and so Kc ∈ H. But we also have K ∈ ∩P(F) ⊆ H and so
K ∩Kc = ∅ ∈ H. This contradiction establishes the result. ¤

3.2.8 Definitions
We say that a subset S ⊆ P(X) has the finite intersection property (FIP) if every finite
subcollection from S has nonempty intersection. We let

℘f (S) def= {C ⊆ S : C is finite }.

Then
S has FIP ⇐⇒ ∀C ∈ ℘f (S), ∩C 6= ∅.

So a filter has FIP.
If S has FIP we can construct a filter containing S as follows. Let

d S e def= {∩ C : C ∈ ℘f (S)}.

So d S e denotes the set of all intersections of finite subsets of S. It is easy to check that

S has FIP ⇒ dS e is a filter base

and so
S has FIP ⇒< d S e > is a filter.

Furthermore,
S ⊆< d S e > .

Of course, a filter F is closed with respect to the formation of finite intersections and
supersets and so

< dF e >= F.

If F and G are filters on a set X, we say that they are compatible , and write F ∼ G, if
every element of F meets every element of G. In other words

F ∼ G ⇐⇒ ∀ F ∈ F, ∀ G ∈ G, F ∩G 6= ∅.

If F ∼ G we can construct a filter which contains them both.
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3.2.9 Theorem
If F ∼ G then

[F,G] def=< {F ∩G : F ∈ F, G ∈ G} >

is a filter and F,G ⊆ [F,G].
Furthermore [F,G] is the smallest filter containing both F and G.

The proof of this is straightforward. The fact that [F,G] is the smallest filter containing
both F and G tempts some authors to write F ∨ G for [F,G] and this is fine as long as
we realise that the set of filters on a set X is not a lattice. This is because two filters
need to be compatible in order for the supremum to exist. If they are not compatible then
[F,G] = P(X) which is not a filter. In particular, two different ultrafilters have no filter as
a supremum.

In the case where G =< {A} > for some set A ⊆ X, we write

[F,G] = [F, A]

and the compatibility requirement is that

∀ F ∈ F, F ∩A 6= ∅.

Thus we have

3.2.10 Corollary

∀ F ∈ F, F ∩A 6= ∅ ⇒ [F, A] is a filter and F ⊆ [F, A].

Now here is a useful observation.

3.2.11 Corollary
If F is an ultrafilter on X and A ⊆ X then

∀F ∈ F, F ∩A 6= ∅ ⇐⇒ A ∈ F.

Proof.

∀F ∈ F, F ∩A 6= ∅ ⇒ F ⊆ [F, A]
⇒ F = [F, A]
⇒ A ∈ [F, A] = F.

The converse is obvious. ¤

3.3 Topological Notions in Terms of Filters

The fundamental topological notions of convergence, closure and continuity can be described
using filters.

3.3.1 Definition
Let (X, τ) be a topological space and F a filter on X. A point x ∈ X. is said to be a limit
point of F, if F is finer than the neighbourhood filter Nx.
F is also said to be coverge to x and we write F −→ x.
In other words

F→ x ⇐⇒ Nx ⊆ F.
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A filter base B converges to x iff < B >−→ x
We define,

limF def= {x ∈ X : F −→ x}.

3.3.2 Definition
Let (X, τ) be a topological space and a filter F on X has x ∈ X as a cluster point if every
member of F meets every member of Nx. We write F Â x
In other words

F Â x ⇐⇒ ∀F ∈ F, ∀V ∈ Nx, F ∩ V 6= ∅.
A filter base B clusters at x iff < B >Â x
We define,

adhF def= {x ∈ X : F Â x}

3.3.3 Examples

(1) On the real line R with the usual topology the filter

F =< {(0,
1
n

) : n ∈ N} >

converges to 0.
To check this, let V be a neighbourhood of 0. Then there exists ε > 0 such that (−ε, ε) ⊆ V.
Thus there exists n ∈ N such that 1

n < ε and so (0, 1
n ) ⊆ (−ε, ε) ⊆ V. We have shown that

∀V ∈ N0, ∃F ∈ F, F ⊆ V

and this means that N0 ⊆ F.

(2) On the real line R with the usual topology, let

F =< {(0,m(n)) : n ∈ N} >

where

m(n) def=
{

1
n if n is odd
1 if n is even.

Then F Â 0 since if (−ε, ε) ⊆ V ∈ N0 and (0,m(n)) ⊆ F ∈ F it is clear that V ∩ F 6= ∅.

3.3.4 Theorem

F Â x ⇐⇒ ∃ a filter G with F ⊆ G and G −→ x.

Proof.

(⇒)
If F Â x let G = [F,Nx]. Then Nx ⊆ G and F ⊆ G means that G is finer than F and

G −→ x.
(⇐)

Conversely, if F ⊆ G and G −→ x then Nx ⊆ G. Let V ∈ Nx and F ∈ F. Then F ∈ G
and V ∈ G and so F ∩ V 6= ∅. ¤

The closure can be described in terms of filters.
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3.3.5 Theorem
Let (X, τ) be a topological space and A ⊆ X. Then

x ∈ A ⇐⇒ ∃ F, F a filter on X , A ∈ F, F −→ x.

Proof.

(⇒)
If x ∈ Ā let F = [Nx, A]. Then A ∈ F and F −→ x.

(⇐)
Conversely, let A ∈ F and F −→ x. Then Nx ⊆ F and hence if V ∈ Nx we have V ∈ F

and so V ∩A 6= ∅. Since V is arbitrary, x ∈ A. ¤

Continuity can be described in terms of filters.
The following proposition is straightforward.

3.3.6 Proposition
Let f : X −→ Y be a function and F is a filter on X then

f [F] = {f→(F ) : F ∈ F}

is a filter base on Y .

3.3.7 Theorem
Let X and Y be topological spaces and let f : X −→ Y be a function. Then

f is continuous at x0 ⇐⇒ ∀F, (F is a filter and F −→ x0 =⇒< f [F] >−→ f(x0)).

Proof.

(⇒)
Let f be continuous at x, F −→ x and V ∈ Nf(x). Then there exists U ∈ Nx such that

f [U ] ⊆ V. Thus f [U ] ∈ f [F] and so V ∈< f [F] >. Since V is arbitrary we have shown that
Nf(x) ⊆< f [F] >.
(⇐)

Conversely, let x ∈ X and V ∈ Nf(x). Then, since Nx → x, we have < f [Nx] >−→ f(x).
This means that Nf(x) ⊆< f [Nx] > and so V ∈< f [Nx] >. Therefore there exists U ∈ Nx

such that f [U ] ⊆ V . Since V and x are arbitrary, we have shown that f is continuous. ¤
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Chapter 4

Uniform Spaces

We will see later fuzzy uniform spaces, generalised uniform spaces and super uniform spaces.
In this chapter we include only some basic results regarding uniform spaces and we will see
later similar results for the above mentioned uniform spaces. More literature regarding
uniform spaces can be found in [8, 37, 81].

4.1 Introduction

If X is a set then we define the following notation.

1. ∆ = ∆(X) def= {(x, x) : x ∈ X}.
2. If U, V ⊆ X ×X then

U ◦ V
def= {(x, y) ∈ X ×X : ∃z ∈ X such that (x, z) ∈ V and (z, y) ∈ U}.

3. If U ⊆ X ×X then Us
def= {(x, y) : (y, x) ∈ U}.

Note that

1. A ⊆ B ⇒ As ⊆ Bs.

2. A ⊆ E and B ⊆ F ⇒ A ◦B ⊆ E ◦ F.

3. Un def= U ◦ U ◦ · · · ◦ U︸ ︷︷ ︸
n factors

.

If ∆ ⊆ U then U ⊆ U2 ⊆ U3 ⊆ . . . ⊆ Un.

4.1.1 Definitions
If X is set then D ⊆ P(X ×X) is called a uniformity on X iff

1. D is a filter;

2. ∀ U ∈ D, ∆ ⊆ U ;

3. ∀ U ∈ D, Us ∈ D;

4. ∀ U ∈ D, ∃V ∈ D : V ◦ V ⊆ U.

We call (X,D) a uniform space.

If X is a set and B ⊆ P(X ×X) is called a uniform base on X iff
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1. B is a filter base;

2. ∀ B ∈ B, ∆ ⊆ B;

3. ∀ B ∈ B, ∃D ∈ B : Ds ⊆ B;

4. ∀ B ∈ B, ∃D ∈ B : D ◦D ⊆ B.

We call B ⊆ D a base for D if < B >= D. So B is a base for D iff ∀ D ∈ D, ∃B ∈ B :
B ⊆ D.

4.1.2 Proposition
1. If B is a uniform base then < B > is uniformity.

2. If D is a uniformity and B ⊆ D satisfies < B >= D then B is a uniform base.

Proof.

(1) Let B be a uniform base then B is filter base. So,

B is a filter base ⇒< B > is a filter .

D =< B >= {D : ∃ B ∈ B such that B ⊆ D}
If D ∈ D then∃B ∈ B such that B ⊆ D. Thus ∆ ⊆ B ⊆ D.
If D ∈ D then ∃B ∈ B such that B ⊆ D. So ∃E ∈ B such that Es ⊆ B. Therefore

E ⊆ Bs ⊆ Ds and hence Ds ∈ D.
If D ∈ D then ∃B ∈ B such that B ⊆ D. So, ∃E ∈ B such that E ◦ E ⊆ B ⊆ D.

(2) We have D is filter, B ⊆ D and < B >= D. Therefore, B is a filter base.

D = {D : ∃B ∈ B such that B ⊆ D}
If B ∈ B then B ∈ D. So ∆ ⊆ B.
If B ∈ B then B ∈ D. So ∃E ∈ D such that E◦E ⊆ B. Therefore ∃F ∈ B such that F ⊆

E and hence
F ◦ F ⊆ E ◦ E ⊆ B

If B ∈ B then B ∈ D. So Bs ∈ D. Therefore ∃E ∈ B such that E ⊆ Bs ⇒ Es ⊆ B.
¤

4.1.3 Examples

(1) Let (X, ρ) be a pseudometric space and ε > 0. Let

Dρ
ε = {(x, y) : ρ(x, y) < ε};
Bρ = {Dρ

ε : ε > 0};
Dρ =< Bρ > .

Then Dρ is a uniformity on X. Note that Dρ = D2ρ and so different metrices generate
the same uniformity.

(2) Let B = {∆} and D =< B >. Then B is a uniform base and D is a uniformity called the
discrete uniformity.

(3) If D = {X ×X} then D is called the trivial uniformity.

(4) For r ∈ R, let Br = ∆ ∪ {(x, y) ∈ R × R : x > r, y > r} then B = {Br : r ∈ R} is a
uniform base on R.

We call D ∈ D symmetric if D = Ds.
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4.1.4 Proposition
(1) A uniformity has a base of symmetric elements.
(2) D ∈ D, n ∈ N⇒ ∃ symmetric E ∈ D : En ⊆ D.

Proof.

(1) Let (X,D) be a uniform space and B = {D ∈ D : D = Ds}. Then < B >= D:
Let D ∈ D and E = D ∩Ds. Then E ∈ B and E ⊆ D.

(2) Let D ∈ D and n ∈ N. Then ∆ ⊆ D and ∆n = ∆ ⊆ D. ¤

4.2 The Uniform Topology

Let x ∈ X, A ⊆ X and U ⊆ X ×X.

U(x) def= {y ∈ X : (x, y) ∈ U}

and
U(A) def= ∪

x∈A
U(x) = {y ∈ X : ∃x ∈ A such that (x, y) ∈ U}.

4.2.1 Theorem
Let (X,D) be a uniform space. Then
βx = {U(x) : U ∈ D} is a neighbourhood base at x.

Proof.

(i) We have x ∈ U(x) because (x, x) ∈ ∆ ⊆ U .
(ii) Let U(x), V (x) ∈ βx. Then U, V ∈ D and so U ∩ V ∈ D. Therefore

U(x) ∩ V (x) = {y ∈ X : (x, y) ∈ U and (x, y) ∈ V }
= {y ∈ X : (x, y) ∈ U ∩ V }
= (U ∩ V )(x) ∈ βx.

(iii) If U(x) ∈ βx then U ∈ D.
We seek V (x) ∈ βx such that if y ∈ V (x) then ∃W (y) ∈ βy with W (y) ⊆ U(x). We

have
U ∈ D⇒ ∃V ∈ D such that V ◦ V ⊆ U.

Let y ∈ V (x). Then (x, y) ∈ V . If z ∈ V (y) then (y, z) ∈ V and so (x, z) ∈ V ◦ V ⊆ U .
Therefore z ∈ U(x). Hence V (y) ⊆ U(x). That is ∃V (y) ∈ βy with V (y) ⊆ U(x). ¤

4.2.2 Lemma
Let (X,D) be a uniform space and B is a base for D. Then
βx = {B(x) : B ∈ B} is also a neighbourhood base at x.

Proof.

(i) We have x ∈ B(x). because (x, x) ∈ ∆ ⊆ B.
(ii) Let U(x), V (x) ∈ βx. Then U, V ∈ B and so ∃B ∈ B such that B ⊆ U ∩ V . But

U(x) ∩ V (x) = (U ∩ V )(x) and therefore B(x) ⊆ (U ∩ V )(x).
(iii) Let U(x) ∈ βx. Then U ∈ B. Therefore ∃V ∈ B such that V ◦ V ⊆ U . If y ∈

V (x) then (x, y) ∈ V . If z ∈ V (y) then (y, z) ∈ V and so (x, z) ∈ V ◦ V ⊆ U . Therefore
z ∈ U(x). Hence V (y) ⊆ U(x). That is ∃V (y) ∈ βy with V (y) ⊆ U(x).

¤

23



Thus if (X,D) a uniform space then

βx = {U(x) : U ∈ D}
is a neighbourhood base at x. Therefore

Nx = {V ⊆ X : B ⊆ V for some B ∈ βx}

is a neighbourhood system at x, and hence

τD = {U ⊆ X : ∀ x ∈ X, ∃V ∈ Nx such that V ⊆ U}
is a topology on X.
The same topology is produced if any base β is used in place of D.
We call τD the uniform topology generated by D.

There is a simple expression for τD-closure:

4.2.3 Theorem
If B is a base for D then

Ā = ∩
U∈B

U(A).

Proof.

Let x ∈ Ā and U ∈ B. Let V ∈ B be symmetric with V ⊆ U . Then V (x) is a
neighbourhood of x and so V (x) ∩ A 6= ∅. Let a ∈ V (x) ∩ A then (x, a) and so (a, x) ∈ V .
Therefore x ∈ V (a) ⊆ V (A) ⊆ U(A). Thus ∀ U ∈ B, x ∈ U(A) and this means that

x ∈ ∩
u∈B

U(A).

Now let x ∈ ∩
U∈B

U(A) and V (x) be a basic neighbourhood of x with V symmetric. Then

x ∈ V (A) ⇒ ∃a ∈ A such that (a, x) ∈ V . Therefore (x, a) ∈ V and so a ∈ V (x) which
means that V (x) ∩A 6= ∅. Hence x ∈ Ā.

¤

4.3 Uniformly Continuous Functions

Let f : X −→ Y be a mapping. Then

f × f : X ×X −→ Y × Y, (x, y) 7→ (f(x), f(y))

is a mapping.
For D ⊆ X ×X,

(f × f)→(D) = {(f(x), f(y)) : (x, y) ∈ D}
and for E ⊆ Y × Y

(f × f)←(E) = {(x, y) ∈ X ×X : (f(x), f(y)) ∈ E}.

4.3.1 Definition
Let (X,D) and (Y,E) be uniform spaces and f : X −→ Y a mapping. f is said to be
uniformly continuous if ∀ E ∈ E, ∃D ∈ D : (f × f)→(D) ⊆ E. That is,

∀ E ∈ E, (f × f)←(E) ∈ D.
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For example:

If (X, ρ) and (Y, d) are metric spaces then (X,Dρ) and (Y,Dd) are uniform spaces. Then

f : X −→ Y is uniformly continuous
iff ∀ ε > 0, ∃δ > 0 such that ρ(x, y) < δ ⇒ d(f(x), f(y)) < ε
iff ∀ ε > 0, ∃δ > 0 such that (x, y) ∈ Dρ

δ ⇒ (f(x), f(y)) ∈ Dd
ε

iff ∀ V ∈ Dd, ∃U ∈ Dρ such that (f × f)→(U) ⊆ V.

So uniform continuity in the uniform space context generalises uniform continuity in
metric spaces.

4.3.2 Theorem
If f : (X,D) −→ (Y,E) is uniformly continuous function then f : (X, τD) −→ (Y, τE) is
continuous.

Proof.

Let V (f(x)) be a τE -neighbourhood of f(x) with V ∈ E. Since f is uniformly continu-
ous function. Therefore ∃U ∈ D such that (f × f)→(U) ⊆ V and so f→(U(x)) ⊆ V (f(x)).
Since z ∈ f→(U(x)) ⇒ ∃y ∈ U(x) such that f(y) = z. So

y ∈ U(x) ⇒ (x, y) ∈ U ⇒ (f(x), f(y)) ∈ V ⇒ f(y) = z ∈ V (f(x)).

¤

4.3.3 Lemma
If f : (X,D) −→ (Y,E) and g : (Y,E) −→ (Z,F) are two uniformly continuous mappings
then
g ◦ f : (X,D) −→ (Z,F) is uniformly continuous.

Proof.

Let F ∈ F. Then, since g is uniformly continuous,

(g × g)←(F ) ∈ E.

Since f is uniformly continuous,

(f × f)←((g × g)←(F )) ∈ D.

That is
((g ◦ g)× (g ◦ g))←(F ) = (f × f)←((g × g)←(F )) ∈ D.

Hence (g ◦ f) is uniformly continuous.
¤
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Chapter 5

Prefilters

5.1 Introduction

In [48], Lowen introduced the notion of a prefilter and since then it has been studied. The
facts regarding prefiters can be found in [50, 52, 62, 10]. In this chapter we summarize these
properties of prefilters.

First we state some notations here. I will denote the unit interval, I0 and I1 are the
intervals (0, 1], [0, 1). For any µ ∈ IX and ε ∈ I we define

(µ + ε)(x) def= (µ(x) + ε) ∧ 1 and (µ− ε)(x) def= (µ(x)− ε) ∨ 0

sup µ
def= sup

x∈X
µ(x) and inf µ

def= inf
x∈X

µ(x).

5.1.1 Definitions
If X is a set, ∅ 6= F ⊆ IX is called a prefilter (on X) iff

1. 0 6∈ F ;

2. ∀ ν, µ ∈ F , ν ∧ µ ∈ F ;

3. ∀ ν ∈ F , ν ≤ µ ⇒ µ ∈ F .

If X is a set, ∅ 6∈ B ⊆ IX is called a prefilter base (on X) iff

1. 0 6∈ B;

2. ∀ ν, µ ∈ B, ∃λ ∈ B : λ ≤ ν ∧ µ.

For ∅ 6= F ⊆ IX ,

< F >
def= {µ ∈ IX : ∃ν ∈ F such that ν ≤ µ}.

If µ ∈ IX then

< µ >
def=< {µ} > .

We call B ⊆ F a prefilter base for F if < B >= F . So B is a prefilter base for F iff
∀ µ ∈ F , ∃ ν ∈ B : ν ≤ µ.

If F and G are prefilters and F ⊆ G we shall say that F is coarser than G or G is finer
than F .
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5.1.2 Proposition
1. If B is a prefilter base then < B > is a prefilter.

2. If F is a prefilter and B ⊆ F satisfies < B >= F then B is a prefilter base.

Proof.

(1) We have < B > 6= ∅ and 0 /∈< B >.
If µ, ν ∈< B > then ∃ µ′, ν′ ∈ B such that µ′ ≤ µ and ν′ ≤ ν. So, ∃ λ ∈ B such that λ ≤

µ′ ∧ ν′ ≤ µ ∧ ν. Therefore, µ ∧ ν ∈< B >.
If µ ∈< B > and µ ≤ ν then ∃ λ ∈< B > such that λ ≤ µ ≤ ν. So, ν ∈< B >. Hence,

< B > is a prefilter.

(2) < B >6= ∅. So B 6= ∅. 0 /∈ F =< B >⇒ 0 /∈ B.
Let µ, ν ∈ B. Then µ, ν ∈ F =< B >. So, µ ∧ ν ∈< B >. Therefore, ∃ λ ∈

B such that λ ≤ µ ∧ ν. Hence, B is a prefiter base.
¤

5.1.3 Definitions
Given a prefilter F and µ ∈ IX the following subset of I

Cµ(F) def= {α ∈ I : ∀ ν ∈ F ,∃ x ∈ X such that ν(x) > µ(x) + α}
will be called the characteristic set of F with respect to µ and

cµ(F) def= sup Cµ(F)

will be called the characteristic value of F with respect to µ.
When µ = 0 we shall refer to them just as the characteristic set and characteristic value of
F . We shall denote them by C(F) and c(F).
That is,

C(F) def= {µ ∈ IX : ∀ ν ∈ F , ∃ x ∈ X such that ν(x) > α}.
and

c(F) def= sup C(F).

We collect together some basic facts in the following proposition.

5.1.4 Proposition
Let F be a prefilter and µ ∈ IX then

1. Cµ(F) = {α ∈ I : µ + α 6∈ F};
2. {α ∈ I : µ + α ∈ F} = {1} or [c, 1] with c ∈ I1 or (c, 1] with c ∈ I1;

3. Cµ(F) = ∅ or [0, c) with c ∈ I0 or [0, c] with c ∈ I1;

4. cµ(F) def= sup Cµ(F) = inf {α ∈ I : µ + α ∈ F}.
Proof.

(1) We have
µ + α /∈ F ⇐⇒ ∀ ν ∈ F , µ + α 6≥ ν

⇐⇒ ∀ ν ∈ F , ∃ x ∈ X : ν(x) > µ(x) + α.

(2) Let A = {α ∈ I : µ + α ∈ F}. Then 1 ∈ A. If α ∈ A and α ≤ β then β ∈ A. Therefore
A = {1} or [c, 1] with c ∈ I1 or (c, 1] with c ∈ I1.

(3) Let B = Cµ(F) = {α ∈ I : µ + α /∈ F}. Then A ∩ B = ∅ and A ∪ B = I. So,
B = [0, c) with c ∈ I0 or ∅ or [0, c] with c ∈ I1.
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(4) Therefore we have
sup B = inf A.

That is,
cµ(F) = sup Cµ(F) = inf {α ∈ I : µ + α ∈ F}.

¤

Note

1. C(F) = {α ∈ I : α1X /∈ F};

2. c(F) def= sup C(F) = inf {α ∈ I : α1X ∈ F};
3. c(F) = inf

ν∈F
sup ν;

4. For a prefilter base F , c(F) = c(< F >).

If µ = 0 then
Cµ(F) = C(F) = {α ∈ I : α1X /∈ F},

c(F) = sup C(F) = inf {α ∈ I : α1X ∈ F}.

We have
{α ∈ I : α1X ∈ F} = {sup ν : ν ∈ F}.

Since if ν ∈ F then (sup ν)1X ∈ F and sup α1X = α. Therefore

c(F) = inf
ν∈F

sup ν.

We next see the definition of prime prefilter which is similar to the definition of prime
filter.

5.1.5 Definition
A prefilter F is said to be prime if ∀ ν, µ ∈ IX such that ν ∨ µ ∈ F we have either ν ∈ F
or µ ∈ F .

5.1.6 Theorem
If µ ∈ IX then
< µ > is prime iff ∃ α > 0,∃ x ∈ X : µ = α1x.

Proof.

(⇒)
Let x1, x2 ∈ µ0 with x1 6= x2. Then

take µ1 = µ(x1)1x1 and ν2(x) =
{

µ(x) if x 6= x1

0 if x = x1.
Then ν1 ∨ ν2 = µ ∈< µ >, so ν1 ∈< µ > or ν2 ∈< µ >. Therefore ν1 ≥ µ or ν2 ≥ µ

which is clearly false. Thus µ0 is a singlton. Hence ∃ α > 0, ∃ x ∈ X : µ = α1x.

(⇐)
Let ν1 ∨ ν2 ∈< α1x >. Then ν1 ∨ ν2 ≥ α1x. So

ν1 ∨ ν2 ≥ α.

Therefore
ν1(x) ≥ α or ν2(x) ≥ α.

Consequently,
ν1 ∈< α1x > or ν2 ∈< α1x > .
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Therefore < α1x > is prime. ¤

Note
This reveals that prime prefilters are not maximal since if β ≤ α ≤ µ(x) then
< µ >⊆< α1x >⊆< β1x > with both < α1x > and < β1x > being prime.

5.1.7 Definitions
If F and G are prefilter bases then

F ∼ G ⇔ ∀ ν ∈ F ,∀ µ ∈ G, ν ∧ µ 6= 0.

If F ∼ G we define,
F ∨ G def=< {ν ∧ µ : ν ∈ F , µ ∈ G} > .

and it is easy to see that F ∨ G is the smallest prefilter containing both F and G.
For prefilter bases F and G we define,

c(F ,G) def=
{

c(F ∨ G) if F ∼ G
0 otherwise.

If 0 6= µ ∈ IX then < µ > is a prefilter and for a prefilter F we define,

c(F , µ) def= c(F , < µ >).

We define the saturation of a prefilter as follows.

5.1.8 Definition
For a prefilter base F with c(F) > 0 we define,

F̂ def= {sup
ε∈I0

(νε − ε) : (νε : ε ∈ I0) ∈ FI0}.

5.1.9 Theorem
If F and G are prefilter bases with c(F) ∧ c(G) > 0 then,

1. F ⊆ F̂ ;

2. (∀ ε ∈ I0, ν + ε ∈ F) ⇒ ν ∈ F̂ ;

3. F̂ is a prefilter base;

4. F ⊆ G ⇒ F̂ ⊆ Ĝ;

5. F̃ def=< F̂ >= <̂ F >;

6. ˆ̂F ⊆ F̃ ;

7. F ⊆ G ⇒ F̃ ⊆ G̃;

8. If F is a prefilter then F̃ = F̂ ;

9. If F is a prefilter then c(F̂) = c(F).

Proof.

(1) Let ν ∈ F and ∀ ε ∈ I0, νε = ν. Then

sup
ε∈I0

(νε − ε) = sup
ε∈I0

(ν − ε) = ν ∈ F̂ .
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(2) Let ∀ ε ∈ I0, ν + ε ∈ F . Then

sup
ε∈I0

((ν + ε)− ε) = ν ∈ F̂ .

(3) We have F̂ 6= ∅ and 0 /∈ F̂ .
Let µ = sup

ε∈I0

(µε − ε), ν = sup
ε∈I0

(νε − ε) ∈ F̂ with ∀ ε ∈ I0, µε, νε ∈ F . Then

(µ ∧ ν)(x) = sup
ε∈I0

(µε − ε)(x) ∧ sup
ε∈I0

(νε − ε)(x)

= sup
ε∈I0

sup
δ∈I0

(µε − ε)(x) ∧ (νδ − δ)(x)

≥ sup
ε∈I0

(µε ∧ νε − ε)(x).

So
µ ∧ ν ≥ sup

ε∈I0

(µε ∧ νε − ε).

But we have,

∀ ε ∈ I0, µε, νε ∈ F ⇒ ∀ ε ∈ I0, ∃ λε ∈ F such that λε ≤ µε ∧ νε.

Therefore
µ ∧ ν ≥ sup

ε∈I0

(µε ∧ νε − ε) ≥ sup
ε∈I0

(λε − ε) ∈ F̂ .

Hence, F̂ is a prefilter base.

(4) Let µ = sup
ε∈I0

(νε − ε) ∈ F̂ with ∀ ε ∈ I0, νε ∈ F . Then

∀ ε ∈ I0, νε ∈ G ⇒ µ ∈ Ĝ.

(5) Let µ =< F̂ > . Then ∃ ν ∈ F̂ such that ν ≤ µ.
Therefore ∃ (νε : ε ∈ I0) ∈ FI0 such that µ ≥ ν = sup

ε∈I0

(νε − ε).

Let ∀ ε ∈ I0, µε
def= µ + ε ≥ νε. Then µε ∈< F >.

So,
µ = sup

ε∈I0

(µε − ε) ∈ <̂ F >.

Therefore
< F̂ >⊆ <̂ F >.

Let µ ∈ <̂ F >. Then ∃ (µε : ε ∈ I0) ∈< F >I0 such that µ = sup
ε∈I0

(µε − ε). So

∀ ε ∈ I0, ∃ νε ∈ F such that νε ≤ µε.

Therefore
sup
ε∈I0

(νε − ε) ≤ µ.

Hence
µ ∈< F̂ > .

Thus
<̂ F > ⊆< F̂ > .
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(6) Let µ ∈ ˆ̂F . Then ∃ (µε : ε ∈ I0) ∈ F̂I0 such that µ = sup
ε∈I0

(µε − ε). Therefore

µε = sup
δ∈I0

(µε
δ − δ) for some (µε

δ : δ ∈ I0) ∈ FI0 .

So
µ = sup

ε∈I0

(sup
δ∈I0

(µε
δ − δ)− ε)

= sup
ε∈I0

sup
δ∈I0

(µε
δ − δ − ε)

= sup
α∈I0

sup
ε,δ∈I0
ε+δ=α

(µε
δ − α)

= sup
α∈I0

(να − α).

Where,
να = sup

ε,δ∈I0
ε+δ=α

µε
δ ∈< F > .

Therefore
µ ∈ <̂ F > = F̃ .

(7) We have F ⊆ G ⇒ F̂ ⊆ Ĝ ⇒< F̂ >⊆< Ĝ > .

(8) If F is a prefilter then F =< F > . Therfore F̃ = <̂ F > = F̂ .

(9) We have c(F) = inf
ν∈F

sup ν and so,

F ⊆ F̂ ⇒ c(F) ≥ c(F̂).

If ∃ α such that c(F̂) < α < c(F) then

inf
ν∈F̂

sup ν < α ⇒ ∃ ν ∈ F̂ such that sup ν < α.

So
ν = sup

ε∈I0

(νε − ε) for some (νε : ε ∈ I0) ∈ FI0 .

Define µ = β1X where sup ν < β < α. then ν < µ. therefore

∃ δ > 0 such that ν < ν + δ < µ.

But we have ∀ ε ∈ I0, ν +ε ≥ νε and so, µ > ν +δ ≥ νδ. Since F is a filter. Therfore µ ∈ F .
That is µ ∈ F and sup µ = β ⇒ c(F) ≤ β < α. This is a contradiction to c(F) > α.
Therefore c(F̂) = c(F).

¤

5.1.10 Definition
A prefilter F with F = F̂ will be called saturated prefiter.

Some useful results regarding saturated prefilters.

5.1.11 Theorem
If F is a prefilter then
(1)

F is saturated ⇔ (∀ ε ∈ I0, ν + ε ∈ F ⇒ ν ∈ F)
⇔ (∀ ε ∈ I0, ∃ νε ∈ F : νε ≤ ν + ε ⇒ ν ∈ F).

(2) F̂ = {µ ∈ IX : ∀ ε ∈ I0, µ + ε ∈ F}.
(3) F̂ is a saturated prefilter.
(4) If F is prefilter base then ˜̃F = F̃ .
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Proof.

(1)
(⇒)

We have
(∀ ε ∈ I0, ν + ε ∈ F) ⇒ ν ∈ F̂ .

But F = F̂ , therefore ν ∈ F .
(⇐)

Let µ ∈ F̂ . Then we have

∃ (µε : ε ∈ I0) ∈ FI0 such that µ = sup
ε∈I0

(µε − ε).

Therefore
∀ ε ∈ I0, µ + ε ≥ µε ∈ F .

Since F is a prefilter, we have ∀ ε ∈ I0, µ + ε ∈ F . Hence µ ∈ F . Therefore F = F̂ . It is
easy to show that,

(∀ ε ∈ I0, ν + ε ∈ F ⇒ ν ∈ F) ⇐⇒ (∀ ε ∈ I0, ∃ νε ∈ F : νε ≤ ν + ε ⇒ ν ∈ F).

(2) We have
{µ ∈ IX : ∀ ε ∈ I0, µ + ε ∈ F} ⊆ F̂ .

Let µ ∈ F̂ . Then we have

∃ (µε : ε ∈ I0) ∈ FI0 such that µ = sup
ε∈I0

(µε − ε).

Therefore
∀ ε ∈ I0, µ + ε ≥ µε ∈ F .

Since F is a prefilter, we have ∀ ε ∈ I0, µ + ε ∈ F .

(3) If F is a prefilter then
F̃ =< F̂ >= <̂ F > = F̂ .

So, F̂ is a prefilter.
Now let ∀ ε ∈ I0, µ + ε ∈ F̂ . Then

∀ ε ∈ I0, ∀ δ ∈ I0, µ + ε + δ ∈ F

⇒ ∀ α ∈ I0, µ + α ∈ F
⇒ µ ∈ F̂ .

Therefore F̂ is a saturated prefilter.

(4) If F is a prefilter base then < F > is a prefilter. So

F̃ = <̂ F > = ̂̂
< F >.

That is, F̃ is a saturated prefilter. So,

˜̃F = <̂ F̃ > = ˆ̃F = F̃ .

¤

We next see characteristic set of a saturated prefilter.
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5.1.12 Proposition
Let F be a prefilter with c(F) = α then C(F̂) = [0, α).

Proof.

We have c(F) = inf {β ∈ I : β1X ∈ F}.
So,

β1X ∈ F for all β > α and β1X /∈ F for all β < α

⇒ ∀ ε ∈ I0, α1X + ε = (α + ε ∧ 1)1X ∈ F
⇒ α1X ∈ F̂ .

On the other hand if β < α then ∃ ε > 0 such that β + ε < α

⇒ β1X + ε = (β + ε)1X /∈ F .

Which means β1X /∈ F̂ . But

C(F̂) = {t ∈ I : t1X /∈ F̂}.

Therefore C(F̂) = [0, α). ¤

5.2 Prefilters from Filters

Recall from 1.2 that if ν ∈ IX and α ∈ I
να def= {x ∈ X : ν(x) > α},
να

def= {x ∈ X : ν(x) ≥ α}.

5.2.1 Definition
Let F be a filter on X . For α ∈ (0, 1] define,

Fα
def=< {α1F : F ∈ F} >,

Fα def= {ν ∈ IX : ∀ β < α, νβ ∈ F}.

5.2.2 Theorem
Let F and G are filters on X. Then we have

1. Fα and Fα are prefilters on X with Fα ⊆ Fα for any α ∈ (0, 1],

2. Fα ⊆ Fβ and Fα ⊆ Fβ if 0 < β < α,

3. Fα ⊆ Gα and Fα ⊆ Gα if F ⊆ G,

4. F̂α = Fα = F̂α,

5. C(Fα) = C(Fα) = [0, α) and c(Fα) = c(Fα) = α.

Proof.

(1) We have 0 /∈ {α1F : F ∈ F} 6= ∅ and

α1F ∧ α1G = α1F∩G ∈ {α1F : F ∈ F}.
Therefore {α1F : F ∈ F} is a prefilter base. Hence Fα is a prefilter.

1 ∈ Fα 6= ∅ and 0 /∈ Fα.
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Let µ, ν ∈ Fα then ∀ β < α, µβ , νβ ∈ F. But

(µ ∧ ν)β = µβ ∩ νβ ∈ F.

So µ ∧ ν ∈ Fα.
Let µ ∈ Fα and µ ≤ ν. Then ∀ β < α, µβ ∈ F For β < α, νβ ⊇ µβ ∈ F, and so νβ ∈ F

Therefore ν ∈ Fα.
Hence Fα is a prefilter.
Let µ ∈ Fα. Then ∃ F ∈ F such that µ ≥ α1F . For β < α, µβ ⊇ (α1F )β = F ∈ F and

so µ ∈ Fα. Therefore Fα ⊆ Fα.

(2) We have µ ∈ Fα ⇒ ∃ F ∈ F such that µ ≥ α1F . If 0 < β < α then µ ≥ β1F and so
µ ∈ Fβ . Therefore µ ∈ Fα ⇒ ∀ γ < α, µγ ∈ F⇒ ∀ γ < β, µγ ∈ F⇒ µ ∈ Fβ .

(3)
µ ∈ Fα ⇒ ∃ F ∈ F : µ ≥ α1F ⇒ ∃ F ∈ G : µ ≥ α1F ⇒ µ ∈ Gα.

µ ∈ Fα ⇒ ∀ β < α, µβ ∈ F⇒ ∀ β < α, µβ ∈ G⇒ µ ∈ Gα.

(4) Let µ ∈ F̂α. Then ∃ (µε : ε ∈ I0) ∈ (Fα)I0 such that µ = sup
ε∈Io

(µε − ε). So

∀ ε ∈ Io, ∀ β < α, µβ
ε ∈ F,

µβ = ( ∨
ε∈I0

(µε − ε))β = ∪
ε∈I0

(µε − ε)β = ∪
ε∈I0

µβ+ε
ε .

If β < α then ∃ δ > 0 such that β + δ < α ⇒ µβ+ε
ε ∈ F

⇒ ∪
ε∈I0

µβ+ε
ε ∈ F⇒ µβ ∈ F.

Therefore µ ∈ Fα and hence Fα = F̂α.

Fα ⊆ Fα ⇒ F̂α ⊆ F̂α = Fα.

Let µ ∈ Fα. Then ∀ β < α, µβ ∈ F. Then for each ε ∈ I0, define νε = α1µα−αε . Since
µα−αε ∈ F so νε ∈ Fα and also µ + ε ≥ νε. That is, ∀ ε ∈ I0, µ ≥ νε − ε

⇒ µ ≥ sup
ε∈I0

(νε − ε) with ∀ ε ∈ I0, νε ∈ Fα.

Since F̂α is a prefilter and so µ ∈ F̂α. Therefore Fα ⊆ F̂α. Hence

F̂α = F̂α = Fα.

(5) We have C(Fα) = {β ∈ I : β1X /∈ Fα}. If β < α then β1X 6≥ α1F for any F ∈ F ⇒
β1X /∈ Fα. But if β ≥ α then β1X ≥ α1F for some F ∈ F⇒ β1X ∈ Fα. Therefore

C(Fα) = [0, α) and hence c(Fα) = α.

We have
C(Fα) = {β ∈ I : β1X /∈ Fα}.

If β < α then ∃ δ : β < δ < α and (β1X)δ = ∅ /∈ F⇒ β1X /∈ Fα.
If β ≥ α then ∀ γ < α, (β1X)γ = X ∈ F⇒ β1X ∈ Fα.
Therefore

C(Fα) = [0, α) and hence c(Fα) = α

¤
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5.3 Filters from Prefilters
5.3.1 Definition

Let F be a prefilter on X. For α ∈ C(F), we define,

Fα
def= {να : ν ∈ F} = {F ⊆ X : α1X ∨ 1F ∈ F},

and for α ∈ (0, c(F)] we define,

Fα def= {νβ : β < α, ν ∈ F}.
5.3.2 Theorem

Let F and G are prefilters on X. Then we have

1. Fα for any α ∈ C(F) and Fα for any α ∈ (0, c(F)] are filters on X,

2. Fβ ⊆ Fα if 0 ≤ β < α ≤ c(F),

3. Fα ⊇ Fβ if 0 ≤ β < α and α ∈ C(F); and Fα ⊇ Fβ if 0 < β < α ≤ c(F),

4. Fα ⊆ Gα and Fα ⊆ Gα if F ⊆ G,

5. For α ∈ (0, c(F)], Fα =
⋃

0<γ<α
Fγ .

Proof.

(1) Let α ∈ C(F). Then α1X /∈ F . So, for ν ∈ F , να 6= ∅. We also know Fα 6= ∅.
Let µα, να ∈ Fα. Then µα ∩ να = (µ ∧ ν)α ∈ Fα.
Let µα ∈ Fα and F ⊇ µα. Then 1F ∨ µ ≥ µ, 1F ∨ µ ∈ F and (1F ∨ µ)α = F Therefore

F ∈ Fα.
Hence Fα is a filter.
For α ∈ (0, c(F)], Fα 6= ∅ and ∅ /∈ Fα.
Let νβ , µγ ∈ Fα where ν, µ ∈ F and β, γ < α. Then

(ν ∧ µ)β∨γ ⊆ νβ ∩ µγand ν ∧ µ ∈ F .

Therefore Fα is a filter base.
Clearly Fα ⊆< Fα >. Let A ∈< Fα > . Then ∃ ν ∈ F and β < α such that A ⊇ νβ .

Define µ = 1A ∨ ν ≥ ν then µ ∈ F . µβ = A ∈ Fα. Therefore < Fα >= Fα. Hence Fα is a
filter.

(2) Let νβ ∈ Fβ then we have ν ∈ F .

0 ≤ β < α ≤ c(F) ⇒ νβ ∈ Fα.

Therefore Fβ ⊆ Fα

(3) Let νβ ∈ Fβ . Then we have ν ∈ F . Define µ = 1νβ ∨ν ≥ ν then µ ∈ F . Since 0 ≤ β < α.
So µα = νβ . Therefore νβ ∈ Fα. Hence Fβ ⊆ Fα.

Let νγ ∈ Fβ . Then γ < β and ν ∈ F . Since 0 < β < α ≤ c(F) and so γ < α and ν ∈ F .
Therefore νγ ∈ Fα. Hence Fβ ⊆ Fα.

(4) Let να ∈ Fα. Then ν ∈ F and so ν ∈ G. Therefore να ∈ Gα.
Let νβ ∈ Fα. Then β < α and ν ∈ F and so β < α and ν ∈ G. Therefore νβ ∈ Gα.

(5) We have
0 < γ < α ⇒ Fγ ⊆ Fα ⇒ ∪

0<γ<α
Fγ ⊆ Fα.

Let νβ ∈ Fα. Then β < α and ν ∈ F . So ∃ γ : β < γ < α such that νβ ∈ Fγ . Therefore
νβ ∈ ∪

0<γ<α
Fγ . Hence Fα = ∪

0<γ<α
Fγ .

¤
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5.3.3 Theorem
Let F and G are filters on X and F and G are prefilters on X. Then we have

1. F = (Fα)β = (Fα)β if 0 < β ≤ α,

2. F = (Fα)β = (Fα)β if 0 ≤ β < α,

3. (Fα)β ⊇ F if 0 < β ≤ α ≤ c(F),

4. (Fα)β ⊇ F if 0 ≤ β < α ≤ c(F),

5. (Fα)β ⊇ F if 0 < β ≤ α and α ∈ C(F),

6. (Fα)β ⊇ F if 0 ≤ β < α and α ∈ (0, c(F)],

7. ((Fα)α)α = Fα for any α ∈ (0, c(F)],

8. if F ∈ F0 and c(F) < γ ≤ 1 then γ1F ∈ F .

Proof.

(1) Let F ∈ F. Then α1F ∈ Fα and for γ < β ≤ α, (α1F )γ = F ∈ (Fα)β . Therefore
F ⊆ (Fα)β . We have

Fα ⊆ Fα ⇒ (Fα)β ⊆ (Fα)β .

So, F ⊆ (Fα)β ⊆ (Fα)β .
Let νγ ∈ (Fα)β then γ < β and ν ∈ Fα.

ν ∈ Fα ⇒ ∀ δ < α, νδ ∈ F.

Since 0 < β ≤ α, so νγ ∈ F. Therefore (Fα)β ⊆ F.
Hence F = (Fα)β = (Fα)β .

(2) Let F ∈ F. Then α1F ∈ Fα and for 0 ≤ β < α, (α1F )β = F ∈ (Fα)β . Therefore
F ⊆ (Fα)β . We have

Fα ⊆ Fα ⇒ (Fα)β ⊆ (Fα)β .

So F ⊆ (Fα)β ⊆ (Fα)β .
Let νβ ∈ (Fα)β . Then ν ∈ Fα.

ν ∈ Fα ⇒ ∀ γ < α, νγ ∈ F.

Since 0 ≤ β < α and so νβ ∈ F. Therefore (Fα)β ⊆ F.
Hence F = (Fα)β = (Fα)β .

(3) Let ν ∈ F . Then since α ≤ c(F) so ∀ γ < α, νγ ∈ Fα. Since 0 < β ≤ α. So
∀ γ < β, νβ ∈ Fα. Therefore ν ∈ (Fα)β . Hence F ⊆ (Fα)β .

(4) Let ν ∈ F . Then since α ≤ c(F) so ∀ γ < α, νγ ∈ Fα. Since 0 ≤ β < α. So
ν ≥ β1νβ ∈ (Fα)β . Therefore ν ∈ (Fα)β . Hence F ⊆ (Fα)β .

(5) Let ν ∈ F . Then να ∈ Fα. Since 0 < β ≤ α. So ∀ γ < β, νγ ∈ Fα. Therefore ν ∈ (Fα)β .
Hence F ⊆ (Fα)β .

(6) Let ν ∈ F . Then να ∈ Fα. Since 0 ≤ β < α. So ν ≥ β1να ∈ (Fα)β . Therefore
ν ∈ (Fα)β . Hence F ⊆ (Fα)β .

(7) We have
(Fα)α ⊇ F ⇒ ((Fα)α)α ⊇ Fα.

Let νβ ∈ ((Fα)α)α. Then β < α and ν ∈ (Fα)α. So ∀ γ < α, νγ ∈ Fα. Therefore νβ ∈ Fα.
Hence ((Fα)α)α = Fα.
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(8) Let F ∈ F0. Then F = ν0
1 for some ν1 ∈ F . We have

γ > c(F) = inf
ν∈F

sup ν.

Therefore ∃ ν2 ∈ F such that sup ν2 < γ. Let ν = ν1 ∨ ν2. Then ν ∈ F and ν0 = ν0
1 ∩ ν0

2 ⊇
F . So sup ν ≤ sup ν2 < γ. Therefore ν ≤ γ1F ∈ F . ¤

The following theorem is very useful when we try to show two saturated prefilters are
equal.

5.3.4 Theorem
If F and G are saturated prefilters such that c(F) = c(G) = α and Fβ = Gβ for all β ∈ (0, α]
then F = G.

Proof.

Let µ ∈ F and ε ∈ I0. We seek ν ∈ G such that ν ≤ µ + ε. Then, since ε is arbitrary,
we will have ∀ ε ∈ I0, µ + ε ∈ F and since G is saturated so µ ∈ F .

Choose α0, α1, . . . , αn such that 0 = α0 < α1 < α2 < . . . < αn = α with αi−αi−1 < ε/4
for each i ∈ {1, 2, . . . , n}.

(i) Since µα0 ∈ Fα1 = Gα1 . So ∃ ν′1 ∈ G and β1 < α1 with (ν′1)
β1 = µα0 . Thus

∃ ν1 = ν′1 ∧ α1X ∈ G and β1 < α1 with νβ1
1 ⊆ (ν′1)

β1 = µα0 .
(ii) Since µα1 ∈ Fα2 = Gα2 . So ∃ ν′2 ∈ G and β′2 < α2 with (ν′2)

β′2 = µα1 . Thus
∃ ν2 = ν′2 ∧ α1X ∈ G and β2β

′
2 ∨ α1 < α2 with νβ2

2 ⊆ (ν′2)
β2 ⊆ (ν′2)

β′2 = µα1 . In general we
have:

For each i ∈ {1, 2, . . . , n}, ∃ α1X ≥ νi ∈ G and βi ∈ [αi−1, αi) with νβi

i ⊆ µαi−1 . Let
ν =

∧
i∈{1,2,...,n}

νi.

Then α1X ≥ ν ∈ G and νβi ⊆ νβi

i ⊆ µαi−1 for each I ∈ {1, 2, . . . , n}.
Thus ∀ i ∈ {1, 2, . . . , n} and ∀ x ∈ X we have:

ν(x) > βi ⇒ µ(x) > αi−1 > αi1/4ε > βi − 1/4ε.

Now we have to show ν ≤ µ + ε.
Let x ∈ X and ν(x) > β. Then
(a) if 0 ≤ β < β1 then (µ + ε)(x) ≥ ε > α1 > β1 > β.
(b) if βi ≤ β < βi+1 for some i ∈ {1, 2, . . . , n} then

ν(x) > β ≥ βi ⇒ (µ+ε)(x) = µ(x)+ε > βi−1/4ε+ε = βi+3/4ε ≥ αi−1+3/4ε ≥ αi+1 > βi+1 > β.

(c ) if βn ≤ β < α then

ν(x) > β ≥ βn ⇒ (µ+ε)(x) = µ(x)+ε ≥ βn−1/4ε+ε = βn +3/4ε ≥ αn−1 +3/4ε > α > β.

Therefore in any case
ν(x) > β ⇒ (µ + ε)(x) > β.

Thus µ(x) ≤ (µ + ε)(x). But x is arbitrary therefore ν ≤ µ + ε.
¤

5.3.5 Proposition
Let F be a saturated prefilter and c(F) = α. Then

F =
⋂

β<α

(Fβ)β .
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Proof.

Let G = ∩
β<α

(Fβ)β . Then G is a saturated prefilter, as an arbitrary intersection of

saturated perfilters.

t1X ∈ G ⇐⇒ ∀ β < α, t1X ∈ (Fβ)β

⇐⇒ ∀ β < α, ∀ γ < β, (t1X)γ ∈ Fβ

⇐⇒ ∀ β < α, ∀ γ < β, γ < t
⇐⇒ ∀ β < α, β ≤ t
⇐⇒ t ≥ α.

Therefore C(G) = [0, α) = C(G). Now we have to show ∀ β ∈ (0, α], Fβ = Gβ . Since G ⊇ F ,
we have Gβ ⊇ Fβ .

On the other hand G ⊆ (Fβ)β and so Gβ ⊆ ((Fβ)β)β = Fβ . Therefore by above theorem
F = G = ∩

β<α
(Fβ)β .

¤

5.3.6 Theorem
Let F be a prefilter on X with c(F) = c > 0 and F is a filter on X. Then

1. F is prime ⇔ F0 is an ultrafilter,

2. F is prime ⇒ F0 = Fc,

3. F is ultrafilter ⇔ Fc is prime, for any α ∈ (0, 1],

4. F is ultrafilter ⇔ Fc is prime, for any α ∈ (0, 1],

5. if F is prime and F ⊆ G then G is prime.

Proof.

(1)
(⇒)

Let A ∪ B ∈ F0. Then 1A∪B ∈ F . 1A∪B = 1A ∨ 1B ∈ F . Since F is prime. So
1A ∈ F or 1B ∈ F . Therefore A ∈ F0 or B ∈ F0 and so F0 is prime. That is F0 is ultra.

(⇐)
Let µ ∨ ν ∈ F . Then (µ ∨ ν)0 = µ0 ∪ ν0 ∈ F0. Since F0 is an ultrafiter. So µ0 ∈

F0 or ν0 ∈ F0. Therefore µ ∈ F or ν ∈ F and hence F is prime.

(2) F0 ⊆ Fc and F0 is ultra ⇒ F0 = Fc.

(3) We have F = (Fα)0 and by (1)

F = (Fα)0 is an ultrafilter ⇐⇒ Fα is prime .

(4) We have F = (Fα)0 and by (1)

F = (Fα)0 is an ultrafilter ⇐⇒ Fα is prime .

(5) We have F ⊆ G ⇒ F0 ⊆ G0 and F is prime ⇐⇒ F0 is ultra. Therefore G0 is ultra and
hence G is prime.

¤

5.3.7 Lemma
If F is a prefilter on X and F is a filter on X then
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1. F ∼ F1 ⇒ (F ∨ F1)0 = F0 ∨ F,

2. If F is an ultrafilter then
F ∼ F1 ⇔ F0 ⊆ F⇔ (F ∨ F1)0 = F.

Proof.

(1)
ν0 ∈ (F ∨ F1)0 ⇒ ν ≥ µ ∧ 1F for some µ ∈ F , F ∈ F

⇒ ν0 ⊇ µ0 ∩ F with µ ∈ F , F ∈ F
⇒ ν0 ∈ F0 ∨ F.

Let A ∈ F0 ∨ F. Then A ⊇ µ0 ∩ F for some µ ∈ F , F ∈ F. So A ⊇ (µ ∧ 1F )0 with µ ∈
F , F ∈ F. Therefore A ∈ (F ∨ F1)0. Hence (F ∨ F1)0 = F ∨ F.

(2) Let F is an ultrafilter. Then

F ∼ F1 ⇐⇒ ∀ ν ∈ F , ∀ F ∈ F, ν ∨ 1F 6= 0
⇐⇒ ∀ ν ∈ F , ∀ F ∈ F, ν0 ∩ F 6= ∅
⇐⇒ ∀ ν ∈ F , ν0 ∈ F
⇐⇒ F0 ⊆ F.

F ∼ F1 ⇒ (F ∨ F1)0 = F0 ∨ F = F. Clearly, (F ∨ F1)0 = F⇒ F ∼ F1. ¤

The following definition aims to characterises the collection of minimal prime prefilters.

5.3.8 Definitions
If F is a prefilter and F is filter on X we define,

P(F) def= {K : K is an ultrafilter and F ⊆ K};

P(F) def= {G : G is a prime prefilter and F ⊆ G};
Pm(F) def= {G : G ∈ P(F) and G is minimal }.

5.3.9 Lemma
1. P(F) has minimal elements,

2. F =
⋂

G∈P(F)

G,

3. F =
⋂

G∈Pm(F)

G.

Proof.

(1) For G1,G2 ∈ P(F) define,
G1 ¹ G2 ⇐⇒ G1 ⊇ G2

Then P(F) is a partially ordered set. Let C be a non-empty chain in P(F). Then
H = ∩

G∈C
G is a prime prefilter and F ⊆ H.

Clearly F ⊆ H,
We have H 6= ∅ and 0 /∈ H.
Let µ, ν ∈ H. Then ∀ G ∈ C; µ, νG ⇒ µ ∧ ν ∈ H.
Let µ ∈ H and µ ≤ ν then ∀ G ∈ C, µ ∈ G and µ ≤ ν ⇒ ν ∈ H .
Therefore H is a prefilter.
Let µ ∨ ν ∈ H then ∀ G ∈ C, µ ∨ ν ∈ G. So

∀ G ∈ C, (µ ∈ G or ν ∈ G).
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If ∀ G ∈ C, µ ∈ G then µ ∈ H.

If ∃ G′ ∈ C such that µ /∈ G′ then ν ∈ G′
Therefore ∀ G ∈ C such that G ⊇ G′ we have ν ∈ G and if G ∈ C such that G ⊆

G′ then µ /∈ G, so we must again have ν ∈ G. Therefore ν ∈ H. Hence H is a prime
prefilter.

So, we have H ∈ P(F) and an upper bound for C. By Zorn’s Lemma, (P(F), ¹) has a
maximal element. That is (P(F), ⊆) has a minimal element. Therefore Pm(F) 6= ∅.
(2) Firat we have to show that

G ∈ P(F) ⇐⇒ G0 ∈ P(F0) and F0 = ∩
G∈P(F)

G0.

G ∈ P(F) ⇐⇒ G is prime prefilter and F ⊆ G
⇐⇒ G0 is ultra and F0 ⊆ G0

⇐⇒ G0 ∈ P(F0).

We have
F0 = ∩

F∈P(F0)
F.

F ∈ P(F0) ⇒ F is an ultra filter and F0 ⊆ F
⇒ (F ∨ F1)0 = F and F is ultra.
⇒ F ∨ F1 is prime and F ⊆ F ∨ F1

⇒ F ∨ F1 ∈ P(F).

That is we have
G ∈ P(F) ⇒ G0 ∈ P(F0) and

F ∈ P(F0) ⇒ (F ∨ F1 ∈ P(F) and (F ∨ F1)0 = F).

Therefore
F0 = ∩

F∈P(F0)
F = ∩

G∈P(F)
G0.

Clearly F ⊆ ∩
G∈P(F)

G
Let µ ∈ ∩

G∈P(F)
G. Then ∀ G ∈ P(F), µ ∈ G. So ∀ G ∈ P(F), µ0 ∈ G0. Therefore µ0 ∈ F0

and so µ ∈ F . Hence F = ∩
G∈P(F)

G.

(3) If G ∈ Pm(F) then G ∈ P(F) and G is minimal.
So obviously, F = ∩

G∈Pm(F)
G.

¤

The following crucial theorem due to Lowen [48] characterises the mimimal prime pre-
filters.

5.3.10 Theorem
If F is a prefilter then

Pm(F) = {F ∨ F1 : F ∈ P(F0)}.
Proof.

Let G ∈ Pm(F). Then G ∈ P(F) and G is minimal. We have

G ∈ P(F) ⇒ G0 ∈ P(F0).

and
G0 is ultra ⇒ (G0)1 is prime ⇒ F ∨ (G0)1 is prime .

40



Therefore F ∨ (G0)1 ∈ P(F). We have

G0 = {F ⊆ X : 1F ∈ G}.

and so
(G0)1 =< {1F : F ∈ G0} >=< {1F : F ⊆ X, 1F ∈ G} >⊆ G.

So (G0)1 ⊆ G and F ⊆ G. Therefore F ∨ (G0)1 ⊆ G. But G is minimal. Hence G = F ∨ (G0)1.
That is, if G ∈ Pm(F) then G = F ∨ (G0)1 and G0 ∈ P(F0). Therefore

Pm(F) ⊆ {F ∨ F1 : F ∈ P(F0)}.

Let F ∈ P(F0). Then F ∨ F1 ∈ P(F).
If ∃G ∈ Pm(F) such that G ⊂ F ∨ F1 then

G = F ∨ (G0)1 ⊂ F ∨ F1.

So (G0)1 ⊂ F1 ⇒ G0 ⊂ F. This is a contradiction, since F,G0 ∈ P(F0). Therefore
F ∨ F1 ∈ Pm(F). Hence

Pm(F) = {F ∨ F1 : F ∈ P(F0)}.
¤

5.3.11 Theorem
If F is a prefilter then ∃G ∈ Pm(F) with c(F) = c(G).

Proof.

If c = c(F) > 0 then choose F ∈ P(Fc). Then we have F ∈ P(F0) and so F∨F1 ∈ Pm(F).
Therefore c(F) ≥ c(F ∨ F1). Let 0 < α < c(F) and µ ∈ F ∨ F1. Then ∃ν ∈ F , F ∈
F such that µ ≥ ν∧1F . Now να ∈ Fc ⊆ F and so να∩F 6= ∅. Let x ∈ να∩F. Then supµ ≥
sup ν∧1F ≥ ν(x) > α. Since µ is arbitrary we have c(F∨F1) ≥ α and since α is arbitrary we
conclude that c(F ∨ F1) ≥ c(F). Therefore c(F) = c(F ∨ F1). If c(F) = 0 then choose F ∈
P(F0). Therefore F∨F1 ∈ Pm(F) and so 0 = c(F) ≥ c(F∨F1). Therefore c(F) = c(F∨F1).

¤

For a prefilter we now see the definition of lower characteristic.

5.3.12 Definition
For a prefilter F we define the lower characteristic of F by

c̄(F) def= inf
G∈Pm(F)

c(G)

and it is easy to see that c̄(F) = c(F) when F is prime.

5.3.13 Lemma
If F is a prefilter with c̄(F) > 0 then

0 < α < c̄(F) ⇔ ∀ ν ∈ F , να ∈ F0.

Proof.

We have
c̄(F) = inf

G∈Pm(F)
c(F) = inf

F∈P(F0)
c(F ∨ F1)

= inf
F∈P(F0)

inf
ν∈F

inf
F∈F

sup(ν ∧ 1F ).
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So
0 < α < c̄(F) ⇐⇒ ∀ F ∈ P(F0), ∀ ν ∈ F , ∀ F ∈ F, να ∩ F 6= ∅

⇐⇒ ∀ ν ∈ F , ∀ F ∈ P(F0), να ∈ F
⇐⇒ ∀ ν ∈ F , να ∈ ∩

F∈P(F0)
F = F0.

¤

5.3.14 Proposition
If F is a prefilter with c̄(F) > 0 and F is a filter then

1. c̄(F) = inf
ν∈F

sup{α : να ∈ F0} = sup{α : Fα = F0},

2. If F = F̂ then (F c̄)c ⊆ F , where c̄ = c̄(F) and c = c(F),

3. c̄(F̂) ≥ c̄(F),

4. c̄(Fα) = α and c̄(Fα) ≥ α, for α ∈ (0, 1].

Proof.

(1) Let β = inf
ν∈F

sup{α : να ∈ F}. Then

0 < α < c̄(F) ⇐⇒ ∀ ν ∈ F , να ∈ F0

⇐⇒ ∀ ν ∈ F , α ≤ sup{δ : νδ ∈ F0}
⇐⇒ α ≤ inf

ν∈F
sup{δ : νδ ∈ F0} = β.

That is α < c̄(F) ⇐⇒ α ≤ β. So c̄(F) = β. Now we have

α < c̄(F) ⇐⇒ ∀ ν ∈ F , να ∈ F0

⇐⇒ Fα ⊆ F0

⇐⇒ α ≤ sup{δ : Fδ ⊆ F0} = sup{δ : Fδ = F0}.
So c̄ = sup{δ : Fδ = F0}.
(2) let µ ∈ (F c̄)c. Then µ ≥ c1νβ where β < c̄ and ν ∈ F . β < c̄ ⇒ νβ ∈ F0. We intend to
show that µ ∈ F̂ .

Let ε ∈ I0 and define γε = (c + ε/2) ∧ 1 and νε = γε1νβ . Then µ + ε ≥ νε and νε ∈ F .
Since νβ ∈ F0 and c(F) < γε ≤ 1. Therefore ∀ ε ∈ I0, ∃νε ∈ F such that νε ≤ µ+ε. Hence
µ ∈ F̂ = F .

(3) Let 0 < α < c̄(F), G ∈ Pm(F̂) and µ ∈ G. Then ∃F ∈ P(F̂0) such that G = F̂ ∨ F1 and
hence µ ≥ ν ∧ 1F where ν ∈ F̂ and F ∈ F.

Now let ν = sup
ε∈I0

(νε − ε) for some family (νε : ε ∈ I0) ∈ FI0 . Choose β such that α <

β < c̄(F) and let δ = β − α. Then we have νδ ∈ F and ν ≥ νδ − δ. β < c̄(F) ⇒ νβ
δ ∈ F0 ⊆

(F̂)0 ⊆ F and hence νβ
δ ∩ F 6= ∅. Chosse x ∈ νβ

δ ∩ F ,

sup µ ≥ sup ν ∧ 1F = sup
y∈F

ν(y) ≥ ν(x) ≥ νδ(x)− δ > β − δ = α.

Since µ is arbitrary, c(G) ≥ α. Since G is arbitrary c̄(F̂) ≥ α and since α is arbitrary,

c̄(F̂) ≥ c̄(F).

(4) Let G ∈ Pm(Fα). Then ∃K ∈ P((Fα)0) such that G = Fα ∨ K1. But (Fα)0 = F. So
K ∈ P(F) and

c(G) = c(Fα ∨K1) = inf
F∈F

inf
K∈K

sup (α1F ∧ 1K)

= α. [ since F ∩K 6= ∅]
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and so c̄(Fα) = α. Therefore c̄(Fα) = c̄(F̂α) ≥ c̄(Fα) = α.
¤

It is worth noting that inequality in 3 may be strict. This can be seen by letting
F =< {α ∨ 1F : α > 0, F ∈ F} >. Where Fis a filter on a set X. Then
F̂ =< {1F : F ∈ F} >= F1 and hence c̄(F) = 0 but c̄(F̂) = 1.

5.4 Images and Preimages

If f : X −→ Y ,F is a prefilter on X and G is a prefilter on Y then

f [F ] def= {f [µ] : µ ∈ F} and f−1[G] def= {f−1[ν] : ν ∈ G}.

5.4.1 Lemma
Let f : X −→ Y ,F is a prefilter on X and G is a prefilter on Y . Then

1. f [F ] is a prefilter base on Y ,

2. f is sujective then f−1[G] is a prefilter base on X,

3. If c(F) = c(f [F ]),

4. If f is injective then c(f−1[G]) = c(G),

5. If f is injective and µ ∈ IX then c(G, f [µ]) = c(f−1[G], µ),

6. If F is prime then < f [F ] > is prime,

7. c̄(f [F ]) ≥ c̄(F).

Proof.

(1) Clearly f [F ] 6= ∅ and 0 /∈ f [F ].
Let f [µ1], f [µ2] ∈ f [F ] with µ1, µ2 ∈ F . Then f [µ1]∧f [µ2] ≥ f [µ1∧µ2] with µ1∧µ2 ∈ F .
Therefore f [F ] is a prefilter base on Y .

(2) Clearly f [F ] 6= ∅. Since f is surjective. We have 0 /∈ f [F ].
Let f−1[ν1], f−1[ν2] ∈ f−1[G] with ν1, ν2 ∈ G. Then f−1[ν1] ∧ f−1[ν2] = f−1[ν1 ∧ ν2] ∈

f−1[G].
Therefore f−1[G] is a prefilter base on X.

(3) We have
c(F) = inf

µ∈F
sup µ and c(f [F ]) = inf

µ∈F
sup f [µ].

and
sup f [µ] = sup

y∈Y
f [µ](y) = sup

y∈Y
sup

f(x)=y

µ(x)

= sup
x∈X

µ(x) [since X = ∪
y∈Y

f←{y}]
= sup µ.

Therefore c(F) = c(f [F ]).

(4) we have
c(f−1[G] = inf

ν∈G
sup f−1[ν] = inf

ν∈G
sup
x∈X

ν(f(x))

= inf
ν∈G

sup
y∈Y

ν(y)

= c(G).
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(5) We have

G ∼ f [µ] ⇐⇒ ∀ ν ∈ F , ν ∧ f [µ] 6= 0
⇐⇒ ∀ ν ∈ F , f−1[ν] ∧ µ 6= 0 [ since f is injective]
⇐⇒ f−1[G] ∼ µ.

Since f is injective. So ν ∧ f [µ] = f [f−1[ν] ∧ µ]. Therefore

sup ν ∧ f [µ] = sup f [f−1[ν] ∧ µ] = sup f−1[ν] ∧ µ.

Hence
c(G, f [µ]) = inf

ν∈F
sup ν ∧ f [µ] = inf

ν∈F
sup f−1[ν] ∧ µ = c(f−1[G], µ).

(6) Let ν1 ∨ ν2 ∈< f [F ] >. Then ∃µ ∈ F such that ν1 ∨ ν2 ≥ f [µ]. So f−1[ν1 ∨ ν2] ≥
f−1[f [µ]] ≥ µ. Therefore µ ≤ f−1[ν1] ∨ f−1[ν2] ∈ F . Since F is prime. So f−1[ν1] ∈ F
or f−1[ν2] ∈ F . Therefore ν1 ≥ f [f−1[ν1]] ∈ f [F ] or ν2 ≥ f [f−1[ν2]] ∈ f [F ]. Hence
ν1 ∈< f [F ] > or ν2 ∈< f [F ] >.

(7) We have
c̄(F) = inf

H∈Pm(F)
c(F) = inf

H∈Pm(F)
c(f [H]).

and
c̄(f [H]) = inf

G∈Pm(f [F ])
c(G).

But
Pm(f [F ]) ⊆ {f [H] : H ∈ Pm(F)}.

Therefore c̄(F) ≤ c̄(f [F ]).
¤

5.5 Convergence in Fuzzy Topological Space

Topological spaces provide the appropriate setting for the abstract study of continuity and
convergence. In [48] Lowen extended the theory of continuity and convergence in topological
spaces to the realm of fuzzy topological spaces.

We define the adherence and limit of a prefilter in a fuzzy topological space as follows.
Let (X, T ) be a fuzzy topological space. Then

5.5.1 Definition
If F is a prefilter, then we define the adherence of F

adh F = inf
ν∈F

ν̄.

where ν̄ is the fuzzy topological closure of ν.

5.5.2 Definition
If F is a prefilter then we define the limit of F ,

limF = inf
G∈Pm(F)

adh G.

Note inf
G∈P(F)

adh G = 0.

5.5.3 Proposition
Let F and G be prefilters. Then

44



1. If F ⊇ G then adh F ≤ adh G,

2. limF ≤ adh F ,

3. If F is prime then limF = adh F ,

4. If F is a prefilter base then

adh < F >= adh F .

Proof.

(1) We have
F ⊇ G ⇒ inf

ν∈F
ν̄ ≤ inf

ν∈G
ν̄.

Therefore
F ⊇ G ⇒ adh F ≤ adh G.

(2) We have
G ∈ Pm(FF ) ⇒ adh G ≤ adh F .

Therefore
lim F = inf

G∈Pm(F)
adh G ≤ adh F .

(3) If F is prime then Pm(F) = {F}. Therefore lim F = adh F .
(4) we have

adh < F >= inf
ν∈<F>

ν̄ and adh F = inf
ν∈F

ν̄.

Clearly adh < F >≤ adh F . But ∀ µ ∈< F >, ∃ν ∈ F such that ν ∈ µ and so ν̄ ≤ µ̄.
Therefore

inf
µ∈<F>

µ̄ ≥ inf
ν∈F

ν̄.

Thus
adh < F >≥ adh F .

Therefore
adh < F >= adh F .

¤

5.5.4 Theorem
Let f : (X, T1) −→ (Y, T2) be a function. Then the following are equivalent

1. f is continuous,

2. For each prefilter on X, f [adh F ] ≤ adh f [F ],

3. For each prefilter on X, f [lim F ] ≤ lim f [F ].

Proof.

(1) ⇐⇒ (2)
We have

adh F = inf
µ∈F

µ̄ and adh f [F ] = inf
µ∈F

f [µ].

and
f [adh F ] = f [inf

µ∈F
µ̄ ≤ inf

µ∈F
f [µ̄].

But
f is continuous ⇐⇒ ∀ µ ∈ IX , f [µ̄] ≤ f [µ].
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Therefore consequently

f is continuous ⇐⇒ f [adh F ] ≤ adh f [F ].

The rest of the proof can be found in [48].

More information regarding prefilters can be found in [33, 64, 74].
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Chapter 6

Fuzzy Uniform Spaces

6.1 Introduction

In [52] Lowen introduced and studied the notion of a fuzzy uniform space. To define a fuzzy
uniform space first we have to define some basic definitions which are generalisations of the
standard notion.

If σ, ψ ∈ IX×X we define,
σs(x, y) def= σ(y, x),

(σ ◦ ψ)(x, y) def= sup
z∈X

ψ(x, z) ∧ σ(z, y).

If U, V ⊆ X ×X and σ = 1U , ψ = 1V then

(1U )s(x, y) = 1 ⇐⇒ 1U (y, x) = 1
⇐⇒ (y, x) ∈ U
⇐⇒ (x, y) ∈ Us

⇐⇒ (1Us)(x, y) = 1.

Therefore (1U )s = 1Us .

(1V ◦ 1U )(x, y) = 1 ⇐⇒ sup
z∈X

1U (x, z) ∧ 1V (z, y) = 1

⇐⇒ ∃z ∈ X : (x, z) ∈ U and (z, y) ∈ V
⇐⇒ (x, y) ∈ V ◦ U
⇐⇒ 1V ◦U (x, y) = 1.

Therefore 1V ◦ 1U = 1V ◦U .
Therefore the above definitions are natural generalisations of the standard notions.

6.1.1 Definitions
If X is a set and D ⊆ IX×X is called a fuzzy uniformity on X iff

1. D is a prefilter and D̂ = D;

2. ∀ σ ∈ D, ∀ x ∈ X, σ(x, x) = 1;

3. ∀ σ ∈ D, σs ∈ D;

4. ∀ σ ∈ D, ∀ ε ∈ I0, ∃ψ ∈ D : ψ ◦ ψ ≤ σ + ε.

We call (X,D) a fuzzy uniform space.

If X is a set and B ⊆ IX×X is called a fuzzy uniform base on X iff
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1. B is a prefilter base;

2. ∀ σ ∈ B, ∀ x ∈ X, σ(x, x) = 1;

3. ∀ σ ∈ B, ∀ ε > 0, ∃ψ ∈ B : ψ ≤ σs + ε;

4. ∀ σ ∈ B, ∀ ε > 0, ∃ψ ∈ B : ψ ◦ ψ ≤ σ + ε.

If D is a fuzzy uniformity on X, then we call that B is a base for D iff B is a prefilter
base and B̃ = D.

6.1.2 Proposition
(1) If B is a fuzzy uniform base then B̃ is a fuzzy uniformity.
(2) If B is a base for a fuzzy uniformity D, then B is a fuzzy uniform base.

Proof.

(1) Let B is a fuzzy uniform base.
Then B is a prefilter base. So B̃ is a saturated prefilter.
Clearly ∀ σ ∈ B̃, ∀ x ∈ X, σ(x, x) = 1.
Let σ ∈ B̃ and ε ∈ I0. Then ∃σε ∈ B such that σ ≥ σε − ε/2. So σs ≥ (σε)s − ε/2.

Since σε ∈ B, we have ∃ψε ∈ B such that ψε ≤ (σε)s + ε/2. So σs ≥ (σε)s − ε/2 ≥ ψε − ε.
Therefore ∀ ε ∈ I0, σs + ε ∈ B̃ and so σs ∈ B̃.

Let σ ∈ B̃ and ε ∈ I0. Then ∃σε ∈ B such that σ ≥ σε − ε/2. Since σε ∈ B. So
∃ψB such that ψ ◦ ψ ≤ σε + ε/2. Therefore ∃ψ ∈ B̃ such that ψ ◦ ψ ≤ σε + ε.

Hence B̃ is a fuzzy uniformity.

(2) We have B is a prefilter base and B̃ is a fuzzy uniformity.
Clearly ∀ σ ∈ B, ∀ x ∈ X, σ(x, x) = 1.
Let σ ∈ B and ε ∈ I0. Then σ + ε/2 ∈ B̃ and so σs + ε/2 ∈ B̃. Therefore ∃ψ ∈

B such that σs + ε/2 ≥ ψ − ε/2 ⇒ ψ ≤ σs + ε.

Let σ ∈ B and ε ∈ I0. Then σ+ε/3 ∈ B̃ and so ∃ψ′ ∈ B̃ such that ψ′◦ψ′ ≤ (σ+ε/3)+ε/3.
We have

ψ′ ∈ B̃ ⇒ ∃ψ ∈ B such that ψ′ ≥ ψ − ε/3.

So ψ ≤ ψ′+ ε/3 ⇒ ψ ◦ψ ≤ ψ′ ◦ψ′+ ε/3 ≤ σ + ε. That is ∃ψ ∈ B such that ψ ◦ψ ≤ σ + ε. ¤

6.1.3 Proposition
If D is a fuzzy uniformity on X then

B def= {σ ∈ D : σ = σs}

is a fuzzy uniform base for D.

Proof.

Clearly 0 /∈ B and B 6= ∅.
Let σ, ψ ∈ B. Then σ = σs and ψ = ψs. So (σ ∧ ψ)s = (σ ∧ ψ).
Therefore B is a prefilter base.
Now we have to show B̃ = D.
Let σ ∈ B̃. Then ∃(ψε : ε ∈ I0) ∈ BI0 such that

σ ≥ sup
ε∈I0

(ψε − ε).

But B ⊆ D and D is a saturated prefilter. Therefore σ ∈ D.
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Conversly let σ ∈ D. Then σs ∈ D. We have (σ ∧ σs)s = σ ∧ σs. Therefore σ ∧ σs ∈ B.
But σ ≥ σ ∧ σs and so σ ∈< B >⊆ B̃. Hence B̃ = D.

¤

The proof of the following proposition is straightforward.

6.1.4 Proposition
If σ ∈ D then

σ ≤ σ ◦ σ and
σ ≤ σn for any n ∈ N
where σn = σ ◦ σ ◦ . . . ◦ σ (n factors).

6.2 Fuzzy Neighbourhood Spaces

It is shown in [50] that a fuzzy topology can be defined using a fuzzy neighbourhood system.
Here we only assemble some facts regarding neighbourhood spaces which are essential for
defining a fuzzy topology. More information regarding fuzzy neighbourhood spaces can be
found in [50].

6.2.1 Definitions
A collection (Nx)x∈X of prefilters on X is called a fuzzy neighbourhood system iff the following
conditions are fulfilled:

1. ∀ x ∈ X, ∀ µ ∈ Nx, µ(x) = 1;

2. ∀ x ∈ X, Nx = N̂x;

3. ∀ x ∈ X, ∀ µ ∈ Nx, ∀ ε ∈ I0, ∃(νz : z ∈ X) such that ∀ z ∈ X, νx ∈ Nz

and ∀ y ∈ X,
sup
z∈X

νx(z) ∧ νz(y) ≤ µ(y) + ε.

Nx is called a fuzzy neighbourhood prefilter in X and the elements of Nx are called fuzzy
neighbourhoods of x.

A collection of prefilter bases (βx)x∈X on X is called a fuzzy neighbourhood base iff the
following conditions are fulfilled:

1. ∀ x ∈ X, ∀ µ ∈ βx, µ(x) = 1;

2. ∀ x ∈ X, ∀ µ ∈ βx, ∀ ε ∈ I0, ∃(νz; z ∈ X) such that ∀ z ∈ X, νz ∈ βz

and ∀ y ∈ X
sup
z∈X

νx(z) ∧ νz(y) ≤ µ(y) + ε.

βx is called a fuzzy neighbourhood base in x and elements of βx are called basic fuzzy
neighbourhoods of x.

If N = (Nx)x∈X is a fuzzy neighbourhood system then we call β = (βx)x∈X is a base for N
iff ∀ x ∈ X, βx is a prefilter base and β̃x = Nx.

6.2.2 Proposition
If (βx)x∈X is a fuzzy neighbourhood base then (β̃x)x∈X is a fuzzy neighbourhood system
with (βx)x∈X as a base.
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Proof.

(i) Clearly ∀ x ∈ X, ∀µ ∈ β̃x =< β̂x >, µ(x) = 1.
(ii) We also have ∀ x ∈ X, β̃x is saturated.
(iii) Let x ∈ X, µ ∈ β̃x and ε ∈ I0 then ∃(λδ : δ ∈ I0) ∈ (βx)I0 such that

µ ≥ sup
δ∈I0

(λδ − δ)

⇒ µ ≥ λε/2 − ε/2.

We have x ∈ X, λε/2 ∈ βx and ε ∈ I0 and so ∃(νz : z ∈ X) such that ∀ z ∈ X, νz ∈ βz

and ∀ y ∈ X,
sup
z∈X

νx(z) ∧ νz(y) ≤ λε/2(y) + ε/2 ≤ µ(y) + ε.

Therefore
∀ x ∈ X, ∀µ ∈ β̃x, ∀ ε ∈ I0, ∃(νz : z ∈ X) such that ∀ z ∈ X, νz ∈ β̃z

and ∀ y ∈ X,
sup
z∈X

νx(z) ∧ νz(y) ≤ µ(y) + ε.

Hence (β̃x)x∈X is a fuzzy neighbourhood system with (βx)x∈X as a basis.
¤

6.2.3 Proposition
If (βx)x∈X is a base for the fuzzy neighbourhood system (Nx)x∈X then (βx)x∈X is a fuzzy
neighbourhood base.

Proof.

Clearly ∀ x ∈ X, ∀ µ ∈ βx ⊆ Nx, µ(x) = 1.
Let x ∈ X, µ ∈ βx and ε ∈ I0 then ∃(νz : z ∈ X) such that ∀ z ∈ X, νz ∈ β̃z = Nz

and ∀y ∈ X,
sup
z∈X

νx(z) ∧ νz(y) ≤ µ(y) + ε/2.

We have ∀ z ∈ X, νz ∈ β̃x and so

∀ z ∈ X, ∃λz ∈ βz such that νz ≥ λz − ε/2.

So
sup
z∈X

λx(z) ∧ λz(y) ≤ sup
z∈X

νx(z) ∧ νz(y) + ε/2 ≤ µ(y) + ε

Therefore ∀ x ∈ X, ∀ µ ∈ βx, ∀ ε ∈ I0, ∃(λz : z ∈ X) such that ∀ z ∈ X, λz ∈ βz

and ∀ y ∈ X
sup
z∈X

λx(z) ∧ λz(y) ≤ µ(y) + ε.

Hence (βx)x∈X is a fuzzy neighbourhood base.
¤

6.2.4 Theorem
If N = (Nx)x∈X is a fuzzy neighbourhood system on X then the operation

¯: IX −→ IX for µ ∈ IX and x ∈ X

µ̄(x) = inf
ν∈Nx

sup
y∈X

µ(y) ∧ ν(y) = inf
ν∈Nx

sup µ ∧ ν

is a fuzzy closure operator.

50



Proof.

We have
0̄ = inf

ν∈Nx

sup
y∈X

0(y) ∧ ν(y) = 0.

So 0̄ = 0.
We have

µ̄(x) = inf
ν∈Nx

sup
y∈X

µ(y) ∧ ν(y).

Since ν(x) = 1, µ̄(x) ≥ µ(x).
We have

µ ∨ λ(x) = inf
ν∈Nx

sup
y∈X

(µ ∨ λ(y) ∧ ν(y))

= inf
ν∈Nx

sup
y∈X

((µ(y) ∧ ν(y)) ∨ (λ(y) ∧ ν(y)))

= inf
ν∈Nx

(sup
y∈X

µ(y) ∧ ν(y) ∨ sup
y∈X

λ(y) ∧ ν(y))

≥ inf
ν∈Nx

µ(y) ∧ ν(y) ∨ inf
ν∈Nx

sup
y∈X

λ(y) ∧ ν(y)

= µ̄(x) ∨ λ̄(x) = (µ̄ ∨ λ̄)(x)

and
µ̄ ∨ λ̄(x) = inf

ν,ν′∈Nx

(sup
y∈X

µ(y) ∧ ν(y) ∨ sup
y∈X

λ(y) ∧ ν′(y))

≥ inf
ν,ν′∈Nx

sup
y∈X

(µ ∧ ν) ∨ (λ ∧ ν′)(y).

But ν, ν′ ∈ Nx ⇒ ν ∧ ν′ ∈ Nx. So we have

µ̄ ∨ λ̄(x) ≥ inf
ν∈Nx

sup
y∈X

((µ ∨ λ) ∧ ν)(y) = µ ∨ λ(x).

We have
¯̄µ(x) = inf

ν∈Nx

sup
y∈X

µ̄ ∧ ν(y)

= inf
ν∈Nx

sup
y∈X

( inf
ν′∈Ny

sup
z∈X

µ(z) ∧ ν′(z)) ∧ ν(y))

= inf
ν∈Nx

sup
y∈X

inf
ν′∈Ny

sup
z∈X

µ(z) ∧ ν′(z) ∧ ν(y).

For ν ∈ Nx and ε ∈ I0, ∃(νz : z ∈ X) such that ∀ z ∈ X, νz ∈ Nz

and ∀ z ∈ X
sup
y∈X

νx(y) ∧ νy(z) ≤ ν(z) + ε.

Then
sup
z∈X

µ(z) ∧ ν(z) + ε ≥ sup
z∈X

µ(z) ∧ (ν(z) + ε)

≥ sup
z∈X

µ(z) ∧ (sup
y∈X

νx(y) ∧ νy(z))

= sup
z,y∈X

µ(z) ∧ νx(y) ∧ νy(z).

So
¯̄µ(x) ≤ sup

y∈x
inf

ν′∈Ny

sup
z∈X

µ(z) ∧ ν′(z) ∧ νx(y)

≤ sup
y,z∈X

µ(z) ∧ νy(z) ∧ νx(y)

≤ sup
z∈X

µ(z) ∧ ν(z) + ε.

Therefore
¯̄µ(x) ≤ sup

z∈X
µ(z) ∧ ν(z) + ε.

is true for all ν ∈ Nx and ε ∈ I0 it follows that

¯̄µ(x) ≤ µ̄(x).
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But we have shown that ¯̄µ(x) ≥ µ̄(x). Hence ¯̄µ = µ̄. ¤

6.2.5 Proposition
If β = (βx)x∈X is a base for the fuzzy neighbourhood system N = (Nx)x∈X then ∀ µ ∈
IX , ∀ x ∈ X we have

µ̄(x) = inf
ν∈β̄x

sup µ ∧ ν = inf
ν∈<βx>

sup µ ∧ ν

= inf
ν∈βx

sup µ ∧ ν.

Proof.

Let µ ∈ IX and x ∈ X. Then

µ̄(x) = inf
ν∈Nx

sup µ ∧ ν.

Since βx ⊆ β̂x ⊆ β̃x = Nx and βx ⊆< βx >⊆ β̃x = Nx. So we have

µ̄(x) ≤ inf
ν∈β̂x

sup µ ∧ ν ≤ inf
ν∈βx

sup µ ∧ ν

and
µ̄(x) ≤ inf

ν∈<βx>
sup µ ∧ ν ≤ inf

ν∈βx

sup µ ∧ ν.

But ∀ λ ∈ Nx and ∀ ε ∈ I0, ∃ν ∈ βx such that

λ ≥ ν − ε.

Therefore
µ̄(x) = inf

λ∈Nx

sup µ ∧ λ

≥ inf
ν∈βx

sup µ ∧ (ν − ε)

≥ inf
ν∈βx

sup µ ∧ ν − ε.

This is true for all ε ∈ I0 and hence

µ̄(x) = inf
ν∈βx

sup µ ∧ ν.

¤

If N = (Nx)x∈X is a fuzzy neighbourhood system then the above fuzzy closure operator
generates a fuzzy topology and is denoted by τN .

The fuzzy topology which is generated by a fuzzy neighbourhood system, will be called
a fuzzy neighbourhood space.

Not every fuzzy topological space is a fuzzy neighbourhood space. The reader can be
found more facts regarding fuzzy neighbourhood spaces in [50].

6.3 Fuzzy Uniform Topology

A fuzzy topology can be defined using a fuzzy closure operator. Here we find two fuzzy
closure operators one directly from a fuzzy uniform space and and the other from a neighbi-
urhood system which is generated from a fuzzy uniform space. Eventually we can see that
if the fuzzy uniform space is same then fuzzy topologies generated from two fuzzy closure
operators are same.
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First we define some natural generalisation of the standard notions.
For σ ∈ IX×X , µ ∈ IX and x ∈ X we define σ < x > by

σ < x > (y) def= σ(y, x)

and σ < µ > by

σ < µ > (x) def= sup µ ∧ σ < x >= sup
y∈X

µ(y) ∧ σ(y, x).

If A ⊆ X and U ⊆ X ×X then

1U < 1A > (x) = 1 ⇐⇒ sup
y∈X

1A(y) ∧ 1U (y, x) = 1

⇐⇒ ∃y ∈ A : (y, x) ∈ U
⇐⇒ x ∈ U(A)
⇐⇒ 1U(A)(x) = 1.

Therefore 1U < 1A >= 1U(A). Thus the definition of σ < µ > is a natural generalisation
of the standard notion.

Let σ ∈ IX×X and β ∈ I1. Then

σβ def= {(x, y) : σ(x, y) > β}.

In the following lemma we collect some basic facts.

6.3.1 Lemma
Let σ, ψ ∈ IX×X ; ν, µ ∈ IX , ε ∈ I, β ∈ I1, x ∈ X and n ∈ N. Then

(1) ν ≤ σ < ν >,
(2) (σ + ε) < ν >≤ σ < ν > +ε,
(3) σ < µ ∨ ν >= σ < µ > ∨σ < ν >,
(4) σ < ψ < ν >>= (σ ◦ ψ) < ν >,
(5) sup σ < ν > ∧µ = sup µ ∧ σs < µ >,
(6) (σβ)s = (σs)β ,
(7) (σ < ν >)β = σβ(νβ)
(8) σ < x >β= σβ

s (x),
(9) (σβ)n = (σn)β .

Proof.

(1)
σ < ν > (x) = sup ν ∧ σ < x >= sup

y∈X
ν(y) ∧ σ(y, x) ≥ ν(x).

(2)
(σ + ε) < ν > (x) = sup

y∈X
ν(y) ∧ (σ + ε)(y, x)

≤ sup
y∈X

(ν(y) + ε) ∧ (σ(y, x) + ε)

= (sup
y∈X

ν(y) ∧ σ(y, x)) + ε

= σ < ν > (x) + ε.

(3)
σ < µ ∨ ν > (x) = sup (µ ∨ ν) ∧ σ < x >

= sup (µ ∧ σ < x >) ∨ (ν ∧ σ < x >)
= sup µ ∧ σ < x > ∨ sup ν ∧ σ < x >
= σ < µ > (x) ∨ σ < ν > (x)
= (σ < µ > ∨σ < ν >)(x).
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(4)
σ < ψ < ν >> (x) = sup

y∈X
ψ < ν > (y) ∧ σ < x > (y)

= sup
y∈X

(sup
z∈X

ν(z) ∧ ψ(z, y)) ∧ σ(y, x)

= sup
y∈X

sup
z∈X

ν(z) ∧ ψ(z, y) ∧ σ(y, x).

(σ ◦ ψ) < ν > (x) = sup
z∈X

ν(z) ∧ (σ ◦ ψ) < x > (z)

= sup
z∈X

ν(z) ∧ (sup
y∈X

ψ(z, y) ∧ σ(y, x))

= sup
z∈X

sup
y∈X

ν(z) ∧ ψ(z, y) ∧ σ(y, x).

(5)
sup
x∈X

σ < ν > ∧µ(x) = sup
x∈X

(sup
y∈X

ν(y) ∧ σ(y, x)) ∧ µ(x)

= sup
x∈X

sup
y∈X

ν(y) ∧ σ(y, x) ∧ µ(x)

= sup
y∈X

(sup
x∈X

µ(x) ∧ σs(x, y)) ∧ ν(y)

= sup
y∈X

σs < µ > (y) ∧ ν(y)

= sup
y∈X

σs < µ > ∧ν(y).

(6)
(x, y) ∈ (σβ)s ⇐⇒ (y, x) ∈ σβ

⇐⇒ σ(y, x) > β
⇐⇒ σs(x, y) > β
⇐⇒ (x, y) ∈ (σs)β .

(7)
x ∈ (σ < ν >)β ⇐⇒ σ < ν > (x) = sup

y∈X
ν(y) ∧ σ(y, x) > β

⇐⇒ ∃y ∈ X : ν(y) ∧ σ(y, x) > β
⇐⇒ ∃y ∈ νβ : (y, x) ∈ σβ

⇐⇒ x ∈ σβ(νβ).

(8)
y ∈ σ < x >β ⇐⇒ σ < x > (y) > β

⇐⇒ σ(y, x) = σs(x, y) > β
⇐⇒ (x, y) ∈ σβ

s

⇐⇒ y ∈ σβ
s (x).

(9)

(x, y) ∈ (σβ)n ⇐⇒ ∃x1, x2, . . . , xn−1 : (x, x1) ∈ σβ , (x1, x2) ∈ σβ , . . . , (xn−1, y) ∈ σβ

⇐⇒ sup{σ(x, x1) ∧ σ(x1, x2) ∧ . . . ∧ σ(xn−1, y) : xi ∈ X, i ∈ {1, 2, . . . , n− 1}} > β
⇐⇒ σn(x, y) > β
⇐⇒ (x, y) ∈ (σn)β .

¤

6.3.2 Theorem
Let (X,D) be a fuzzy uniform space. Then the map¯: IX −→ IX defined by

µ̄ = inf
σ∈D

σ < µ >

is a fuzzy closure operator.
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Proof.

we have
0̄(x) = inf

σ∈D
σ < 0 > (x) = inf

σ∈D
sup
y∈X

0(y) ∧ σ(y, x) = 0.

Therefore 0̄ = 0.
We have

µ̄ = inf
σ∈D

σ < µ > ≥ µ.

We have
µ ∨ ν = inf

σ∈D
σ < µ ∨ ν >

= inf
σ∈D

σ < µ > ∨σ < ν >

≥ inf
σ∈D

σ < µ > ∨ inf
σ′∈D

σ′ < ν >

= µ̄ ∨ ν̄

and
µ̄ ∨ ν̄ = inf

σ∈D
σ < µ > ∨ inf

σ′∈D
σ′ < ν >

= inf
σ,σ′∈D

σ < µ > ∨σ′ < ν > .

But σ, σ′ ∈ D ⇒ σ ∧ σ′ ∈ D and σ < µ > ∨σ′ < ν >≥ σ ∧ σ′ < µ ∨ ν >. Therefore

µ̄ ∨ ν̄ ≥ inf
σ∈D

σ < µ ∨ ν >= µ ∨ ν.

Hence
µ ∨ ν = µ̄ ∨ ν̄.

Let σ ∈ D and ε ∈ I0. Then ∃σ′ ∈ D such that σ′ ◦ σ′ ≤ σ + ε.
Therefore for any x ∈ X we have,

σ < µ > (x) = sup
y∈X

µ(y) ∧ σ(y, x)

≥ sup
y∈X

µ(y) ∧ (σ′ ◦ σ′(y, x)− ε)

= sup
y∈X

sup
z∈X

µ(y) ∧ σ′(y, z) ∧ σ′(z, x)− ε

≥ sup
z∈X

σ′(z, x) ∧ ( inf
σ′′∈D

sup
y∈X

µ(y) ∧ σ′′(y, z))− ε

= sup
z∈X

σ′(z, x) ∧ µ̄(z)− ε

= σ′ < µ̄ > (x)− ε.

Thus for any ε ∈ I0 and σ ∈ D there exists σ′ ∈ D such that σ < µ > (x) ≥ σ′ < µ̄ > (x)−ε.
Therefore

inf
σ∈D

σ < µ >≥ inf
σ′∈D

σ′ < µ̄ > .

That is µ̄(x) ≥ ¯̄µ(x). Hence µ̄ = ¯̄µ. ¤

6.3.3 Proposition
If B is a base for the fuzzy uniformity D then for all µ ∈ IX we have

µ̄ = inf
σ∈B̂

σ < µ >= inf
σ∈<B>

σ < µ >

= inf
σ∈B

σ < µ > .
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Proof.

Since B ⊆ B̂ ⊆ D and B ⊆< B >⊆ D. So for µ ∈ IX we have

µ̄ ≤ inf
σ∈B̂

σ < µ >≤ inf
σ∈B

σ < µ >

and
µ̄ ≤ inf

σ∈<B>
σ < µ >≤ inf

σ∈B
σ < µ > .

Let ε ∈ I0 and σ ∈ D then ∃ψ ∈ B such that

σ ≥ ψ − ε.

Therefore
µ̄ = inf

σ∈D
σ < µ >

≥ inf
ψ∈B

(ψ − ε) < µ >

≥ inf
ψ∈B

ψ < µ > −ε.

which proves that
µ̄ ≥ inf

ψ∈B
ψ < µ > .

Hence
µ̄ = inf

ψ∈B
ψ < µ > .

¤

The above fuzzy closure operatoer defines a fuzzy topology

τD = {σ′ : σ = σ̄} = {1− σ : σ = σ̄}

associateed with D and τD is called the fuzzy uniform topology.

6.3.4 Theorem
Let (X,D) be a fuzzy uniform space. For x ∈ X define,

Dx
def= {σ < x >: σ ∈ D}.

Then (Dx)x∈X is a fuzzy neighbourhood system.

Proof.

First we have to show Dx is a prefilter.

σ < x > (x) = σ(x, x) = 1 so 0 /∈ Dx and Dx 6= ∅.

Let σ < x >, ψ < x >∈ Dx. Then σ, ψ ∈ D and so σ ∧ ψ ∈ D

σ < x > ∧ψ < x >= (σ ∧ ψ) < x >∈ Dx.

Let σ < x >∈ Dx and σ < x >≤ µ. Then σ ∈ D and ∀ y ∈ X, σ < x > (y) = σ(y, x) ≤
µ(y).

Now define ψ ∈ IX×X by

ψ(y, z) =
{

σ(y, z) if z 6= x
µ(y) if z = x.

So ψ ≥ σ. Therefore ψ ∈ D such that ψ < x >= µ ∈ Dx. Hence Dx is a prefilter.
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we have ∀ x ∈ X, ∀ σ ∈ D, σ < x > (x) = 1.

Let ∀ ε ∈ I0, σ < x > +ε ∈ Dx. Then ∀ ε ∈ I0, (σ + ε) < x >= σ < x > +ε ∈ Dx.
So ∀ ε ∈ I0, (σ + ε) ∈ D. Since D is saturated prefiter and therefore σ ∈ D. Hence Dx is
saturated.

Let x ∈ X, σ ∈ D and ε ∈ I0. Then ∃ψ ∈ D such that ψ ◦ ψ ≤ σ + ε.
Therefore (ψ < z >: z ∈ X) such that ∀ z ∈ X, ψ < z >∈ Dx.
and for y ∈ X,

sup
z∈X

ψ < x > (z) ∧ ψ < z > (y)

= sup
z∈X

ψ(y, z) ∧ ψ(z, x)

= ψ ◦ ψ(y, x)
≤ σ(y, x) + ε
= σ < x > (y) + ε.

Hence (Dx)x∈X is a fuzzy neighbourhood system. ¤

Thus (Dx)x∈X is a fuzzy neighbourhood system and therefore the operator

µ̄(x) = inf
ν∈Dx

sup µ ∧ ν

is a fuzzy closure operator. This is precisely we have earlier because

µ̄(x) = inf
σ∈D

σ < µ > (x) = inf
σ∈D

sup µ ∧ σ < x >

= inf
ν∈Dx

sup µ ∧ ν.

Therefore a fuzzy uniform topology is a fuzzy neighbourhood space.

6.3.5 Lemma
Let (X,D) be a fuzzy uniform space and ν ∈ IX . Then

1. ν̄(x) = c(Dx, ν),

2. sup ν̄ = sup ν,

3. ν̄ = inf
σ∈D

σ < ν >.

Proof.

(1) We have
ν̄(x) = inf

σ∈D
σ < ν > (x) = inf

σ∈D
sup ν ∧ σ < x >

= inf
µ∈Dx

sup ν ∧ µ

and
c(Dx, ν) = c(Dx∨ < ν >)

inf
µ∈Dx

sup µ ∧ ν.

(2) We have
ν ≤ ν̄ ⇒ sup ν ≤ sup ν̄.

For each x ∈ X,
ν̄(x) = c(Dx, ν) ≤ sup ν.

Therefore
sup ν̄ ≤ sup ν.

(3) We have
ν̄ = inf

σ∈D
σ < ν >≤ inf

σ∈D
σ < ν >.
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Let σ ∈ D and ε ∈ I0. Then ∃ψ ∈ D such that ψ ◦ ψ ≤ σ + ε and so

ψ < ν > = inf
ξ∈D

ξ < ψ < ν >>

≤ ψ < ψ < ν >>= ψ ◦ ψ < ν >
≤ (σ + ε) < ν >
≤ σ < ν > +ε.

We have show that ∀ ε ∈ I0, ∀ σ ∈ D, ∃ψ ∈ D such that

ψ < ν > ≤ σ < ν > +ε.

Therefore
inf
ψ∈D

ψ < ν > ≤ inf
σ∈D

σ < ν >= ν̄.

¤

6.4 Convergence in Fuzzy Uniform Topology

We have seen convergence in a fuzzy topological space and here we see convergence in a
fuzzy uniform space. For this we simply use the fuzzy topology which is associated with the
particular fuzzy uniform space.

Let (X,D) be a fuzzy uniform space then we have fuzzy topology τD associated with D.
If F is a prefiler on X then we have

adh F = inf
ν∈F

ν̄

and
lim F = inf

G∈Pm(F)
adh G.

6.4.1 Lemma
Let (X,D) be a fuzzy uniform space, F a prefilter on X and x ∈ X. Then

1. (adh F)(x) = c(Dx,F),

2. (lim F)(x) = inf
G∈Pm(F)

c(Dx,G),

3. sup adh F ≤ c(F),

4. sup lim F ≤ c̄(F),

5. adh F = sup
G∈Pm(F)

adh G.

Proof.

For x ∈ X we have (1)

(adh F)(x) = inf
ν∈F

ν̄(x) = inf
ν∈F

inf
σ∈D

σ < ν > (x)

= inf
ν∈F

inf
σ∈D

sup ν ∧ σ < x >

= c(F ∨ Dx) = c(Dx,F).

(2) For x ∈ X we have

(lim F)(x) = inf
G∈Pm(F)

adh F(x) = inf
G∈Pm(F)

c(Dx,G).
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(3) If x ∈ X then
(adh F)(x) = c(Dx,F) ≤ c(F)

⇒ sup adh F ≤ c(F)

(4) If x ∈ X then
(lim F)(x) = inf

G∈Pm(F)
c(Dx,G)

≤ inf
G∈Pm(F)

c(F) = c̄(F)

⇒ sup lim F ≤ c̄(F).

(5) For each G ∈ Pm(F), adh G ≤ adh F and so sup
G∈Pm(F)

adh G ≤ adh F .

To prove the reverse inequality let x ∈ X.
If (adh F)(x) = 0 then clearly (adh F)(x) ≤ ( sup

G∈Pm(F)

adh G)(x).

If (adh F)(x) > 0 then choose α such that (adh F)(x) > α > 0. Therefore c(Dx,F) =
c(Dx ∨ F) > α. So choose an ultra filter F ⊇ (Dx ∨ F)α. Now we have F0 ⊆ Fα ⊆
(Dx ∨ F)α ⊆ F.

Let G = F ∨ F1. Then G ∈ Pm(F) and

(adh G)(x) = c(G,Dx) = c((F ∨ F1) ∨ Dx)
= inf

ν∈F
inf
F∈F

inf
σ∈D

sup ν ∧ 1F ∧ σ < x >

= inf
ν∈F

inf
F∈F

inf
σ∈D

sup
y∈F

(ν ∧ σ < x >)(y).

Therefore
ν ∧ σ < x >∈ F ∨ Dx and so F ∩ (ν ∧ σ < x >)α 6= ∅.

It follows that sup
y∈F

(ν∧σ < x >)(y) > α and hence (adh G)(x) ≥ α. Thus sup
G∈Pm(F)

(adh G)(x) ≥
α and since α is arbitrary,

(adh F)(x) ≤ sup
G∈Pm(F)

(adh G)(x).

Since x is arbitrary, the result follows.
¤

6.5 Uniformly Continuous Functions

We extend the notion of uniformly continuity in uniform spaces in a natural way as follows:

6.5.1 Definition
Let (X,D) and (Y, E) be fuzzy uniform spaces and f : X −→ Y a mapping. f is said to be
uniformly uniformly continuous

iff ∀ ψ ∈ E , ∃σ ∈ D, : (f × f)[σ] ≤ ψ
iff ∀ ψ ∈ E , (f × f)−1[ψ] ∈ D.

6.5.2 Proposition
Let (X,D) and (Y, E) are fuzzy uniform spaces and B and C are bases for D and E respec-
tively. If f : X −→ Y is a mapping. Then f is uniformly continuous if and only if

∀ ψ ∈ E , ∀ ε ∈ I0, ∃σ ∈ B such that σ − ε ≤ (f × f)−1[ψ].
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Proof.

We have

f is uniformly continuous ⇐⇒ ∀ ψ ∈ E , ∃σ ∈ D : (f × f)[σ] ≤ ψ
⇐⇒ ∀ ψ ∈ E , ∃σ ∈ D : σ ≤ (f × f)−1[ψ].

But we have B̃ = D and C̃ = E .
(⇒)

Let ψ ∈ C and ε ∈ I0. Then ψ + ε/2 ∈ E . Therefore ∃σ′ ∈ D : σ′ ≤ (f × f)−1[ψ +
ε/2] = (f × f)−1[ψ] + ε/2. Since σ′ ∈ D. So ∃σ ∈ B such that σ′ ≥ σ − ε/2. Therefore
σ − ε/2 ≤ σ′ ≤ (f × f)−1[ψ] + ε/2. Hence σ − ε ≤ (f × f)−1[ψ].
(⇐)

Let ψ ∈ E . Then ∀ δ ∈ I0, ∃ψδ ∈ C : ψ ≥ ψδ−δ. For ε ∈ I0, ∃σε ∈ B such that σε−ε ≤
(f × f)−1[ψε]. Therefore σε ≤ (f × f)−1[ψε + ε ≤ (f × f)−1[ψ + 2ε] = (f × f)−1[ψ] + 2ε.
Thus ∀ ε ∈ I0, ∃σε ∈ B such that σε − 2ε ≤ (f × f)−1[ψ]. Therefore σ = sup

ε∈I0

(σε − 2ε) ≤
(f × f)−1[ψ]. Hence σ ∈ D such that σ ≤ (f × f)−1[ψ].

¤

6.5.3 Corollary
Let (X,D) and (Y, E) are fuzzy uniform spaces and f : X −→ Y a mapping. Then f is
uniformly continuous if and only if

∀ ψ ∈ E , ∀ ε ∈ I0, ∃σ ∈ D such that σ − ε ≤ (f × f)−1[ψ].

Proof.

Since each fuzzy uniformity is a basis for itself, this follows the result.

6.5.4 Theorem
Let (X,D) and (Y, E) are fuzzy uniform spacs and f : (X,D) −→ (Y, E) is a uniformly
continuous function. Then f : (X, τD) −→ (Y, τE) is continuous.

Proof.

Let µ ∈ IX and y ∈ f→(X). Then

f [µ](y) = inf
ψ∈E

ψ < f [µ] > (y)

= inf
ψ∈E

sup
z∈Y

(f [µ] ∧ ψ < y >)(z)

= inf
ψ∈E

sup
z∈Y

( sup
f(x)=z

µ(x) ∧ ψ(z, y))

= inf
ψ∈E

sup
x∈X

µ(x) ∧ ψ(f(x), y).

Therefore ∀ x′ ∈ f←({y}),
f [µ](y) = inf

ψ∈E
sup
x∈X

µ(x) ∧ ψ(f(x), f(x′)).

Since f is uniformly continuous we have ∀ ψ ∈ E , ∃σ ∈ D such that σ ≤ (f ×f)−1[ψ]. Thus
∀ x, x′ ∈ X, σ(x, x′) ≤ ψ(f(x), f(x′)). Hence

f [µ](y) ≥ inf
ψ∈E

sup
x∈X

µ(x) ∧ σ(x, x′) = µ̄(x′).

Therefore
f [µ](y) ≥ sup

x′∈f←({y})
µ̄(x′) = f [µ̄](y).

Hence f [µ] ≥ f [µ̄]. Since µ ∈ IX is arbitrary we have f is continuous.
¤
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6.5.5 Lemma
If f : (X,D1) −→ (Y,D2) and g : (Y,D2) −→ (Z,D3) are two uniformly continuous func-
tions. Then (g ◦ f) : (X,D1) −→ (Z,D3) is uniformly continuous.

Proof.

Let ψ ∈ D3. Then (g × g)−1[ψ] ∈ D2 and

(f × f)−1[(g × g)−1[ψ]] = ((g × g) ◦ (f × f))−1[ψ] = ((g ◦ f) ◦ (g ◦ f))−1[ψ] ∈ D1.

Therefore g ◦ f is uniformly continuous.
¤

6.6 The α-Level Uniformities

Investigating a prefilter by its α-levels is a very useful device used in [49, 62, 9]. First we
see the α-level uniformities from a fuzzy uniformity.

If (X,D) is a fuzzy uniform space then for each α ∈ I0 we define

Dα def= {σβ : 0 ≤ β < α, σ ∈ D}.

6.6.1 Proposition
Let (X,D) be a fuzzy uniform space and α ∈ I0. Then Dα is a uniformity on X.

Proof.

(i) Since D is a prefilter. Therefore Dα is a filter.
(ii) Let U ∈ Dα. Then ∃σ ∈ D and 0 ≤ β < α such that U = σβ . Since ∀ x ∈

X, σ(x, x) = 1 and so ∆ ⊆ U .
(iii) Let U ∈ Dα. Then ∃σ ∈ D and 0 ≤ β < α such that U = σβ . We have Us =

(σβ)s = (σs)β . But σs ∈ D and 0 ≤ β < α. Therefore Us ∈ D.
(iv) Let U ∈ Dα. Then ∃σ ∈ D and 0 ≤ β < α such that U = σβ . Let ε = (α − β)/2

and γ = (3α +2β)/5. Then ε > 0. So ∃ψ ∈ D such that ψ ◦ψ ≤ σ + ε. We have β < γ < α.
So V = ψγ ∈ Dα and V ◦ V ⊆ U since:

(x, y) ∈ V ◦ V ⇐⇒ ∃z : (x, z), (z, y) ∈ V
⇐⇒ sup

z∈X
ψ(x, z) ∧ ψ(z, y) = ψ ◦ ψ(x, y) > γ

⇒ (σ + ε)(x, y) > γ
⇐⇒ σ(x, y) > (α + 9β)/10 > β
⇐⇒ (x, y) ∈ σβ = U.

¤

The uniformity Dα will be referred to as the α-level uniformity of D.
We also have for 0 < β ≤ α ≤ 1

Dβ ⊆ Dα ⊆ D1 and Dα = ∪
0<γ<α

Dγ .

Thus a fuzzy uniformity D generates a family (Dα : α ∈ I0) of uniformities which become
stronger as α increases.

We intend to build a fuzzy uniformity with a predetermined α-level uniformities.

6.6.2 Theorem
Let (D(α) : α ∈ (0, 1)) be a family of uniformities on X satisfying
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(a) 0 < β ≤ α < 1 ⇒ D(β) ⊆ D(α),

(b) D(α) = ∪
0<γ<α

D(γ) for each α ∈ (0, 1).

Let
D = {σ ∈ IX×X : ∀ α ∈ (0, 1), ∀ β < α, σβ ∈ D(α)}.

Then D is the unique fuzzy uniformity on X such that Dα = D(α) for each α ∈ (0, 1).

Proof.
(i) D is a saturated prefilter.

Let σ ∈ D and 0 ≤ β < 1. Choose α such that β < α < 1. Then σβ ∈ D(α) and so {(x, x) :
x ∈ X} ⊆ σβ and hence σ(x, x) > β for each x ∈ X. Since β is arbitrary we have

∀ x ∈ X, σ(x, x) = 1.

In particular, σ 6= 0.
Let σ1, σ2 ∈ D and 0 ≤ β < α < 1. Then σβ

1 , σβ
2 ∈ D(α) and so σβ

1 ∩ σβ
2 = (σ1 ∧ σ2)β ∈

D(α). Thus σ1 ∧ σ2 ∈ D.
Let σ ∈ D. Then σs ∈ D. Since if 0 ≤ β < α < 1 then (σs)β = (σβ)s ∈ D(α).
Let σ ∈ D, σ ≤ ψ and 0 ≤ β < α < 1. Then σβ ⊆ ψβ and since σβ ∈ D(α), ψα ∈ D(α).

Consequently ψ ∈ D.
Let σ = sup

ε∈I0

(σε − ε) ∈ D̂ with each σε ∈ D and let 0 ≤ β < α < 1. We note that

σ(x, y) > β ⇐⇒ ∃ε ∈ Io : σε(x, y)− ε > β ⇐⇒ (x, y) ∈ ∪
ε∈I0

σε+β
ε .

In otherwords, σβ = ∪
ε∈I0

σε+β
ε .

Choose ε ∈ I0 such that β < β + ε < α. Then σε+β
ε ⊆ σβ with σε+β

ε ∈ D(α) and so
σβ ∈ D(α). Thus σ ∈ D and we have shown that D̂ ⊆ D from which it follows that D̂ = D.

(ii) ∀ σ ∈ D, ∀ ε > 0, ∃ψ ∈ D such that ψ ◦ ψ ≤ σ + ε.
Let σ ∈ D, ε > 0 and choose α0, α1, . . . , αn such that 0 = α0 < α1 < . . . < αn = 1

and αi − αi−1 < ε for each i ∈ {1, 2, . . . , n}. For i = 0, 1, 2, . . . , (n − 1) we have σαi ∈
D(αi+1 and so ∃Uαi+1 ∈ D(αi+1) such that Uαi+1 ◦ Uαi+1 ⊆ σαi . Let U ′

α1
= Uα1 and

U ′
αi

= ∩
j≥I

Uαj . Then since for each j ≤ I, Uαj ∈ D(αj) ⊆ D(αi, we have U ′
αi
∈ D(αi) and

U ′
α1

sup seteqU ′
αi

sup seteq . . . sup seteqU ′
αn

. So we can state:

∀ i ∈ {1, 2, . . . , n}, ∃Uαi ∈ D(αi : Uαi◦Uαi ⊆ σαi−1 and Uα1 sup seteqUα2 sup seteq . . . sup seteqUαn

Let
Uα0 = X ×X

and let
ψ = sup

i∈{1,2,...,n}
αi1Uαi−1

.

Then ψ ∈ D since if 0 ≤ β < α < 1 then αi ≤ α < αi+1 for some I. Thus β < αi+1 and
hence ψβ sup seteqψαi+1 = Uαi ∈ D(αi) ⊆ D(α). It follows that ψβ ∈ D(α) and so ψ ∈ D.

If σ(x, y) > αn−2 then σ(x, y) + ε > αn−2 + (αn − αn−2) = αn = 1 and hence we have
(ψ ◦ ψ)(x, y) ≤ σ(x, y) + ε.

If σ(x, y) ≤ αn−2 then ∃i ≤ n − 2 : αi−1 ≤ σ(x, y) ≤ αi. Since (x, y) /∈ σαi we have
(x, y) /∈ Uαi+1 ◦ Uαi+1 and for no z do we have (x, z) ∈ Uαi+1 and (z, y) ∈ Uαi+1 . In
otherwords

∀ z ((x, z) /∈ Uαi+1 or (z, y) /∈ Uαi+1).

Thus ∀ z
ψ(x, z) ≤ αi+1 or ψ(z, y) ≤ αi+1.
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Consequently,

ψ ◦ ψ(x, y) = sup
z

ψ(x, z) ∧ ψ(z, y) ≤ αi+1 < αi−1 + ε ≤ σ(x, y) + ε.

(iii) Dα = D(α) for each α ∈ (0, 1).
Let U ∈ Dα. Then U = σβ for some σ ∈ D and β < α and so σβ ∈ D(α). Thus we have

Dα ⊆ D(α).
On the other hand, if U ∈ D(α0 then U ∈ D(β) for some β < α since D(α) = ∪

β<α
D(β).

Let σ = β1X×X ∨ 1U . To show that σ ∈ D we let δ < 1 and 0 ≤ γ < δ and show that
σγ ∈ D(δ). If γ < β we have σγ = X ×X and if γ ≥ β then σγ = U ∈ D(β) ⊆ D(γ). So in
both cases we have σγD(γ) ⊆ D(δ). Thus U = σβ and hence U ∈ Dα and we have shown
that D(α) ⊆ Dα.
(iv) D is unique.

We invoke (5.3.4 ) and claim that there is precisely one fuzzy uniformities whose α-level
are the D(α)’s.

¤

It follows that a fuzzy uniformity is uniquely determined by its family of α-level unifor-
mities.

It is shown that the convergence of a prefilter can be expressed in terms of the convergence
of its α-levels.

6.6.3 Theorem
Let (X,D) be a fuzzy uniform space, F a prefiter on X, x ∈ X and α < c̄(F). Then

(lim F)(x) ≥ α ⇐⇒ F0 −→ x w.r.t Dα.

Proof.

Dα is a uniformity on X. Therefore x ∈ X

Dα
x = {U(x) : U ∈ Dα} = {σβ(x) : 0 ≤ β < α, σ ∈ D}

is a neighbourhood base at x. We can also write

Dα
x = {σβ

s (x) : 0 ≤ β < α, σ ∈ D}.
we first prove the result for a prime prefilter F . In this case we have lim F = adh F , c̄(F) =

c(F) and F0 is an ultrafilter.
We have

(adh F)(x) ≥ α ⇐⇒ inf
ν∈F

inf
σ∈D

σ < ν > (x) ≥ α

⇐⇒ ∀ β < α, ∀ ν ∈ F , ∀ σ ∈ D, ν ∧ σ < x >> β
⇐⇒ ∀ σ ∈ D, ∀ β < α, ∀ ν ∈ F , νβ ∩ (σ < x >)β 6= ∅
⇐⇒ ∀ σ ∈ D, ∀ β < α, ∀ F ∈ F0, F ∩ σβ

s (x) 6= ∅ [ since F0 = Fα

⇐⇒ ∀ V ∈ Dα
x , ∀ F ∈ F0, F ∩ V 6= ∅

⇐⇒ ∀ V ∈ Dα
x , U ∈ F0

⇐⇒ Dα
x ⊆ F0

⇐⇒ F0 −→ x w.r.t Dα.

We have F0 = ∩
G∈Pm(F)

G0. Now

(lim F)(x) ≥ α ⇐⇒ ∀ G ∈ Pm(F), (adh G)(x) ≥ α
⇐⇒ ∀ G ∈ Pm(F), G0 −→ x w.r.t Dα

⇐⇒ ∀ G ∈ Pm(F), Dα
x ⊆ G0

⇐⇒ Dα
x ⊆ ∩

G∈Pm(F)
G0 = F0

⇐⇒ F0 −→ x w.r.t Dα.
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¤

Next we characterise closedness in terms of the α-levels.

6.6.4 Theorem
If (X,D) is a fuzzy uniform space and µ ∈ IX then

µ is D -closed ⇐⇒ ∀ α ∈ I0, µα is Dα -closed.

Proof.

Let µ be a D-closed, α ∈ I0 and let x ∈ clα(να), the Dα−closure of µα. We have to show
that x ∈ µα.

So let β < α be a arbitrary and show µ(x) ≥ β. Now since µ is D−closed and so

µ(x) = µ̄(x) = inf
σ∈D

σ < µ > (x) = inf
σ∈D

sup µ ∧ σ < x > .

Let σ ∈ D. Then σβ ∈ Dα. So we have x ∈ σβ(µα) ⊆ σβ(µβ) and hence ∃y ∈ µβ such
that σ(y, x) > β. Thus

µ ∧ σ < x >≥ µ(y) ∧ σ(y, x) > β.

Since σ ∈ D is arbitrary, µ(x) ≥ β. Therefore µ(x) ≥ α.
(⇐)

Let x ∈ X and α ≤ µ̄(x). Then

α ≤ µ̄(x) = inf
σ∈D

sup µ ∧ σ < x > ⇐⇒ ∀ β < α, ∀ σ ∈ D, β < µ ∧ σ < x >

⇐⇒ ∀ β < α, ∀ σ ∈ D, ∃y ∈ µβ ⊆ µβ : σ(y, x) > β
⇐⇒ ∀ β < α, ∀ σ ∈ D, x ∈ σβ(µβ)
⇐⇒ ∀ β < α, ∀ U ∈ Dα, x ∈ U(µβ)
⇐⇒ ∀ β < α, x ∈ clα(µβ) = µβ

⇐⇒ ∀ β < α, µ(x) ≥ β
⇐⇒ µ(x) ≥ α.

Therefore µ(x) ≥ µ̄(x). Since x is arbitrary. Therefore µ ≥ µ̄ and hence µ = µ̄.
¤

From the following theorem we establish a fuzzy uniformity from a uniformity.

6.6.5 Theorem
Let (X,D) be a uniform space. Then

D1 = {σ ∈ IX×X : ∀ α ∈ I1, σα ∈ D}

is a fuzzy uniformity on X.

Proof.

(i) Since D is a filter. So D1 is a saturated prefiter.
(ii) Let σ ∈ D1 and x ∈ X. Then ∀ α ∈ I1, σα ∈ D. So ∀ α ∈ I1, (x, x) ∈ σα. Therefore

σ(x, x) = 1.
(iii) Let σ ∈ D1. Then ∀ α ∈ I1, σα ∈ D and so (σα)s ∈ D. Therefore ∀ α ∈ I1, (σs)α =

(σα)s ∈ D. Hence σs ∈ D1.
(iv) Let σ ∈ D1 and ε ∈ I0. Then ∀ α ∈ I1, σα ∈ D. Take δ = 1 − ε ∈ I1. Therefore

σδ ∈ D. So ∃U ∈ D such that U ◦ U ⊆ σδ. Now take ψ = 1U then ψ ∈ D1.
If ψ ◦ ψ(x, y) = 0 then clearly ψ ◦ ψ ≤ σ + ε.
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If ψ ◦ ψ(x, y) = 1 then ∃z : (x, z), (z, y) ∈ U and so (x, y) ∈ U ◦ U ⇒ (x, y) ∈ σδ ⇒
σ(x, y) > δ..

Therefore σ(x, y) + ε > δ + ε = 1. So ψ ◦ ψ ≤ σ + ε. Hence the result.
¤

6.6.6 Theorem
Let (X,D) and (Y,E) be uniform spaces. Then

f : (X,D) −→ (Y,E) is uniformly continuous ⇐⇒ f : (X,D1) −→ (Y,E1) is uniformly continuous.

Proof.

Let ψ ∈ X ×X and α ∈ I1. Then

(x, y) ∈ (f × f)←(ψα) ⇐⇒ (f × f)(x, y) ∈ ψα

⇐⇒ ψ((f × f)(x, y)) > α
⇐⇒ (f × f)−1[ψ](x, y) > α
⇐⇒ (x, y) ∈ ((f × f)−1[ψ])α.

Therefore (f × f)←(ψα) = ((f × f)−1[ψ])α.
(⇒)

Let f : (X,D) −→ (Y,E) be uniformly continuous. Then ∀ U ∈ E, (f × f)←(U) ∈ D.
Let ψ ∈ E1. Then ∀ α ∈ I1, ψα ∈ E. So

((f × f)−1[ψ])α = (f × f)←(ψα) ∈ D.

Thus ∀ α ∈ I1, (f × f)−1[ψ])α ∈ D. Therefore (f × f)−1[ψ] ∈ D1. Hence f is (D1 − E1)
uniformly continuous.
(⇐)

Let f : (X,D1) −→ (Y,E1) be uniformly continuous. Then ∀ ψ ∈ E1, (f × f)−1[ψ] ∈ D1.
Let U ∈ E. Then 1U ∈ E1. Therefore (f × f)−1[1U ∈ D1. Take α ∈ I1 then

((f × f)−1[1U ])α = (f × f)←((1U )α) = (f × f)←(U) ∈ D.

Therefore f is (D− E) uniformly continuous.
¤

We obtain an α-level theorem for uniform continuity.

6.6.7 Theorem
Let (X,D) and (Y, E) be fuzzy uniform spaces. Then
(1) f : (X,D) −→ (Y, E) is uniformly continuous ⇒ ∀ α ∈ (0, 1), f : (X,Dα) −→
(Y, Eα) is uniformly continuous,
(2) ∀ α ∈ (0, 1), f : (X,Dα) −→ (Y, Eα) is uniformly continuous ⇒ f : (X,D) −→ (Y, E) is
uniformly continuous.

Proof.

(1) Let α ∈ I0 and U ∈ Eα. Then ∃ψ ∈ E and β < α such that U = ψβ . Since f is
uniformly continuous and ψ ∈ E . So

(f × f)←(U) = (f × f)←(ψβ) = ((f × f)−1[ψ])β ∈ Dα

Therefore f is Dα − Eα uniformly continuous.

(2) Let ψ ∈ E , α ∈ (0, 1) and β < α. Then ψβ ∈ Eα and so

(f × f)←(ψβ) = ((f × f)−1[ψ])β ∈ Dα.
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Thus
(a) ∀ α ∈ (0, 1), ∀ β < α, ((f × f)←[ψ])β ∈ Dα.
Now D is completely determined by its α-level; in other words

D = {σ ∈ IX×X : ∀ α ∈ (0, 1), ∀ β < α, σβ ∈ Dα}

and so
(b) σ ∈ D ⇐⇒ ∀ α ∈ (0, 1), ∀ β < α, σβ ∈ Dα.
It follows from (a) and (b) that (f × f)←[ψ] ∈ D and hence f is D − E uniformly

continuous.
¤

More information regarding fuzzy uniform space can be found in [31, 34, 35, 36, 41, 42, 44]
and regarding fuzzy neighbourhood space can be found in [?, ?, 5, ?, 7, 38, 39, 68, 69, 70,
72, 73, 78].
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Chapter 7

Generalised Filters

7.1 Introduction

In [16] the notion of generalised filter is introduced and studied. We summarize in in this
chapter most of the results from [16].

7.1.1 Definition
We call a non-zero function f : 2X → I a generalised filter (or a g-filter) on X iff

1. f(∅) = 0;

2. ∀A,B ⊆ X, f(A ∩B) ≥ f(A) ∧ f(B);

3. ∀A,B ⊆ X, A ⊆ B ⇒ f(A) ≤ f(B).

Of course, the requirement that f be non-zero is equivalent to requiring that f(X) > 0.

For f : 2X → I and A ⊆ X, we define

〈f〉(A) def= sup
B⊆A

f(B)

If f is non-zero and satisfies:

1. f(∅) = 0;

2. ∀A,B ⊆ X, f(A) ∧ f(B) ≤ 〈f〉(A ∩B).

we shall call f a generalised filter base (or a g-filter base) on X.

Naturally, a g-filter is a g-filter base. Furthermore:

7.1.2 Theorem
If X is a set and f is a g-filter base on X then 〈f〉 is a g-filter.

Proof.

(i) 〈f〉(∅) = sup
A⊆∅

f(A) = f(∅) = 0, 〈f〉(X) = sup
A⊆X

f(A) > 0.

(ii) Let A,B ⊆ X. If 〈f〉(A) ∧ 〈f〉(B) = 0 then 〈f〉(A) ∧ 〈f〉(B) ≤ 〈f〉(A ∩ B). So let
α < 〈f〉(A) ∧ 〈f〉(B).

Then:

α < sup
U⊆A

f(U) ∧ sup
V⊆B

f(V ) ⇒ ∃U ⊆ A, ∃V ⊆ B, α < f(U) ∧ f(V ) ≤ 〈f〉(U ∩ V )

⇒ ∃W ⊆ U ∩ V ⊆ A ∩B, α < f(W )
⇒ α < 〈f〉(A ∩B).
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Thus 〈f〉(A) ∧ 〈f〉(B) ≤ 〈f〉(A ∩B).

(iii) If A ⊆ B then:
〈f〉(A) = sup

U⊆A
f(U) ≤ sup

U⊆B
f(U) = 〈f〉(B).

¤

7.1.3 Definition
If f is a g-filter base on X, we define the characteristic, c(f), of f by:

c(f) = sup
A⊆X

f(A).

It follows from definition that c(f) > 0.

Just as for prefilters, we have:

7.1.4 Lemma
If X is a set and f is a g-filter base on X then:

c(f) = c(〈f〉).

Proof.

c(〈f〉) = sup
A⊆X

〈f〉(A) = sup
A⊆X

sup
B⊆A

f(B) = sup
B⊆X

f(B) = c(f).

¤

The proof of the following lemma is straightforward.

7.1.5 Lemma
Let f be a g-filter on X and let A,B ⊆ X. Then

1. c(f) = f(X);

2. f(A ∩B) = f(A) ∧ f(B).

If f is a g-filter (base) on X with c(f) = c then for 0 ≤ α < c, we define the (upper)
α-level filter (base), fα, associated with f by:

fα def= {F ⊆ X : f(F ) > α}

and for 0 < α ≤ c, we define the (lower) α-level filter (base), fα, associated with f by:

fα
def= {F ⊆ X : f(F ) ≥ α}.

7.1.6 Theorem
If f is a g-filter (base) on X with c(f) = c and:
(a) 0 ≤ α < c, then fα is a filter (base) on X;
(b) 0 < α ≤ c, then fα is a filter (base) on X.

Proof.

(a) Let f be a g-filter on X. f(X) = c > α ⇒ X ∈ fα. Thus fα 6= ∅.
If F ∈ fα then f(F ) > α ≥ 0 and hence F 6= ∅.
If A,B ∈ fα then f(A) ∧ f(B) = f(A ∩B) > α and hence A ∩B ∈ fα.
Finally, if A ∈ fα and A ⊆ B then f(B) ≥ f(A) > α and hence B ∈ fα.
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The proofs of the remaining three assertions are equally simple.
¤

It is an easy exercise to show that the α-level filters decrease as α increases and we record
this as a lemma.

7.1.7 Lemma
If f is a g-filter (base) with c(f) = c and 0 ≤ α ≤ β < c then

fc ⊆ fβ ⊆ fα ⊆ f0.

The notion of a g-filter is a strict extension of the notion of a filter in the sense that we
can associate a g-filter with every filter and there are g-filters which are not merely copies
of filters. More precisely:

7.1.8 Theorem
Let X be a set, let F (X) denote the collection of all filters on X and let G(X) denote the
collection of all g-filters on X. Let

ψ : F (X) → G(X), F 7→ 1F.

Then ψ is injective but not surjective.

Proof.

The proof that 1F is a g-filter is left as an exercise.

To see that ψ is not surjective, let X = {1, 2, 3} and consider

f : 2X → I

where
f(∅) = 0

f({2}) = f({2, 3}) = f({3}) = 0
f({1}) = f({1, 2}) = f({1, 3}) = f(X) = 3

4

Alternatively, let

g(F ) def=
{

3
4 if F = {1}
0 otherwise

and let f = 〈g〉. Then f is a g-filter and, of course, f cannot be the characteristic function
of a filter.

¤

We note the following examples of g-filters, leaving the checking to the reader.

7.1.9 Examples

(a) Let X = {1, 2, 3} and define f by

f(F ) = 0 if 1 /∈ F
f({1}) = f({1, 3}) = 1

4

f({1, 2}) = 3
4

f({1, 2, 3}) = 1
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(b) For n ∈ N let Un
def= {m ∈ N : m ≥ n}. Let f : 2N → I be defined by

f(F ) def=
{ 1

min{n:Un⊆F} if {n : Un ⊆ F} 6= ∅
0 otherwise

Alternatively, let

g(F ) def=
{

1
n if F = Un

0 otherwise

and let f = 〈g〉.
(c) Let X be a set, 0 < α ≤ 1 and let a ∈ X. Define fα,a by

fα,a(F ) def=
{

α if a ∈ F
0 otherwise

In other words
fα,a = α1〈{a}〉.

Alternatively, let

g(F ) def=
{

α if F = {a}
0 otherwise

and let f = 〈g〉.
This g-filter has the special property that, for all A,B ⊆ X

fα,a(A ∪B) = fα,a(A) ∨ fα,a(B).

If h : X → Y is a function and f ∈ I2X

is a g-filter on X then we define the direct image
of f, denoted h(f) by

h(f) : 2Y → I, B 7→ f(h−1[B]).

In other words
h(f)(B) def= f(h−1[B]).

7.1.10 Theorem
If h : X → Y is a function and f is a g-filter on X then h(f) is a g-filter on Y .

Proof.

(i) h(f)(∅) = f(h−1[∅]) = f(∅) = 0, h(f)(Y ) = f(h−1[Y ]) = f(X) > 0.

(ii) If A,B ∈ 2Y then:

h(f)(A ∩B) = f(h−1[A ∩B])
= f(h−1[A] ∩ h−1[B])
= f(h−1[A]) ∧ f(h−1[B])
= h(f)(A) ∧ h(f)(B).

(iii) If A ⊆ B then:

h(f)(A) = f(h−1[A]) ≤ f(h−1[B]) = h(f)(B).

¤
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7.2 G-filters from Prefilters

Let F be a prefilter on X with c(F) = c > 0. For F ⊆ X define

SF (F ) def= {α ∈ (0, c] : F ∈ Fα}.

7.2.1 Lemma
Let F be a prefilter with c(F) = c > 0. Then SF (F ) = ∅ or SF (F ) is an interval of form
(β, c].

Proof.

If SF (F ) 6= ∅ then there exists some α ∈ SF (F ).
If α ≤ γ ≤ c then F ∈ Fα ⊆ Fγ and so γ ∈ SF (F ).
Since

Fα = ∪
0<β<α

Fβ ,

we have:
α ∈ SF (F ) ⇒ F ∈ Fα = ∪

0<β<α
Fβ

⇒ ∃β < α, F ∈ Fβ

⇒ ∃β < α, β ∈ SF (F ).

¤

This lemma allows us to define, for F ⊆ X:

fF (F ) def=
{

c− inf SF (F ) if SF (F ) 6= ∅
0 if SF (F ) = ∅.

We now need to check that the object defined above is indeed a g-filter.

7.2.2 Theorem
If F is a prefilter with c(F) = c > 0 then fF is a g-filter.

Proof.

(a)
∀α ≤ c(F), ∅ /∈ Fα ⇒ ∀α ≤ c(F), α /∈ SF (∅)

⇒ SF (∅) = ∅
⇒ fF (∅) = 0.

(b) Let A,B ⊆ X. Then:

α < fF (A) ∧ fF (B) ⇒ inf SF (A) < c− α and inf SF (B) < c− α
⇒ c− α ∈ SF (A) and c− α ∈ SF (B)
⇒ A, B ∈ Fc−α

⇒ A ∩B ∈ Fc−α

⇒ c− α ∈ SF (A ∩B)
⇒ inf SF (A ∩B) ≤ c− α
⇒ c− inf SF (A ∩B) = fF (A ∩B) ≥ α.

Thus
fF (A ∩B) ≥ fF (A) ∧ fF (B).

71



(c) Let A ⊆ B ⊆ X. Then:

fF (A) > α ⇒ c− inf SF (A) > α
⇒ inf SF (A) < c− α
⇒ c− α ∈ SF (A)
⇒ A ∈ Fc−α

⇒ B ∈ Fc−α

⇒ c− α ∈ SF (B)
⇒ inf SF (B) ≤ c− α
⇒ c− inf SF (B) = fF (B) ≥ α.

It follows that fF (A) ≤ fF (B).
¤

7.3 Prefilters from G-filters

Our next task is to show that a g-filter gives rise to a prefilter. However, we first discover
the connection between the characteristic of a prefilter and the g-filter that it generates.

7.3.1 Lemma
If F is a prefilter on X with c(F) = c > 0 then:

c(fF ) = c(F).

Proof.

Let c = c(F). Then:
c(fF ) = fF (X) = c− inf SF (X).

Now
∀α ≤ c, X ∈ Fα ⇒ ∀α ≤ c, α ∈ SF (X)

⇒ inf SF (X) = 0
⇒ c(fF ) = fF (X) = c

¤

For a g-filter f with c(f) = c > 0 we define:

Ff
def= {ν ∈ IX : ∀0 < α ≤ c, ∀β < α, νβ ∈ fc−α}

Of course, we need to check that this does produce a prefilter.

7.3.2 Theorem
If f is a g-filter with c(f) > 0 then Ff is a prefilter.

Proof.

(a) We observe that
∀β ≤ c(f), 0β = {x ∈ X : 0(x) > β} = ∅.

It follows that
∀0 < α ≤ c, ∀β < α, 0β /∈ f c−α

and this means that 0 /∈ Ff .
On the other hand, since c = c(f) = f(X) > 0 we have

∀0 < α ≤ c, ∀β < α, (1X)β = X ∈ f c−α
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and so 1X ∈ Ff .

(b) Let µ, ν ∈ Ff . It follows from:

∀β < c(f), νβ ∩ µβ = (ν ∧ µ)β

that ν ∧ µ ∈ Ff .

(c) Let ν ∈ F and ν ≤ µ. Let 0 < α ≤ c, β < α. Then νβ ∈ f c−α. Since νβ ⊆ µβ we have

f(µβ) ≥ f(νβ) ≥ c− α.

Thus µ ∈ Ff .
¤

The following lemma simplifies some of the work later on.

7.3.3 Lemma
If f is a g-filter with c(f) = c > 0 then:

Ff = {v ∈ IX : ∀0 ≤ γ < c, νγ ∈ fc−γ}.

Proof.

Let us define
G def= {v ∈ IX : ∀0 ≤ γ < c, νγ ∈ fc−γ}.

Let ν ∈ Ff . To show that ν ∈ G let 0 ≤ γ < c. Choose α such that γ < α < c. Then
νγ ∈ f c−α. Since α is arbitrary, we have

∀γ < α < c, f(νγ) > c− α

and hence f(νγ) ≥ c− γ. In other words, νγ ∈ fc−γ .
Conversely, let ν ∈ G. To show that ν ∈ Ff let 0 < α ≤ c, 0 ≤ β < α. Then we have

0 ≤ β < c. Thus νβ ∈ fc−β and so f(νβ) ≥ c− β > c− α. Therefore νβ ∈ f c−α.
¤

The correlation between g-filters and prefilters is not completely straightforward. In fact,
as we shall see, the prefilter associated with a g-filter is rather special.

7.3.4 Theorem
If f is a g-filter then the associated prefilter Ff is saturated.

Proof.

Suppose that
∀ε > 0, ν + ε ∈ Ff .

We show that ν ∈ Ff . To this end, we let α ≤ c(f) and β < α and show that νβ ∈ f c−α.
Choose γ such that β < γ < α and let ε = γ − β. Then, since ν + ε ∈ Ff we have

(ν + ε)γ = (ν + ε)β+ε = νβ ∈ f c−α.

¤

We saw, in Lemma 7.3.1, the connection between the characteristic of a prefilter and the
g-filter that it generates. Let us now find the connection between a g-filter and the prefilter
that it generates.
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7.3.5 Theorem
Let f be a g-filter on X. Then:

c(Ff ) = c(f).

Proof.

Let c(f) = c. Then:

∀ν ∈ Ff , ∀0 ≤ β < α ≤ c, νβ ∈ fc−α ⇒ ∀ν ∈ Ff , ∀0 ≤ β < α ≤ c, νβ 6= ∅
⇒ ∀ν ∈ Ff , ∀0 ≤ β < α ≤ c, sup ν > β
⇒ ∀ν ∈ Ff , sup ν ≥ c
⇒ inf

ν∈Ff

sup ν = c(Ff ) ≥ c.

On the other hand,

∀α ≤ c, ∀β < α, (c1X)β = X ∈ f c−α

and so c1X ∈ Ff . Thus
c(Ff ) = inf

ν∈Ff

sup ν ≤ sup c1X = c.

¤

The use of α-level theorems has proved to be very useful in various situations. See, for
example [82, 83, 39]. We therefore investigate the α-levels of g-filters.

7.3.6 Lemma
Let f be a g-filter with c(f) = c and let α ∈ (0, c]. Then

Ff
α = f c−α.

Proof.

Let F ∈ (Ff )α. Then there exists ν ∈ Ff , β < α such that F = νβ . Since ν ∈ Ff , we
have νβ = F ∈ f c−α.

Conversely, if F ∈ f c−α then f(F ) def= t > c− α. Let ν = (c− t)1X ∨ 1F . We intend to
invoke Lemma 7.3.3 to show that ν ∈ Ff . To this end, let 0 ≤ γ < c.

If γ ∈ [c− t, c) then νγ = F and so f(νγ) = f(F ) = t ≥ c− γ.
If γ ∈ [0, c− t) then νγ = X and so f(νγ) = f(X) = c ≥ c− γ.
We therefore have νγ ∈ fc−γ for all γ ∈ [0, c) and so ν ∈ Ff and F = νc−t with c− t < α.

Thus F ∈ Fα
f .

¤

7.3.7 Lemma
If F is a prefilter on X with c(F) = c > 0 then, for α ∈ [0, c):

(fF )α = Fc−α.

Proof.

A ∈ (fF )α ⇐⇒ fF (A) = c− inf SF (A) > α
⇐⇒ inf SF (A) < c− α
⇐⇒ c− α ∈ SF (A)
⇐⇒ A ∈ Fc−α

¤

We now establish the g-filter analogue of Theorem 5.3.2(5)
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7.3.8 Lemma
If f is a g-filter with c(f) = c and 0 ≤ α < c then:

fα = ∪
c>β>α

fβ .

Proof.

If F ∈ fα choose β such that α < β < f(F ). Then F ∈ fβ and so F ∈ ∪
β>α

fβ .

Conversely, let F ∈ ∪
c>β>α

fβ . Then F ∈ fβ for some β > α. Thus f(F ) > β > α and

hence F ∈ fα.
¤

7.3.9 Corollary
If f is a g-filter with c(f) = c and 0 < α ≤ c then:

f c−α = ∪
0<β<α

f c−β .

In [9] we saw that saturated prefilters are specified by their α-level filters. We show that
a similar situation pertains for g-filters

7.3.10 Lemma
If f and g are g-filters with c(f) 6= c(g) then f 6= g.

7.3.11 Lemma
Let f and g be g-filters with c(f) = c(g) = c. Then:

∀α < c, fα = gα ⇐⇒ f = g.

Proof.

∀α < c, fα = gα ⇐⇒ ∀α < c, ∀A ⊆ X, A ∈ fα ⇐⇒ A ∈ gα

⇐⇒ ∀A ⊆ X, ∀α ≤ c, (f(A) > α ⇐⇒ g(A) > α)
⇐⇒ ∀A ⊆ X, f(A) = g(A)
⇐⇒ f = g.

¤

We have seen that to each g-filter there corresponds a saturated prefilter and, conversely,
to each prefilter there corresponds a g-filter. This inspires the following theorem.

7.3.12 Theorem
Let

S(X) def= {F ∈ 2IX

: F is a saturated prefilter on X },
G(X) def= {f ∈ I2X

: f is a g-filter on X }.
Then

ψ : S(X) → G(X), F 7→ fF

is a bijection.
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Proof.

We first show that ψ is injective. To this end, let F ,G ∈ S(X) with F 6= G.
If c(F) 6= c(G) then:

fF (X) = c(F)− inf {α ≤ c(F) : X ∈ Fα}
= c(F)− 0
6= c(G)
= fG(X)

and so fF 6= fG .
If c(F) = c(G) = c then:

∃α ≤ c, Fα 6= Gα.

This follows from the fact that saturated prefilters are completely determined by their α-
level filters [9]: Theorem 2 and [?]: Theorem 11). Suppose that F ∈ Fα \ Gα. Then
α ∈ SF (F ) \ SG(F ). Thus inf SF (F ) < α and α ≤ inf SG(F ). Thus

fF (F ) = c− inf SF (F ) > c− α ≥ c− inf SG(F ) = fG(F ).

So, once again, fF 6= fG .

In order to show that ψ is surjective, let f ∈ G(X) and let c(F) = c. Then:

Ff = {ν ∈ IX : ∀α ≤ c, ∀β < α, νβ ∈ f c−α}.

Now, appealing to Lemmas 7.3.6 and 7.3.7, we have

∀α ∈ [0, c), (fFf
)α = (Ff )c−α = f c−(c−α)) = fα.

It therefore follows from Lemma 7.3.11 that

ψ(Ff ) = fFf
= f.

¤

We extract the following corollaries.

7.3.13 Corollary
If f is a g-filter on X then:

fFf
= f.

7.3.14 Corollary
If F is a saturated prefilter on X then:

FfF = F .

Proof.

Let ψ : S → G as in the theorem. Then:

ψ(F) = fF

and
ψ(FfF ) = f(FfF ) = fF .

Thus it follows from the injectivity of ψ that F = FfF .
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¤

We have developed the g-filter analogues of various prefilter notions and it is natural
therefore to seek a g-filter analogue of the saturation operator. In other words, if f is a g-
filter, we seek a definition of f̂ , the saturation of f , which is consistent with the theory which
we have developed thus far. We would require, among other things, that the saturation of
the g-filter associated with a prefilter is the g-filter associated with the saturation of the
prefilter. In symbols:

f̂F = f bF .

However, we have the following lemma.

7.3.15 Lemma
If F is a prefilter then:

fF = f bF .

Proof.

For F ⊆ X:

f bF (F ) = c(F̂)− inf {α : F ∈ (F̂)α}
= c(F)− inf {α : F ∈ (F)α}
= fF (F ).

¤

Thus, for a prefilter F
f̂F = fF .

The most natural definition of f̂ which accomplishes this is the simple

f̂
def= f.

In this sense, g-filters are already saturated. This explains why, in [15], the definition
of a generalised uniformity did not include a saturation condition. The situation is also
illustrated by the following theorem which extends Theorem 7.3.4.

7.3.16 Theorem
If F is a prefilter then:

FfF = F̂ .

Proof.

From Theorem 7.3.4 we know that FfF is a saturated prefilter and so, according to [29],
Theorem 11, we must show that

∀α ≤ c(F̂) = c(F), (FfF )α = (F̂)α.

Now
(FfF )α = (fF )c−α = Fα = F̂α.

¤

From this last result we obtain the following characterisation of the saturation of a
prefilter.
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7.3.17 Corollary
If F is a prefilter with c(F) = c > 0 then:

F̂ = {ν ∈ IX : ∀0 < α ≤ c, ∀β < α, νβ ∈ Fα}.
Proof.

ν ∈ F̂ ⇐⇒ ν ∈ FfF
⇐⇒ ∀0 < α ≤ c, ∀β < α, νβ ∈ (fF )c−α = Fα.

¤

7.4 Prime G-Filters

We seek a suitable definition of a prime g-filter which ties in with the theory of prime
prefilters.

7.4.1 Definition
We call a g-filter f on X prime if

∀A,B ⊆ X, f(A ∪B) = f(A) ∨ f(B).

For example:
for a ∈ X, α ∈ I0, it is straightforward to check that f = fα,a defined earlier is a g-filter

and that f is prime.
The Theorem 5.3.10, which characterises the minimal prime prefilters finer than a given

prefilter, has found a number of applications. With this in mind, we attempt to construct a
similar theory of prime g-filters.

We first find the connection between prime g-filters and ultrafilters.

7.4.2 Lemma
Let F be a filter on X and let 0 < α ≤ 1. Then

F is an ultrafilter ⇐⇒ α1F is a prime g-filter.

Proof.

(⇒)
Let F be an ultrafilter. If A ∪ B ∈ F then α1F(A ∪ B) = α. Furthermore, since F is an

ultrafilter, A ∈ F or B ∈ F. Thus

α1F(A) ∨ α1F(B) = α = α1F(A ∪B).

If A ∪B /∈ F then 1F(A ∪B) = 0. Since F is a filter, A /∈ F and B /∈ F and hence

α1F(A) ∨ α1F(B) = 0 = α1F(A ∪B).

(⇐)
Let α1F be prime and let A ∪B ∈ F. Then

α1F(A ∪B) = α = α1F(A) ∨ α1F(B).

Therefore
α1F(A) = α or α1F(B) = α

and so A ∈ F or B ∈ F. Thus F is an ultrafilter.
¤
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7.4.3 Theorem
Let f be a g-filter with c(f) = c. Then

f is prime ⇐⇒ fc is an ultrafilter.

Proof.

(⇒)
A ∪B ∈ fc ⇐⇒ f(A ∪B) = f(A) ∨ f(B) = c

⇐⇒ f(A) = c or f(B) = c
⇐⇒ A ∈ fc or B ∈ fc

(⇐)
If α < c then

α < f(A ∪B) ⇒ A ∪B ∈ fα = fc

⇒ f(A ∪B) = c and A ∈ fc or B ∈ fc

⇒ f(A) ∨ f(B) = c = f(A ∪B)

¤

7.4.4 Corollary
If f is a prime g-filter with c(f) = c then fc = f0.

Proof.

We have fc ⊆ f0 and fc is an ultrafilter.
¤

The reader can check that if A ⊆ X, α > 0 and F = 〈{A}〉 then

α1F is prime ⇐⇒ A is a singleton.

If F is a filter then we define

P(F) def= {K : F ⊆ K, K is an ultrafilter}
We now investigate the situation with regard to prime g-filters finer than a given g-filter.

7.4.5 Lemma
If f is a g-filter then

F ∈ P(f0) ⇒ 1F is a prime g-filter and f ≤ 1F.

Proof.

Let g = 1F. Then, by Lemma 7.4.2, g is prime.
If A ⊆ X and f(A) > 0 then A ∈ f0 ⊆ F. Thus g(A) = 1 ≥ f(A) and so f ≤ g.

¤

7.4.6 Corollary
If f is a g-filter, α ≥ c = c(f) and F ∈ P(f0) then α1F is a prime g-filter with f ≤ α1F.

Proof.

It follows from lemma 7.4.2 that α1F is prime. Furthermore, if A ⊆ X then

f(A) > 0 ⇒ A ∈ f0 ⊆ F
⇒ α1F(A) = α ≥ c = f(X) ≥ f(A)

¤
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7.4.7 Theorem
If f is a prime g-filter with c(f) = c and F = fc then

f = c1F.

Proof.

Let A ⊆ X. If f(A) > 0 then A ∈ f0 = fc = F and hence f(A) = c = c1F (A).
If f(A) = 0 then A /∈ F and so f(A) = 0 = c1F(A).

¤

Thus prime g-filters are precisely those g-filters of the form α1F with F an ultrafilter.
If f is a g-filter on X, let

P(f) def= {g : g is a prime g-filter and f ≤ g.}

We now aim for the g-filter equivalent of Lowen’s Theorem 5.3.10.

7.4.8 Theorem
If f is a g-filter with c(f) = c then

P(f) = {α1F : F ∈ P(f0), α ≥ c}.

Proof.

Let g ∈ P(f) with c(g) = α and F = gα. Then, by Theorem 7.4.7, g = α1F with F an
ultrafilter. Furthermore, since f ≤ g, we have c(f) ≤ α = c(g) and F ⊇ f0.

Conversely, if g = α1F then, by Corollary 7.4.8, g ∈ P(f).
¤

For a g-filter f let us define

Pm(f) def= {g : g is a minimal prime g-filter and f ≤ g}.

It is now an easy matter to obtain a characterisation of the minimal prime g-filters which
are finer than a given g-filter.

7.4.9 Corollary
If f is a g-filter with c(f) = c then

Pm(f) = {c1F : F ∈ P(f0)}

Proof.

Let g ∈ Pm(f). Then g = α1F for some α ≥ c and some F ∈ P(f0). If α > c then we
can choose β such that c < β < α and then h = β1F ∈ P(f) with h ≤ g and h 6= g which
contradicts the minimality of g.

¤

Our next task is to find the relationship between prime prefilters and prime g-filters. We
first need the following lemma.

7.4.10 Lemma
Let (I,≤) be a totally ordered set and let (X,¹) be a partially ordered set. Let

ϕ,ψ : (I,≤) → (X,¹)
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be decreasing functions in the sense that

∀α, β ∈ I, (α ≤ β ⇒ ϕ(β) ¹ ϕ(α), ψ(β) ¹ ψ(α)).

Let F ⊆ X have the property

∀x, (x ∈ F, x ¹ y, ⇒ y ∈ F ).

Then

∀α ∈ I, (ϕ(α) ∈ F or ψ(α) ∈ F ) ⇐⇒ (∀α ∈ I, ϕ(α) ∈ F ) or (∀α ∈ I, ψ(α) ∈ F ).

Proof.

We only have to show the forward implication so suppose that ∃α ∈ I such that ϕ(α) 6∈ F .
We must show that ∀β ∈ I, ψ(β) ∈ F . Now

ϕ(α) 6∈ F ⇒ ψ(α) ∈ F.

Thus if β ≤ α then
ψ(α) ¹ ψ(β) ⇒ ψ(β) ∈ F.

On the other hand, if α < β then

ϕ(β) ¹ ϕ(α) ⇒ ϕ(β) 6∈ F ( otherwise ϕ(α) ∈ F . )
⇒ ψ(β) ∈ F.

¤

7.4.11 Corollary
Let I ⊆ R be an interval, X a set and let ϕ,ψ : I → P(X) be functions with the property
that

∀α, β ∈ I, (α ≤ β ⇒ ϕ(β) ⊆ ϕ(α), ψ(β) ⊆ ψ(α)).

and let F be a filter on X. Then

∀α ∈ I, (ϕ(α) ∈ F or ψ(α) ∈ F) ⇐⇒ (∀α ∈ I, ϕ(α) ∈ F) or (∀ ∈ I, ψ(α) ∈ F).

7.4.12 Theorem
Let f be a prime g-filter on a set X with c(f) = c. Then Ff is also prime.

Proof.

Let µ ∨ ν ∈ Ff . Then, according to Lemma 7.3.3, Theorem ?? and Corollary ??,

∀γ ∈ [0, c), (µ ∨ ν)γ = µγ ∪ νγ ∈ fc−γ = fc
def= F

with F an ultrafilter on X. We therefore have

∀γ ∈ [0, c), (µγ ∈ F or νγ ∈ F).

We now invoke Corollary 7.4.11 and claim that

(∀γ ∈ [0, c), µγ ∈ F) or (∀γ ∈ [0, c), νγ ∈ F).

This, together with Lemma 7.3.3, shows that µ ∈ F or ν ∈ F.
¤
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7.4.13 Theorem
Let F be a prime prefilter on a set X with c(F) = c. Then fF is also prime.

Proof.

We need to show that, for A,B ⊆ X

fF (A ∪B) ≤ fF (A) ∨ fF (B).

To this end let 0 < α < fF (A ∪B). Then

α < c− inf SF (A ∪B) ⇐⇒ c− α ∈ SF (A ∪B)
⇐⇒ A ∪B ∈ Fc−α = F0

⇐⇒ A ∈ F0 or B ∈ F0 (since F0 is an ultrafilter)
⇐⇒ c− α ∈ SF (A) or c− α ∈ SF (B)
⇒ inf SF (A) ≤ c− α or inf SF (B) ≤ c− α
⇒ fF (A) ≥ α or fF (B) ≥ α
⇒ fF (A) ∨ fF (B) ≥ α.

Since α is arbitrary, we are done.
¤

7.4.14 Corollary
If f is a g-filter and F is a prefilter then

f is prime ⇐⇒ Ff is prime
F is prime ⇐⇒ fF is prime.

Proof.

The proof follows immediately from ??, ??, 7.4.12 and 7.4.13.
¤

Finally, we check that prime g-filters are preserved by functions.

7.4.15 Theorem
Let h : X → Y and let f be a prime g-filter on X. Then h(f) is a prime g-filter on Y .

Proof.

We saw in Theorem 3.6 that h(f) is a g-filter on Y . Now let A,B ∈ 2Y . Then

h(f)(A∪B) = f(h−1[A∪B]) = f(h−1[A]∪h−1[B]) = f(h−1[A])∨f(h−1[B]) = h(f)(A)∨h(f)(B).

Thus h(f) is prime.
¤
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Chapter 8

Generalised Uniform Spaces

8.1 Introduction

In [15] the notion of a generalised uniform space is introduced and studied. Here we study
the generalised uniform space with the aid of generalised filters.

Let X be a set and U ⊆ P(X ×X) = 2X×X then we define

∆ = {(x, x) : x ∈ X} and Us = {(x, y) : (y, x) ∈ U}.

We define ◦
U = {V ⊆ X ×X : V ◦ V ⊆ U}.

8.1.1 Definition
If X is a set then a function d : 2X×X −→ I is generalised uniformitiy on X iff

1. d is a g-filter and c(d) = 1;

2. ∀ U ⊆ X ×X, d(U) > 0 ⇒ ∆ ⊆ U ;

3. ∀ U ⊆ X ×X, d(Us) ≥ d(U);

4. ∀ U ⊆ X ×X, d(U) ≤ sup
V ∈

◦
U

d(V ).

we call (X, d) a generalised uniform space (or g-uniform space).

The following lemma establish a generalised uniform space from a uniform space.

8.1.2 Lemma
If (X,D) is a uniform space then 1D : 2X×X −→ I is a generalised uniform space.

Proof.

1D is a g-filter and 1D(X ×X) = 1.
If U ⊆ X ×X and 1D(U) > 0 then ∆ ⊆ U .
Let U ⊆ X × X. Then if 1D(U) > 0 then U ∈ D and so Us ∈ D. Therefore 1D(Us) ≥

1D(U).

Let U ⊆ X ×X. If 1D(U) > 0 then U ∈ D and so ∃V ∈ D such that V ∈
◦
U . Therefore

sup
V ∈

◦
U

1D(V ) ≥ 1D(U).

¤

Next we see the α-level uniformities from a generalised uniformity.
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8.1.3 Theorem
Let (X, d) be a generalised uniform space. Then for each α ∈ I1

dα = {U ∈ X ×X : d(U) > α}

is a uniformity on X.

Proof.

Let α ∈ I1. Since c(d) = 1, dα is a filter.
Let U ∈ dα. Then d(U) > α ≥ 0 ⇒ ∆ ⊆ U .
Let U ∈ dα. Then d(Us) ≥ d(U) > α ⇒ Us ∈ dα.

Let U ∈ dα. Then sup
V ∈

◦
U

d(V ) ≥ d(U) > α. Therefore ∃V ∈
◦
U such that d(V ) > α. Thus

∃V ∈ dα such that V ◦ V ⊆ U .
Hence the result.
The uniformity dα will be referred to as the α-level uniformity of d.
Our next task to build a fuzzy uniformity from a generalised uniformity. This can be

done using previous theorem with theorem 6.6.2.
¤

8.1.4 Theorem
Let (X, d) be a generalised uniform space. Then

Dd
def= {σ ∈ IX×X : ∀ α ∈ (0, 1), ∀ β < α, σβ ∈ d1−α}.

is a fuzzy uniformity on X.

Proof.

We have dα is a uniformity for each α ∈ I1.
Let d(α) = d1−α for each α ∈ I0. Then we have

0 < β ≤ α ≤ 1 ⇒ d(β) ⊆ d(α).

and for each α ∈ I0,

d(α) = d1−α = ∪
0<β<α

d1−β = ∪
0<β<α

d(β) by 7.3.10.

Therefore
Dd = {σ ∈ IX×X : ∀ α ∈ (0, 1), ∀ β < α, σβ ∈ d(α)}.

is a fuzzy uniformity on X.
¤

Now we try to establish a generalised uniformity from a fuzzy uniformity.
Let (X,D) be a fuzzy uniform space. Then D is a saturated prefilter with c(D) = 1. For

U ⊆ X ×X we have
SD(U) = {α ∈ (0, 1] : U ∈ Dα}.

and

dD =
{

1− inf SD(U) if SD(U) 6= ∅
0 if SD(U) = ∅.

8.1.5 Theorem
Let (X,D) be a fuzzy uniform space. Then dD : 2X×X −→ I is a generalised uniformity.
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Proof.

(i) We have dD is a g-filter and dD(X ×X) = 1.
(ii) Let U ⊆ X ×X and dD(U) > 0. Then SD(U) 6= ∅. Therefore U ∈ D1 ⇒ ∆ ⊆ U .
(iii) Let U ⊆ X ×X and dD(U) > 0. Then ∃β < α such that SD(U) = (β, 1]. Therefore

∀ α ∈ (β, 1], U ∈ Dα and so Us ∈ Dα and hence SD(Us) = (β, 1]. Therefore dD(U) =
dD(Us).

(iv) let U ⊆ X×X and α < dD(U). Then inf SD(U) < 1−α. Therefore 1−α ∈ SD(U) ⇒
U ∈ D1−α ⇒ ∃V ∈ D1−α such that V ◦V ⊆ U . Thus V ∈

◦
U and 1−α ∈ SD(V ). Thereofore

dD(V ) > 1− (1− α) = α. So sup
V ∈

◦
U

dD(V ) > α. Since α is arbitrary, sup
V ∈

◦
U

dD(V ) ≥ dD(U).

Hence the result.
¤

8.1.6 Theorem
The collection of fuzzy uniform spaces is in a one-to-one correspondence with the collection
of generalised uniform spaces.

Proof.

Let |FUS| be the collection of fuzzy uniform spaces and |GUS| be the collection of
generalised uniform spaces. Then define

ψ : |FUS| −→ |GUS|, (X,D) 7→ (X, dD).

Let (X1,D1) 6= (X2,D2).
If X1 6= X2 then clearly (X1, dD1) 6= (X2, dD2).
If D1 6= D2 then we have dD1 6= dD2 .
Consequently ψ is injective.
To see ψ is surjective, let (X, D) ∈ |GUS|. Then d is generalised filter on X.
By 7.3.13, ψ(X,Dd) = (X, dDd

) = (X, d).
Therefore ψ is bijective.

¤

8.1.7 Corollary
Let (X,D) be a fuzzy uniform space and (X, d) be a generalised uniform space. Then

DdD = D and dDd
= d.

Proof.

Since D is saturated prefiter and by (7.3.14) and (7.3.15) the result follows.
¤

8.1.8 Proposition
Let (X,D) be a uniform space. Then

∀ α ∈ I1, (1D)α = D.

Proof.

Let α ∈ I1. Then

U ∈ (1D)α ⇐⇒ 1D(U) > α ⇐⇒ 1D(U) > 0 ⇐⇒ U ∈ D.

¤
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8.2 Uniformly Continuous Functions

8.2.1 Definition
Let (X, d) and (Y, e) be generalised uniform spaces and f : X −→ Y be a mapping. Then f
is said to be uniformly continuous if

∀ V ⊆ Y × Y, d((f × f)←(V )) ≥ e(V ).

We obtain α-level theorem for uniformly continuous.

8.2.2 Theorem
Let (X, d) and (Y, e) be generalised uniform spaces. Then

(a) f : (X, d) −→ (Y, e) is uniformly continuous ⇒ ∀ α ∈ I1, f : (X, dα) −→ (Y, eα) is
uniformly continuous.

(b) ∀ α ∈ (0, 1), f : (X, dα) −→ (Y, eα) is uniformly continuous ⇒ f : (X, d) −→ (Y, e) is
uniformly continuous.

Proof.

f is d− e uniformly continuous
⇐⇒ ∀ V ⊆ Y × Y, d((f × f)←(V )) ≥ e(V )
⇐⇒ ∀ V ⊆ Y × Y, ∀ α ∈ (0, 1), (e(V ) > α ⇒ d((f × f)←(V )) > α)
⇐⇒ ∀ V ⊆ Y × Y, ∀ α ∈ (0, 1), (V ∈ eα ⇒ (f × f)←(V ) ∈ dα)
⇐⇒ ∀ α ∈ (0, 1), f : (X, dα) −→ (Y, eα) is uniformly continuous.

To complete the proof we only have to show, if f is d − e uniformly continuous then
f : (X, d0) −→ (Y, e0) is uniformly continuous. This can be proved by taking α = 0 in the
above result.

¤

The following three theorems simpilifies some of the the work later on when we map a
morphism of a category into a morphim of another category.

8.2.3 Theorem
Let (X,D) and (Y,E) be uniform spaces. Then

f : (X,D) −→ (Y,E) is uniformly continuous ⇒ f : (X, 1D) −→ (Y, 1E) is uniformly continuous.

Proof.

Let V ⊆ Y × Y . Then

1E(V ) = 1 ⇒ V ∈ E⇒ (f × f)←(V ) ∈ D⇒ 1D((f × f)←(V )) = 1.

It follows that ∀ V ⊆ Y × Y, 1D((f × f)←(V )) ≥ 1E(V ) and hence that f is 1D − 1E
uniformly continuous.

¤

8.2.4 Theorem
Let (X, d) and (Y, e) be generalised uniform spaces. Then

f : (X, d) −→ (Y, e) is uniformly continuous ⇐⇒ f : (X,Dd) −→ (Y,De) is uniformly continuous.
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Proof.

f is d− e uniformly continuous
⇐⇒ ∀ α ∈ (0, 1), f : (X, dα) −→ (Y, eα) is uniformly continuous
⇐⇒ f : (X,Dd) −→ (Y,De is uniformly continuous (by 6.6.7).

¤

8.2.5 Theorem
Let (X,D) and (Y, E) be fuzzy uniform spaces. Then

f : (X,D) −→ (Y, E) is uniformly continuous ⇐⇒ f : (X, dD) −→ (Y, dE) is uniformly continuous .

Proof.

f is D − E uniformly continuous
⇐⇒ ∀ α ∈ (0, 1), f is Dα − Eα uniformly continuous
⇐⇒ ∀ α ∈ (0, 1), f is d1−α

D − d1−α
E uniformly continuous

⇐⇒ ∀ α ∈ (0, 1), f is dD − dE uniformly continuous.

¤
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Chapter 9

Fuzzy Filters

9.1 Inroduction

In [22], the notion of a fuzzy filter is introduced and studied. We adopt a slightly different
definition of a fuzzy filter. In [28] some special propeties of fuzzy filters can be found. Some
results are from J.Gutiérrez through private communication.

9.1.1 Definition
We call a non-zero function ϕ : IX → I a fuzzy filter or a f-filter on X if ϕ satifies the
following conditions.

1. ϕ(0) = 0;

2. ∀µ, ν ∈ IX , ϕ(µ ∧ ν) ≥ ϕ(µ) ∧ ϕ(ν);

3. ∀µ, ν ∈ IX , µ ≤ ν ⇒ ϕ(µ) ≤ ϕ(ν).

Of course, the condition that ϕ is non-zero is equivalent to the condition ϕ(1) > 0.
This definition of a fuzzy filter differs from the definition in [22], where it is required that
ϕ(1) = 1.

If ϕ : IX −→ I is a function and µ ∈ IX , we define

〈ϕ〉(µ) def= sup
ν≤µ

ϕ(ν).

We call a non-zero function ϕ : IX → I a fuzzy filter base or a f-filter base on X if ϕ
satisfies the following conditions.

1. ϕ(0) = 0;

2. ∀ν1, ν2 ∈ IX , ϕ(ν1) ∧ ϕ(ν2) ≤ 〈ϕ〉(ν1 ∧ ν2).

It follows immediately that a fuzzy filter is a fuzzy filter base.

9.1.2 Theorem
If X is a set and ϕ is a fuzzy filter base on X then 〈ϕ〉 is a fuzzy filter on X.

Proof.

(i) 〈ϕ〉(0) = sup
ν≤0

ϕ(ν) = ϕ(0) = 0.

(ii) Let µ, ν ∈ IX . If 〈ϕ〉(µ) ∧ 〈ϕ〉(ν) = 0 then 〈ϕ〉(µ) ∧ 〈ϕ〉(ν) ≤ 〈ϕ〉(µ ∧ ν). So let

0 < α < 〈ϕ〉(µ) ∧ 〈ϕ〉(ν).
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Then
0 < α < sup

µ1≤µ
ϕ(µ1) ∧ sup

ν1≤ν
ϕ(ν1).

So there exists µ1 ≤ µ and ν1 ≤ ν such that

0 < α < ϕ(µ1) ∧ ϕ(ν1) ≤ 〈ϕ〉(µ1 ∧ ν1).

Thus there exists ψ ≤ µ1 ∧ ν1 ≤ µ∧ ν such that 0 < α < ϕ(ψ). Therefore α < 〈ϕ〉(µ∧ ν)
and hence, since α is arbitrary, it follows that

〈ϕ〉(µ) ∧ 〈ϕ〉(ν) ≤ 〈ϕ〉(µ ∧ ν).

(iii) Let µ ≤ ν. Then

〈ϕ〉(µ) = sup
µ1≤µ

ϕ(µ1) ≤ sup
µ1≤ν

ϕ(µ1) = 〈ϕ〉(ν).

¤

9.1.3 Definition
We define the characteristic, c(ϕ), of a fuzzy filter ϕ by

c(ϕ) def= sup
ν∈IX

ϕ(ν).

9.1.4 Theorem
Let ϕ be a fuzzy filter base on a set X . Then

c(ϕ) = c(〈ϕ〉).
Proof.

c(〈ϕ〉) = sup
ν∈IX

〈ϕ〉(ν) = sup
ν∈IX

sup
µ≤ν

ϕ(µ) = sup
µ∈IX

ϕ(µ) = c(ϕ).

¤

9.1.5 Lemma
Let ϕ be fuzzy filter on a set X and let µ, ν ∈ IX . Then

1. c(ϕ) = ϕ(1);

2. ϕ(µ ∧ ν) = ϕ(µ) ∧ ϕ(ν).

Proof.

(1) Let ϕ be fuzzy filter. Then we have

µ ≤ ν ⇒ ϕ(µ) ≤ ϕ(ν).

Therefore c(ϕ) = sup
ν∈IX

ϕ(ν) = ϕ(1).

(2) We have ϕ(µ ∧ ν) ≥ ϕ(µ) ∧ ϕ(ν). But µ ∧ ν ≤ µ and µ ∧ ν ≤ ν. Consequently,

ϕ(µ ∧ ν) ≤ ϕ(µ) ∧ ϕ(ν).

¤

Remark When we try to show ϕ : IX −→ I is a fuzzy filter it is enough to show that ϕ
satisfies the following conditions.

(1) ϕ(0) = 0;
(2) ∀ µ, ν ∈ IX , ϕ(µ ∧ ν) = ϕ(µ) ∧ ϕ(ν).
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9.1.6 Examples
(1) Let 0 6= µ ∈ IX . For each ν ∈ IX we define,

ϕµ(ν) =
{

α if ν ≥ µ
0 if ν 6≥ µ.

then ϕµ is a fuzzy filter on X, with c(ϕ) = α.

(2) For each µ ∈ IX we define
ϕ(µ) = inf µ.

then ϕ is a fuzzy filter on X with c(ϕ) = 1.
Since:

ϕ(0) = 0 and ϕ(1) = 1.

inf µ ∧ ν = inf
x∈X

(µ ∧ ν)(x) = ∧
x∈X

(µ(x) ∧ ν(x)

= ( ∧
x∈X

µ(x)) ∧ ( ∧
x∈X

ν(x)) = inf µ ∧ inf ν.

Therefore ϕ(µ ∧ ν) = ϕ(µ) ∧ ϕ(ν).

(3) Let x0 ∈ X be fixed and for each ν ∈ IX we define

ϕx0(µ) = µ(x0)

Then ϕx0 is a fuzzy filter on X with c(ϕ) = 1.

(4) Let F be a prefiter on X with c(F) = 1. For each µ ∈ IX we define

ϕ(µ) = 1− cµ(F).

Then ϕ is a fuzzy filter on X with c(ϕ) = 1.
Since:

ϕ(0) = 1− c(F) = 1− 1 = 0.

ϕ(1) = 1− c1(F) = 1− 0 = 1.

Let A = {α ∈ I : µ + α ∈ F}, B = {α ∈ I : ν + α ∈ F} and
C = {α ∈ I : µ ∧ ν + α ∈ F}. Now we have to show

inf C = (inf A) ∧ (inf B).

α ∈ C ⇒ µ ∧ ν + α ∈ F
⇒ µ + α ∈ F and ν + α ∈ F
⇒ α ∈ A and α ∈ B.

Therefore C ⊆ A and C ⊆ B. Hence inf C ≥ inf A and inf C ≥ inf B.
If inf C > inf A then ∃γ : inf C > γ > inf A. Now we have to show inf C = inf B.
Assume that inf C > inf B then ∃β : inf C > β > inf B. Therefore

inf C > β ∨ γ > inf A and inf C > β ∨ γ > inf B

and hence β ∨ γ ∈ A and β ∨ γ ∈ B. Thus µ + β ∨ γ ∈ F and ν + β ∨ γ ∈ F . So
(µ + β ∨ γ)∧ (ν + β ∨ γ) = µ∧ ν + β ∨ γ. Therefore β ∨ γ ∈ C and so β ∨ γ > inf C. This is
a contradiction. Therefore inf C = (inf A) ∧ (inf B). So

1− inf C = 1− (inf A) ∧ (inf B)
= (1− inf A) ∧ (1− inf B).

Therefore
ϕ(µ ∧ ν) = ϕ(µ) ∧ ϕ(ν).
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9.1.7 Definition
A fuzzy filter ϕ is said to be prime if it satisfies,
∀ µ, ν ∈ IX , ϕ(µ ∨ ν) = ϕ(µ) ∨ ϕ(ν).

9.1.8 Definition
A fuzzy filter ϕ is said to be stratified if
∀ α ∈ [0, 1], ϕ(α1X) = α ∧ ϕ(1).

9.1.9 Proposition
Given a fuzzy stratified filter ϕ, if for any µ ∈ IX we define,

ϕ̃(µ) = inf
ε∈I0

ϕ(µ + ε)

then ϕ̃ is also a fuzzy stratified filter finer than that ϕ which will be called the saturated
hull of ϕ.

Proof.

Let ϕ be a fuzzy stratified filter and

ϕ̃(µ) = inf
ε∈I0

ϕ(µ + ε).

Then
ϕ̃(0) = inf

ε∈I0
ε ∧ ϕ(1) = 0.

ϕ̃(µ ∧ ν) = inf
ε∈I0

ϕ(µ ∧ ν + ε)

= inf
ε∈Io

ϕ(µ + ε ∧ ν + ε)

= inf
ε∈I0

ϕ(µ + ε) ∧ inf
ε∈I0

ϕ(ν + ε)

= ϕ̃(µ) ∧ ϕ̃(ν).

ϕ̃(α1X) = inf
ε∈I0

ϕ(α1X + ε) = inf
ε∈I0

(α + ε) ∧ ϕ(1) = α ∧ ϕ(1) = α ∧ ϕ̃(1).

Finally, since ϕ is non-decreasing, it follows that ϕ̃ is finer than ϕ.

9.1.10 Definition
A fuzzy filter ϕ is said to be saturated if it is stratified and ϕ̃ = ϕ.

9.1.11 Proposition
A fuzzy stratified filter ϕ on X is saturated iff for each family (µε)ε∈I0 ⊆ IX we have

ϕ(sup
ε∈I0

(µε − ε)) ≥ inf
ε∈I0

ϕ(µε).

Proof.

(⇒)
Let ϕ be saturated, {µε}ε∈I0 ⊆ IX and µ = sup

ε∈I0

(µε − ε). Then

ϕ(µ) = ϕ̃(µ) = inf
ε∈I0

ϕ(µ + ε).

But we have ∀ ε ∈ I0, µ + ε ≥ µε.
Therefore ∀ ε ∈ I0, ϕ(µ + ε) ≥ ϕ(µε) and hence

ϕ(µ) = inf
ε∈I0

ϕ(µ + ε)

≥ inf
ε∈I0

ϕ(µε).
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(⇐)
Conversly, if for each family {µε}ε∈I0 ⊆ IX ,

ϕ(sup
ε∈I0

(µε − ε)) ≥ inf
ε∈I0

ϕ(µε).

Then for any µ ∈ IX , we can consider the family {µ + ε}ε∈I0 ⊆ IX and we have

ϕ(sup
ε∈I0

(µ + ε− ε)) ≥ inf
ε∈I0

ϕ(µ + ε).

Thus ϕ(µ) ≥ ϕ̃(µ). Therefore ϕ(µ) = ϕ̃(µ) and hence ϕ = ϕ̃.
¤

9.2 Fuzzy Filters with Characteristic 1

We will see in chapter 10 that a super uniformity is a fuzzy filter with characteristic 1 plus
other conditions. So let’s investigate some properties of fuzzy filters with characteristic 1.

9.2.1 Proposition
Let ϕ be a fuzzy filter on X with c(ϕ) = 1. For each α ∈ (0, 1] the collection

ϕα = {µ ∈ IX : ϕ(µ) ≥ α}
is a prefilter. Furthermore the family {ϕα}α∈I0 is non-increasing and for α ∈ I0, ϕα =
∩

β<α
ϕβ .

Proof.

Let α ∈ I0. Then
1 ∈ ϕα and 0 6∈ ϕα and so ϕα 6= ∅.

Let µ, ν ∈ ϕα. Then ϕ(µ) ≥ α and ϕ(ν) ≥ α. Therefore ϕ(µ ∧ ν) = ϕ(µ) ∧ ϕ(ν) ≥ α
and hence µ ∧ ν ∈ ϕα.

Let µ ∈ ϕα and µ ≤ ν. Then ϕ(µ) ≥ α and ϕ(µ) ≤ ϕ(ν). Therefore ϕ(µ) ≥ α and so
ν ∈ ϕα.

Hence ϕα is a prefilter.
It is easy to see that

0 < β ≤ α ≤ 1 ⇒ ϕβ ⊇ ϕα.

Let α ∈ I0. Then ∀ β < α, ϕα ⊆ ϕβ . Therefore ϕα ⊆ ∩
β<α

ϕβ .

Let µ ∈ ∩
β<α

ϕβ . Then ∀ β < α, µ ∈ ϕβ . Therefore ∀ β < a , ϕ(µ) ≥ β and so

ϕ(µ) ≥ sup
β<α

β = α. So µ ∈ ϕα and hence ϕα = ∩
β<α

ϕβ .

¤

We call ϕα the α-level prefilter of the given fuzzy filter ϕ and the construction

ϕ −→ {ϕα}α∈I0

will be called the decomposition of ϕ into the system of its α-level prefilters.

9.2.2 Lemma
Let {F(α)}α∈(0,1) be a non-increasing collection of prefilters on a set X. Then for µ ∈ IX

let
Aµ = {α ∈ (0, 1) : µ ∈ F(α)}.

Then Aµ = ∅ or ∃ β ∈ (0, 1) : Aµ = (0, β) or Aµ = (0, β].
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Proof.

Let Aµ 6= ∅andβ ∈ Aµ. Then µ ∈ F(β). If α < β then µ ∈ F(β) ⊆ F(α).
¤

9.2.3 Proposition
Let {F(α)}α∈(0,1) be a non-increasing collection of prefilters on a set X. If for any µ ∈ IX

we define
ϕ(µ) = sup{α ∈ (0, 1) : µ ∈ F(α)}

then ϕ is a fuzzy filter with c(ϕ) = 1.
Furthermore F(α) is exactly the α-level prefilter ϕα of ϕ iff the collection {Fα}α∈(0,1)

satisfies the condition that any α ∈ (0, 1), F(α) = ∩
β<α

F(β).

Proof.
Let {F(α)}α∈(0,1) be a non-increasing collection of prefilters. Then

0 < α ≤ β < 1 ⇒ F(α) ⊇ F(β),

ϕ(0) = sup ∅ = 0 and ϕ(1) = sup(0, 1) = 1.

We have to show

ϕ(µ ∧ ν) = ϕ(µ) ∧ ϕ(ν). That is sup Aµ∧ν = sup Aµ ∧ sup Aν .

Now
α ∈ Aµ∧ν ⇒ µ ∧ ν ∈ F(α)

⇒ µ ∈ F(α) and ν ∈ F(α)
⇒ α ∈ Aµ and α ∈ Aν .

Therefore Aµ∧ν ⊆ Aµ and Aµ∧ν ⊆ Aν . Hence sup Aµ∧ν ≤ supAν and sup Aµ∧ν ≤
supAν .

If sup Aµ∧ν < supAµ then ∃β : sup Aµ∧ν < β < supAµ. Now we have to show
supAµ∧ν = sup Aν .

Assume that sup Aµ∧ν < sup Aν then ∃ γ : sup Aµ∧ν < γ < sup Aν . Therefore

supAµ∧ν < β ∧ γ < sup Aµ and sup Aµ∧ν < β ∧ γ < supAν

and hence β ∧ γ ∈ Aµ and β ∧ γ ∈ Aν . Therefore µ ∈ F(β ∧ γ) and ν ∈ F(β ∧ γ)
and so µ ∧ ν ∈ F(β ∧ γ). Hence β ∧ γ < sup Aµ∧ν . This is a contradiction. Therefore
supAµ∧ν = sup Aµ ∧Aν . Thus

ϕ(µ ∧ ν) = ϕ(µ) ∧ ϕ(ν).

Therefore ϕ is a fuzzy filter.
(⇒)

If F(α) is exactly the α-level prefilter ϕα of ϕ then by above proposition for any α ∈ (0, 1)

F(α) = ∩
β<α

F(β).

(⇐)
Let the collection {F(α)}α∈(0,1) satisfy the condition that any α ∈ I0, F(α) = ∩

β<α
F(β).

Let γ ∈ (0, 1). Then

F(γ) = ∩
β<γ

F(β) and ϕγ = {µ ∈ IX : ϕ(µ) ≥ γ}.

Now we have to show F(γ) = ϕγ .
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Let µ ∈ F(γ). Then ∀ β < γ, µ ∈ F(β). Therefore

ϕ(µ) = sup{α ∈ I0 : µ ∈ F(α)} ≥ γ.

Therefore µ ∈ ϕγ .
Let µ ∈ ϕγ . Then ϕ(µ) ≥ γ. Thus

sup{α ∈ I0 : µ ∈ F(α)} ≥ γ.

Therefore ∀ α < γ, µ ∈ F(α) and hence µ ∈ F(γ).
¤

9.2.4 Proposition
Let ϕ be a fuzzy filter on X with c(ϕ) = 1. If ϕ is prime then for all α ∈ I0, ϕα is prime.

Proof.

Let α ∈ I0, µ ∨ ν ∈ ϕα. Then ϕ(µ ∨ ν) ≥ α.
Therefore ϕ(µ ∨ ν) = ϕ(µ) ∨ ϕ(ν) ≥ α and hence

ϕ(µ) ≥ α or ϕ(ν) ≥ α.

Thus
µ ∈ ϕα or ν ∈ ϕα.

Hence ϕα is prime prefilter.
¤

9.2.5 Proposition
Let {F(α)}α∈(0,1) be a non-increasing collection of prefilters on X. If for all α ∈ (0, 1), F(α)
is prime, then the fuzzy filter generated by this collection is prime.

Proof.

We have
ϕ(µ) = sup{α ∈ (0, 1) : µ ∈ F(α)} = sup Aµ

is a fuzzy filter. Then

α ∈ Aµ∨ν ⇒ µ ∨ ν ∈ F(α)
⇒ µ ∈ F(α) or ν ∈ F(α) [Since F(α) is prime ]
⇒ µ ∈ Fα or ν ∈ ϕα.

Therefore
Aµ∨ν ⊆ Aµ or Aµ∨ν ⊆ Aν

and so
sup Aµ∨ν ≤ sup Aν or sup Aµ∨ν ≤ supAν .

Thus
sup Aµ∨ν ≤ sup Aµ ∨ supAν .

We have
α ∈ Aµ ⇒ α ∈ Aµ∨ν .

Therefore Aµ ⊆ Aµ∨ν and so sup Aµ ≤ supAµ∨ν . Similarly sup Aν ≤ sup Aµ∨ν . Therefore
supAµ ∨ supAν ≤ supAµ∨ν . Hence sup Aµ ∨ sup Aν = supAµ∨ν . Thus ϕ(µ ∨ ν) =
ϕ(µ) ∨ ϕ(ν).

¤

The proof of the following lemma is straightforward.
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9.2.6 Lemma
Let ϕ be fuzzy filter with c(ϕ) = 1. then

∀ α ∈ [0, 1], ϕ(α1X) = α.

9.2.7 Proposition
Let ϕ be a fuzzy filter on X with c(ϕ) = 1. If ϕ is stratified then for all α ∈ I0, C(ϕα) =
[0, α).

Proof.

Let α ∈ I0. Then
ϕα = {µ ∈ IX : ϕ(µ) ≥ α}

is a prefilter. we have
C(ϕα) = {β ∈ I : β1X ∈ ϕα}.

Let γ < α. Then ϕ(γ1X) = γ < α. Therefore γ1X /∈ ϕα. Thus γ ∈ C(ϕα).
Let γ ≥ α. Then ϕ(γ1X) = γ ≥ α. Therefore γ1X ∈ ϕα. Thus γ /∈ C(ϕα).
Hence C(ϕα) = [0, α).

¤

9.2.8 Proposition
Let {F(α)}α∈(0,1) be a non-increasing collection of prefilters on X. If for all α ∈ (0, 1), C(F(α)) =
[0, α) then the fuzzy filter generated by this collection is stratified.

Proof.

Let {F(α)}α∈(0,1) be a non-increasing collection of prefilters on X and for any α ∈ (0, 1),

C(F(α)) = [0, α).

Thus
{β ∈ I : β1X /∈ F(α)} = [0, α).

Let
ϕ(µ) = sup{α ∈ (0, 1) : µ ∈ F(α)}.

Then ϕ is a fuzzy filter with c(ϕ) = 1. Now we have to show that ∀ γ ∈ I, ϕ(γ1X) = γ.
Let γ ∈ I. Then

γ1X /∈ F(α) for γ < α

and
γ1X ∈ F(α) for γ ≥ α.

Therefore
ϕ(γ1X) = sup(0, γ] = γ.

Hence f is stratified.
¤

9.2.9 Proposition
Let ϕ be a fuzzy filter on X with c(ϕ) = 1. If ϕ is saturated, then for all α ∈ I0, ϕα is
saturated.
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Proof.

Let α ∈ I0 and ∀ ε ∈ I0, µ + ε ∈ ϕα. Then

∀ ε ∈ I0, ϕ(µ + ε) ≥ α.

Since ϕ is a saturated fuzzy filter and so

ϕ(µ) = inf
ε∈I0

ϕ(µ + ε) ≥ α.

Therefore µ ∈ ϕα. Hence ϕα is a saturated prefilter.
¤

9.2.10 Proposition
Let {F(α)}α∈(0,1) be a non-increasing collection of prefilters on X such that for each α ∈
(0, 1), C(F(α)) = [0, α). If for all α ∈ (0, 1), F(α) is saturated, then the fuzzy filter
generated by the collection is saturated.

Proof.

Let {F(α)}α∈(0,1) be a non-increasing collection of saturated prefilters on X and for each
α ∈ (0, 1), C(F(α)) = [0, α). Then we have

ϕ(µ) = sup{α ∈ (0, 1) : µ ∈ F(α)}
is a stratified fuzzy filter.

Let γ < inf
ε∈I0

ϕ(µ + ε). Then ∀ ε ∈ I0, ϕ(µ + ε) > γ and hence

∀ ε ∈ I0, µ + ε ∈ F(α).

But F(γ) is saturated. So µ ∈ F(γ) and hence ϕ(µ) ≥ γ. Consequently,

ϕ(µ) ≥ inf
ε∈I0

ϕ(µ + ε) = ϕ̃(µ).

Hence ϕ(µ) = ϕ̃(µ). Thus ϕ is saturated.
¤

9.2.11 Proposition
Let ϕ be fuzzy filter with c(ϕ) = 1. Then for all α ∈ I0, we have ϕ̃α = ϕ̃α.

Proof.

Let α ∈ I0. Then

µ ∈ ϕ̃α ⇐⇒ ∀ ε ∈ I0, µ + ε ∈ ϕα

⇐⇒ ∀ ε ∈ Io, ϕ(µ + ε) ≥ α
⇐⇒ ϕ̃(µ) = inf

ε∈I0
ϕ(µ + ε) ≥ α

⇐⇒ µ ∈ ϕ̃α.

¤

9.2.12 Proposition
Let {F(α)}α∈(0,1) be a non-increasing collection of prefilters on X such that for each α ∈
(0, 1), C(F(α)) = [0, α). The saturated hull of the fuzzy filter generated {F(α)}α∈(0,1) is

just the fuzzy filter generated by {F̃(α)}α∈(0,1).
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Proof.

For µ ∈ IX , let
ϕ(µ) = sup{α ∈ (0, 1) : µ ∈ F(α)}

and
?
ϕ(µ) = sup{α ∈ (0, 1) : µ ∈ F̃(α)}.

Now we have to show ϕ̃(µ) =
?
ϕ(µ).

Let γ <
?
ϕ(µ). Then µ ∈ F̃(γ). Therefore

∀ ε ∈ I0, µ + ε ∈ F(γ).

So
∀ ε ∈ I0, ϕ(µ + ε) ≥ α.

Therefore
ϕ̃(µ) = inf

ε∈I0
ϕ(µ + ε) ≥ γ.

Hence ϕ̃(µ) ≥ ?
ϕ(µ).

On the other hand let γ < ϕ̃(µ). Then

∀ ε ∈ I0, ϕ(µ + ε) > γ.

So
∀ ε ∈ I0, µ + ε ∈ F(γ).

Therefore µ ∈ F̃(γ) and hence
?
ϕ(µ) ≥ γ. Consequently,

?
ϕ(µ) ≥ ϕ̃(µ).

Hence
?
ϕ(µ) = ϕ̃(µ).

¤

9.3 Fuzzy Filters From G-Filters and G-Filters From
Fuzzy Filters

If f : 2X → I is a g-filter we define ϕf : IX → I by

ϕf (µ) def= sup
α∈(0,1)

f(µα) ∧ α.

If ϕ : IX → I is a f-filter we define fϕ : 2X → I by

fϕ(A) def= ϕ(1A).

9.3.1 Theorem
Let X be a set, f a g-filter on X and ϕ a f-filter on X. Then

1. ϕf is a stratified f-filter and c(ϕf ) = c(f);

2. If f is prime then so is ϕf ;

3. fϕ is a g-filter and c(fϕ) = c(ϕ);

4. If ϕ is prime then so is fϕ;

5. fϕf
= f ;

6. ϕfϕ ≤ ϕ.
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Proof.

(1)
Firstly:

c(ϕf ) = ϕf (1) = sup
α∈(0,1)

f(1α) ∧ α = sup
α∈(0,1)

f(X) ∧ α = f(X) = c(f),

ϕf (0) = sup
β∈(0,1)

f(0β) ∧ β = sup
β∈(0,1)

f(∅) ∧ β = 0

and for α ∈ (0, 1] we have:

ϕf (α1X) = sup
β∈(0,1)

f(α1β
X) ∧ β = sup

β∈(0,α)

f(X) ∧ β = f(X) ∧ α = c(f) ∧ α = c(ϕf ) ∧ α.

If ϕf (µ) ∧ ϕf (ν) > t then there exists α1, α2 > t such that f(µα1) > t and f(να2) > t.
Let α = α1 ∧ α2. Then α > t and

f((µ ∧ ν)α) = f(µα ∩ να) = f(µα) ∧ f(να) ≥ f(µα1) ∧ f(να2) > t.

Therefore

ϕf (µ ∧ ν) = sup
β∈(0,1)

f((µ ∧ ν)β) ∧ β ≥ f((µ ∧ ν)α) ∧ α > t.

Consequently
ϕf (µ ∧ ν) ≥ ϕf (µ) ∧ ϕf (ν).

Let µ ≤ ν. Then for each α ∈ (0, 1) we have µα ⊆ να. Hence

ϕf (µ) = sup
α∈(0,1)

f(µα) ∧ α ≤ sup
α∈(0,1)

f(να) ∧ α = ϕf (ν).

(2)
ϕf (µ ∨ ν) = sup

α∈(0,1)

f((µ ∨ ν)α) ∧ α

= sup
α∈(0,1)

f(µα ∪ να) ∧ α

= sup
α∈(0,1)

(f(µα) ∨ f(να)) ∧ α

= sup
α∈(0,1)

((f(µα) ∧ α) ∨ (f(να) ∧ α))

= sup
α∈(0,1)

(f(µα) ∧ α) ∨ sup
α∈(0,1)

(f(να) ∧ α)

= ϕf (µ) ∨ ϕf (ν).

(3)

fϕ(∅) = ϕ(1∅) = 0.

fϕ(A ∩B) = ϕ(1A∩B) = ϕ(1A ∧ 1B) = fϕ(A) ∧ fϕ(B).

If A ⊆ B then
fϕ(A) = ϕ(1A) ≤ ϕ(1B) = fϕ(B).

Finally,
c(fϕ) = fϕ(X) = ϕ(c1) = c(ϕ).

(4)

fϕ(A ∪B) = ϕ(1A∪B) = ϕ(1A ∨ 1B) = ϕ(1A) ∨ ϕ(1B) = fϕ(A) ∨ fϕ(B).
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(5)
Let A ⊆ X Then

fϕf
(A) = ϕf (1A) = sup

α∈(0,1)

f(1α
A) ∧ α = sup

α∈(0,1)

f(A) ∧ α = f(A).

(6)
Let µ ∈ IX . Then

ϕfϕ(µ) = sup
α∈(0,1)

fϕ(µα)∧α = sup
α∈(0,1)

ϕ(1µα)∧α = sup
α∈(0,1)

ϕ(1µα∧α1X) ≤ ϕ( sup
α∈(0,1)

1µα∧α1X) = ϕ(µ).

¤

We have seen how to obtain a fuzzy filter from a g-filter and vice-versa. We now show
that

f 7→ ϕf

is an injective function.

9.3.2 Theorem
If f and g are different g-filters then ϕf and ϕg are different.

Proof.

If f 6= g then there exists A such that α
def= f(A) > g(A) def= β. Let µ

def= 1A. Then

ϕf (µ) = sup f(A) ∧ γ
γ∈(0,1)

= sup α ∧ γ
γ∈(0,1)

= α > β
= ϕg(µ).

¤

So the collection of all g-filters on a set X embeds into the collection of all fuzzy filters
on X.

More information regarding fuzzy filter can be found in [20, 21, 22, 40].

99



Chapter 10

Super Uniform Spaces

10.1 Introduction

In [28] the notion of a super uniformity introduced and studied.

10.1.1 Definition
A fuzzy α-uniformity with α ∈ I0 on X is a subset Uα ⊆ IX×X which satisfies the following
conditions:

1. Uα is a saturated prefilter with characteristic set [0, α);

2. ∀ σ ∈ Uα, ∀ x ∈ X, σ(x, x) ≥ α;

3. ∀ σ ∈ Uα, σs ∈ Uα;

4. ∀ σ ∈ Uα, ∀ ε ∈ I0, ∃ψ ∈ Uα : ψ ◦ ψ ≤ σ + ε.

We call (X,Uα) a fuzzy α-uniform space and the elements of Uα, fuzzy α-entourages.

Note: For α = 1 they are the fuzzy uniformities on X.

10.1.2 Definition
A fuzzy α-uniform base with α ∈ I0 on X is a subset Bα ⊆ IX×X which satifies the following
conditions:

1. Bα is a prefilter base with characteristic set [0, α);

2. ∀ σ ∈ Bα, ∀ x ∈ X, σ(x, x) ≥ α;

3. ∀ σ ∈ Bα, ∀ ε ∈ I0, ∃ψ ∈ Bα : ψ ≤ σs + ε;

4. ∀ σ ∈ Bα, ∀ ε ∈ I0, ∃ψ ∈ Bα : ψ ◦ ψ ≤ σ + ε.

10.1.3 Definition
A super uniformity on X is a function δ : IX×X −→ I which satifies the following conditions:

1. δ is a saturated fuzzy filter;

2. ∀ σ ∈ IX×X , inf
x∈X

σ(x, x) ≥ δ(σ);

3. ∀ σ ∈ IX×X , δ(σ) = δ(σs);

4. ∀ σ ∈ IX×X , ∀ ε ∈ I0, ∃ψ ∈ IX×X : ψ ◦ ψ − ε ≤ σ and δ(σ) ≤ δ(ψ).
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Note From the definition we can conclude that

δ(σ) ≥ inf
x,y∈X

σ(x, y) = inf σ.

10.1.4 Proposition
If δ is a super uniformity on X, then for all α ∈ I0, δα = {σ ∈ IX×X : δ(σ) ≥ α} is a fuzzy
α-uniformity. Moreover, δα = ∩

β<α
δβ .

Proof.

Let δ : IX×X −→ I be a super uniformity and α ∈ I0. Then
(i) δ is a saturated fuzzy filter. Therefore

δα = {σ ∈ IX×X : δ(σ) ≥ α}.

is a saturated prefilter with C(δα) = [0, α).
(ii) Let σ ∈ δα and x ∈ X. Then

σ(x, x) ≥ inf
x∈X

σ(x, x) ≥ δ(σ) ≥ α.

(iii) Let σ ∈ δα. Then
δ(σs) = δ(σ) ≥ α ⇒ σs ∈ δα.

(iv) Let σ ∈ δα and ε ∈ I0. Then ∃ψ ∈ IX×X such that

ψ ◦ ψ − ε ≤ σ and δ(σ) ≤ δ(ψ).

Thus ψ ∈ δα such that ψ ◦ ψ ≤ σ + ε.
Since δ is a fuzzy filter. So we have for α ∈ I0,

δα = ∩
β<α

δβ .

Hence the result.
¤

10.1.5 Proposition
Let {Uα}α∈(0,1) be a non-increasing collection of fuzzy α-uniformity on a setX such that for
each α ∈ (0, 1),Uα = ∩

β<α
Uβ . If for each σ ∈ IX×X we define

δ(σ) = sup{α ∈ (0, 1) : σ ∈ Uα}.

Then δ is a super uniformity.

Proof.

Let {Uα}α∈(0,1) be a non-increasing collection of fuzzy α-uniformities on a setX such
that for each α ∈ (0, 1),Uα = ∩

β<α
Uβ . Then for each σ ∈ IX×X

δ(σ) = sup{α ∈ (0, 1) : σ ∈ Uα}

is a saturated fuzzy fiter.

Let σ ∈ IX×X and γ < δ(σ). Then σ ∈ Uγ and hence ∀ x ∈ X, σ(x, x) ≥ γ. So

inf
x∈X

σ(x, x) ≥ γ.
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Therefore
inf

x∈X
σ(x, x) ≥ δ(σ).

We have
δ(σ) = sup{α ∈ (0, 1) : σ ∈ Uα}

= sup{α ∈ (0, 1) : σs ∈ Uα}
= δ(σs).

Let σ ∈ IX×X and ε ∈ I0. Let δ(σ) = α > 0. Then ∀ β < α, σ ∈ Uβ . So

σ ∈ ∩
β<α

Uβ = Uα.

Therefore ∃ψ ∈ Uα such that ψ ◦ ψ ≤ σ + ε and we have δ(σ) = α ≤ δ(ψ).
¤

10.1.6 Theorem
Let {D(α)}α∈(0,1) be a non-decreasing collection of uniformities on a set X. For each α ∈
(0, 1) let

D(α) = {σ ∈ IX×X : ∀β < α, ∀γ < β, σγ ∈ D(β)} = ∩
β<α

(D(β))β .

Then:

1. D(α) is a fuzzy α-uniformity, which we call the fuzzy α-uniformity associated with the
collection {D(α)}α∈(0,1),

2. The family {D(α)}α∈(0,1) is non-increasing,

3. ∀ α ∈ (0, 1), D(α) = ∩
α′<α

D(α′).

Furthermore, if for each σ ∈ IX×X we define

δ(σ) = sup{α ∈ (0, 1) : σ ∈ D(α)},

we obtain a super uniformity δ such that for each α ∈ (0, 1) the corresponding α-level
uniformities are

δα = {σ ∈ IX×X : δ(σ) ≥ α} = D(α) and δ1 = ∩
α<1

D(α).

We call δ the super uniformity generated by the collection {D(α)}α∈(0,1).

Proof.
(a) We shall first prove that for each α ∈ (0, 1) the collection
D(α) = {σ ∈ IX×X : ∀β < α, ∀γ < β, σγ ∈ D(β)} is a fuzzy α-uniformity.

C(D(α)) = {t ∈ I : t1X /∈ D(α)} = {t ∈ I : ∃β < α, ∃γ < β, (t1X)γ 6∈ D(β)}
= {t ∈ I : ∃β < α, ∃γ < β, t ≤ γ} = {t ∈ I : ∃β < α, t < β} = {t ∈ I : t < α}
= [0, α).

D(α) = ∩
β<α

(D(β))β is a saturated prefilter because it is an intersection of saturated

prefilters.
Let σ ∈ D(α) and x ∈ X. For each β < α and each γ < β we have σγ ∈ D(β) and hence

(x, x) ∈ σγ . Thus for each β < α and each γ < β we have σ(x, x) > γ. So for each β < α
we have σ(x, x) ≥ β and hence σ(x, x) ≥ α.
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Let σ ∈ D(α). Since (σγ)s = (σs)γ . Therefore σs ∈ D(α).
Let σ ∈ D(α), ε ∈ I0 and choose α0, α1, . . . , αn such that 0 = α0 < α1 < α2 < · · · <

αn = α and αi − αi−1 < 1
2ε for each i ∈ {1, . . . , n}.

For i ∈ {0, 1, . . . , n−1} we have σαi ∈ D(αi+1) and so there exists Uαi+1 ∈ D(αi+1) such
that Uαi+1 ◦ Uαi+1 ⊆ σαi .

Let U ′
α1

= Uα1 and U ′
αi

= ∩
j≤i

Uαj for each i ∈ {2, . . . , n}. Then, since for each i ∈
{1, . . . , n} and each j ∈ {1, . . . , i}, Uαj ∈ D(αj) ⊆ D(αi), we have U ′

αi
∈ D(αi) and U ′

α1
⊇

U ′
α2
⊇ · · · ⊇ U ′

αn
. So we can state that:

for any i ∈ {1, . . . , n}, there exists Uαi
∈ D(αi) such that Uαi

◦ Uαi
⊆ σαi−1 and Uα1 ⊇

Uα2 ⊇ · · · ⊇ Uαn . Let
Uα0 := X ×X

and let
ψ := sup

i∈{1,...,n}
αi1X ∧ 1Uαi−1

.

Thus ψ ∈ D(α) since if 0 ≤ γ < β < α then for some i ∈ {0, . . . , n − 1} we have
αi ≤ β < αi+1. Thus γ < αi+1 and hence ψγ ⊇ ψαi+1 = Uαi

∈ D(αi) ⊆ D(β). It follows
that ψγ ∈ D(β) and so ψ ∈ D(α).

If σ(x, y) > αn−2 then σ(x, y) + ε > αn−2 + (αn − αn−2) = αn = α and hence we have
(ψ ◦ ψ)(x, y) ≤ α ≤ σ(x, y) + ε.

If σ(x, y) ≤ αn−2 there exists some i ≤ n − 2 such that αi−1 ≤ σ(x, y) ≤ αi. Since
(x, y) /∈ σαi we have (x, y) /∈ Uαi+1 ◦ Uαi+1 and so for no z ∈ X do we have (x, z) ∈ Uαi+1

and (z, y) ∈ Uαi+1 . In other words, for each z ∈ X either (x, z) /∈ Uαi+1 or (z, y) /∈ Uαi+1 .
Thus for each z ∈ X either ψ(x, z) ≤ αi+1 or ψ(z, y) ≤ αi+1. Consequently,

ψ ◦ ψ(x, y) = sup ψ
z∈X

(x, z) ∧ ψ(z, y) ≤ αi+1 < αi−1 + ε ≤ σ(x, y) + ε

Therefore there exists ψ ∈ D(α) such that ψ ◦ ψ ≤ σ + ε.

For each α ∈ (0, 1) we have

∩
α′<α

D(α′) = {σ ∈ IX×X : ∀α′ < α, ∀β < α′, ∀γ < β, σγ ∈ D(β)}
= {σ ∈ IX×X : ∀β < α, ∀γ < β, σγ ∈ D(β)} = D(α).

We now appeal to (10.1.5) and claim that the mapping defined for each σ ∈ IX×X by

δ(σ) = sup{α ∈ (0, 1) : σ ∈ D(α)}
is a super uniformity such that for each α ∈ (0, 1) the corresponding α-level uniformities

are
δα = {σ ∈ IX×X : δ(σ) ≥ α} = D(α) and δ1 = ∩

α<1
δα = ∩

α<1
D(α).

In particular, for a fuzzy uniformity D, the collection {D(α) = Dα}α∈(0,1), is a non-
decreasing collection of uniformities and in that case, the fuzzy α-uniformity associated
with this collection is D(α) = ∩

β<α
(Dβ)β .

¤

The proof of the following corollary is straightforward.

10.1.7 Corollary
Let (X,D) be uniform space. Then the super uniformity δD generated by the collection
{D(α) = D}α∈(0,1) is

δD(σ) = sup{α ∈ (0, 1) : σ ∈ ∩
β<α

Dβ} = sup{α : α ∈ Dα} = sup{α : σα ∈ D}.
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10.1.8 Definition
A non-decreasing collection of uniformities {D(α)}α∈(0,1) is said to be generated from below
if for each α ∈ (0, 1) we have D(α) = ∪

α′<α
D(α′).

In the case {D(α) = Dα}α∈(0,1), where D is a fuzzy uniformity, it is easy to check that
it is generated from below.

10.1.9 Theorem
The super uniformities generated by two different, non-decreasing collections of uniformities,
which are generated from below, are different.

Proof.

Let {D(α)}α∈(0,1) and {D(α′)}α∈(0,1) two different non-decreasing collections of uniformi-
ties which are generated from below. Then there exists α ∈ (0, 1) and U ⊆ X×X such that
U ∈ D(α) − D′(α). Since U ∈ D(α) = ∪

α′<α
D(α′), there exists α′ < α such that U ∈ D(α′).

We now consider σU = (α1X ∧ 1U ) ∨ α′1X ∈ IX×X .
? If β ∈ [α′, α) and γ < β then

σγ
U =

{
U if γ ≥ α′

X ×X if γ < α′.

Thus in any case σU
γ ∈ D(α′) ⊆ D(β).

? If β < α′ and γ < β then σU
γ = X ×X ∈ D(β).

Therefore, for each β < α and each γ < β we have σU
γ ∈ D(β), hence σU ∈ D(α) and

so δ(σU ) ≥ α.
On the other hand we know U /∈ D′(α). Thus for each α′′ ∈ (α′, α) there exists γ and

β such that α′ < γ < β < α′′ < α and σU
γ = U /∈ D′(β). Thus σU /∈ D′(α′′) and therefore

δ′(σU ) ≤ α′. Consequently δ and δ′ are different.

10.1.10 Theorem
Let (X, δ) be super uniform space. Then

Dδ = {σα : α < 1, δ(σ) = 1}

is a uniformity on X.

Proof.

If σα = ∅ ∈ Dδ then σ ≤ α1X . Therefore δ(σ) = 1 ≤ δ(α1X) = α and this contradiction
shows ∅ /∈ Dδ. δ(1) = 1 and σα = X ×X for any α < 1. Therefore X ×X ∈ Dδ.

Let σα ∈ Dδ and σα ⊆ U . Then σ ≤ α1X ∨ 1σα ≤ α1X ∨ 1U . Therefore δ(σ) = 1 ≤
δ(α1X ∨ 1U ) and for β ∈ [α, 1) we have (α1X ∨ 1U )β = U ∈ Dδ.

Let σα, ψβ ∈ Dδ. Then δ(σ ∧ ψ) = 1 and (σ ∧ ψ)α∨β ∈ Dδ. But (σ ∧ ψ)α∨β ⊆ σα ∩ ψβ .
Therefore σα ∩ ψβ ∈ Dδ.

Let σα ∈ Dδ. For each x ∈ X we know that σ(x, x) ≥ δ(σ) = 1 > α and so (x, x) ∈ σα.
Therefore ∆ ⊆ σα.

Let σα ∈ Dδ. Since (σα)s = (σs)α, we have (σα)s ∈ Dδ.
Let σα ∈ Dδ. We therefore have σ ∈ IX×X and ε = 1−α

2 > 0. Thus ∃ψ ∈ IX×X

such that ψ ◦ ψ ≤ σ + ε and δ(ψ) ≥ δ(σ) = 1. Hence for β = 1+α
2 ∈ (α, 1) we have

ψβ ◦ ψβ ⊆ (ψ ◦ ψ)β ⊆ (σ + ε)β = σβ−ε = σα. Thus ∃ψβ ∈ Dδ such that ψβ ◦ ψβ ⊆ σα.
¤
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10.1.11 Theorem
Let (X, δ) be a super uniform space. Then

Dδ = {σ ∈ IX×X : δ(σ) = 1}

is a fuzzy uniformity on X.

Proof.

We have 0 /∈ Dδ since δ(0) = 0. δ(1) = 1 and so 1 ∈ Dδ.
Let σ, ψ ∈ Dδ. Then δ(σ) = 1 and δ(ψ) = 1. So

δ(σ ∧ ψ) = δ(σ) ∧ δ(ψ) = 1.

Therefore σ ∧ ψ ∈ Dδ.
Let σ ∈ Dδ and σ ≤ ψ. Then 1 = δ(σ) ≤ δ(ψ). Therefore ψ ∈ Dδ. Hence Dδ is a

prefilter.
Let ∀ ε ∈ I0, σ + ε ∈ Dδ. Then ∀ ε ∈ I0, δ(σ + ε) = 1. So

δ̃(σ) = inf
ε∈I0

δ(σ + ε) = 1.

Therefore σ ∈ Dδ and hence Dσ is a saturated prefiter.

Let σ ∈ Dδ and x ∈ X. Then

σ(x, x) ≥ δ(σ) = 1.

Let σ ∈ Dδ. Then δ(σs) = δ(σ) = 1 and so σs ∈ Dδ.

Let σ ∈ Dδ, ε ∈ I0. Then ∃ψ ∈ IX×X such that ψ ◦ ψ − ε ≤ σ and 1 = δ(σ) ≤ δ(ψ).
Therefore ψ ∈ Dδ such that ψ ◦ ψ ≤ σ + ε. Therefore Dδ is a fuzzy uniform space.

¤

10.2 Uniformly Continuous Functions

10.2.1 Definition
Let (X,Uα) and (Y,Vα) be two fuzzy α-uniform spaces. Then a mapping f : (X,Uα) −→
(Y,Vα) is said to be a uniformly continuous if

∀ ψ ∈ Vα, (f × f)−1[ψ] ∈ Uα.

That is, ∀ ψ ∈ Vα, ∃σ ∈ Uα such that (f × f)[σ] ≤ ψ.

10.2.2 Definition
Let (X, δX) and (Y, δY ) be super uniform spaces. Then a mapping f : (X, δX) −→ (Y, δY )
is said to be uniformly continuous if

∀ ψ ∈ IY×Y , δX((f × f)−1[ψ]) ≥ δY (ψ).

10.2.3 Proposition
Let (X, δX) and (Y, δY ) be super uniform spaces. Then

1. f : (X, δX) −→ (Y, δY ) is uniformly continuous ⇒ ∀ α ∈ I0, f : (X, (δX)α) −→
(Y, (δY )α) is uniformly continuous.

2. ∀ α ∈ (0, 1), f : (X, (δX)α) −→ (Y, (δY )α) is uniformly continuous ⇒ f : (X, δX) −→
(Y, δY ) is uniformly continuous.
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Proof.

(1) Let ψ ∈ (δY )α. Then δY (ψ) ≥ α. Therefore

δX((f × f)−1[ψ]) ≥ δY [ψ] ≥ α.

Thus (f × f)−1[ψ] ∈ (δX)α.

(2) Let ψ ∈ IY×Y and α ∈ (0, 1) such that δY (ψ) ≥ α. Then ψ ∈ (δY )α and hence
(f × f)−1[ψ] ∈ (δX)α. Thus δX((f × f)−1[ψ]) ≥ α. Therefore δX((f × f)−1[ψ]) ≥ δY (ψ).

¤

10.2.4 Theorem
Let (X,D) and (Y,E) be uniform spaces. If f : (X,D) −→ (Y,E) is uniformly continuous
then f : (X, δD) −→ (Y, δE) is uniformly continuous.

Proof.

Let f : (X,D) −→ (Y,E) be uniformly continuous and ψ ∈ IY×Y .
If δE(ψ) = sup{α : ψα ∈ E} > t then ψt ∈ E and so (f × f)←(ψt) ∈ D. Therefore

((f × f)−1[ψ])t = (f × f)←(ψt) ∈ D.

So δD((f × f)−1[ψ]) ≥ t. Consequently,

δD((f × f)−1[ψ]) ≥ 1E(ψ).

¤

10.2.5 Theorem
Let (X, δX) and (Y, δY ) be super uniform spaces. If f : (X, δX) −→ (Y, δY ) is uniformly
continuous then f : (X,DδX

) −→ (Y,DδY
) is uniformly continuous.

Proof.

Let ψ ∈ DδY
. Then δY (ψ) = 1. Therefore

δX((f × f)−1[ψ]) ≥ δY [ψ] = 1.

and
(f × f)←(ψα) = ((f × f)−1[ψ])α ∈ DδX .

¤

10.2.6 Theorem
Given a fuzzy uniformity D on a set X, δD denote the super uniformity generated by
the collection {Dα}α∈(0,1). Suppose (X,D) and (Y, E) are fuzzy uniform spaces and f :
(X,D) −→ (Y, E) is uniformly continuous then f : (X, δD) −→ (Y, δE).

Proof.

Let f : (X,D) −→ (Y, E) is uniformly continuous and ψ ∈ IY×Y .
If δE(ψ) > α then ψ ∈ E(α). That is ∀ β < α, ∀ γ < β, ψγ ∈ Eβ and so ∃ ψ′ ∈

E and γ′ < β such that ψγ = ψ′γ
′
. Now (f × f)−1[ψ′] ∈ D and so

((f × f)−1[ψ])γ = (f × f)←(ψγ) = (f × f)←(ψ′γ
′
) = (f × f)−1[ψ′])γ′ ∈ Dβ .
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Therefore δD((f × f)−1[ψ]) ≥ α. Consequently,

δE(ψ) ≤ δD((f × f)−1[ψ]).

¤

10.2.7 Theorem
Let (X, δX) and (Y, δY ) be super uniform spaces. If f : (X,DX) −→ (Y, δY ) is uniformly
continuous then f : (X,DδX

) −→ (Y,DδY
) is uniformly continuous.

Proof.

Let ψ ∈ DδY
. Then δY (ψ) = 1. Therefore

δX((f × f)−1[ψ]) ≥ δY (ψ) = 1.

Hence (f × f)−1[ψ] ∈ DδX
.

¤

107



Chapter 11

Categorical Embeddings

In this chapter we establish categorical embeddings from the category of uniform spaces
into the categories of fuzzy uniform spaces, generalised uniform spaces and super uniform
spaces. We also obtain categorical embeddings from the categories of fuzzy uniform spaces
and generalised uniform spaces into the category of super uniform spaces. We show that
the category of fuzzy uniform spaces and the category of generalised uniform spaces are
isomorphic. These categorical relations are introduced and studied in [29].

11.1 Embedding into the Category of Fuzzy Uniform
Spaces

Let US denote the category of uniform spaces with uniformly continuous maps and let FUS
denote the category of fuzzy uniform spaces with uniformly continuous maps.

11.1.1 Theorem
Let

ωU : US −→ FUS, (X,D) 7→ (X,D1)

and let ωU leave maps unchanged.
Let

iU : FUS −→ US, (X,D) 7→ (X,D1)

and let iU leave maps unchanged.
Then

(a) ωU is a functor,

(b) iU is a functor,

(c) iU ◦ ωU = idUS ,

(d) ωU is co-adjoint.

Proof.

(a) We have if f : (X,D) −→ (Y,E) is uniformly continuous in US then f : (X,D1) −→
(Y,E1) is uniformly continuous in FUS.

Clearly ωU preserves compositions and identites.
Therefore ωU is a functor.

(b) We have if f : (X,D) −→ (Y, E) is a uniformly continuous in FUS then f : (X,D1) −→
(Y, E1) is uniformly continuous in US.

Clearly IU preserves compositions and identities.
Therefore IU is a functor.
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(c) Since (D1)1 = D, we have

(IU ◦ ωU )((X,D)) = IU (X,D1) = (X, (D1)1) = (X,D).

Therefore IU ◦ ωU = idUS .
(d) We have idX : (X, (D1)1) −→ (X,D) is uniformly continuous, since D ⊆ (D1)1.

We also have

f : (Y,D1) −→ (X,D) is uniformly continuous
⇐⇒ f : (Y,D) −→ (X,D1) is uniformly continuous [ since (D1)1 = D]
⇐⇒ f : (Y,D1) −→ (X, (D1)1) is uniformly continuous.

US
ωU

À
iU

FUS

(X,D1)
! f←− (Y,D)

(X,D)
idX↑ ↖f

(X, (D1)1) ←
f

(Y,D1)

For (X,D) ∈ Ob(FUS), ((X,D1), idX) is a ωU - co-universal arrow with domain (X,D).
Therefore ωU is a co-adjoint. ωU embeds the category US as a coreflective subcategory

of FUS.
¤

11.2 Embedding into the Category of Generalised Uni-
form Spaces

Let GUS denote the category of generalised uniform spaces with uniformly continuous maps.

11.2.1 Theorem
Let

εU : US −→ GUS, (X,D) 7→ (X, 1D)

and let εU leaves maps unchanged.
Let

γU : GUS −→ US, (X, d) 7→ (X, d0)

and let γU leaves maps unchanged.
Then

(a) εU is a functor,

(b) γU is a functor,

(c) γU ◦ εU = idUS ,

(d) εU is co-adjoint.

Proof.

(a) We have
(i) If f : (X,D) −→ (Y,E) is uniformly continuous then f : (X, 1D) −→ (Y, 1E) is

uniformly continuous.
(ii) εU preserves compositions and identities.
Therefore εU is a functor.

(b) We have
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(i) If f : (X, d) −→ (Y, e) is uniformly continuous then f : (X, d0) −→ (Y, e0) is uniformly
continuous.

(ii) γU preserves compositions and identities.
Therefore γU is a functor.

(c) We have
(γU ◦ εU )((X,D)) = γU ((X, 1D)) = (X, 10

D) = (X,D).

(d) First we have to show d ≤ 1d0 .

U ∈ d0 ⇐⇒ d(U) > 0.

We have d(U) > 0 ⇒ 1d0(U) = 1 and hence

d ≤ 1d0 .

So we have idX : (X, 1d0) −→ (X, d) is uniformly continuous.
We also have

f : (Y, 1D) −→ (X, d) is uniformly continuous
⇒ f : (Y,D) −→ (X, d0) is uniformly continuous [ Since 10

D = D]
⇒ f : (Y, 1D) −→ (X, 1d0) is uniformly continuous.

US
εU

À
γU

GUS

(X, d0)
!f←− (Y,D)

(X, d)
idX↑ ↖f

(X, 1d0) ←
f

(Y, 1D)

For (X, d) ∈ Ob(GUS), ((X, d0), idX) is a εU - co-universal arrow with codomain (X, d).
Therefore εU is a co-adjoint. εU embeds the category US as a coreflective subcategory

of FUS.
¤

Next we establish an isomorphim between FUS and GUS.

11.2.2 Theorem

FUS ∼= GUS

Proof.

Let
F : FUS −→ GUS, (X,D) 7→ (X, dD)

and F leaves maps unchanged.
We have seen in 8.1.6 that F is bijective. We also have:
(a) if f : (X,D) −→ (Y, E) is uniformly continuous then F (f) = f : (X, dD) −→ (Y, dE)

is uniformly continuous.
(b) F preserves composition and identities.
Therefore F is functor. Now we have to show there is functor G : GUS −→ FUS such

that G ◦ F = idFUS and F ◦G = idGUS . Let

G : GUS −→ FUS, (X, d) 7→ (X,Dd)

G leaves maps unchanged.
We have
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(a) If f : (X, d) −→ (Y, e) is uniformly continuous then G(f) = f : (X,Dd) −→ (Y,De)
is uniformly continuous.

(b) G preserves compositions and identities.
Therefore G is a functor. Now we have

(G ◦ F )((X,D)) = G((X, dD)) = (X,DdD ) = (X,D),

(F ◦G)((X, d)) = F ((X,Dd)) = (X, dDd
) = (X, d).

Hence the result.
¤

11.3 Embeddings into the Category of Super Uniform
Spaces

Let SUS denote the category of super uniform spaces with uniformly continuous maps.

11.3.1 Theorem
Let

λU : US −→ SUS, (X,D) 7→ (X, δD)

and let λU leaves maps unchanged.
let

kU : SUS −→ US, (X, δ) 7→ (X,Dδ)

and let kU leaves maps unchanged.
Then

(a) λU is a functor,

(b) kU is a functor,

(c) kU ◦ λU = idUS ,

(d) λU embeds the category US as a coreflective subcategory of SUS,

(e) If σ ∈ IX×X such that δ(σ) = 1 then δDδ
(σ) = 1.

Proof.

(a) We have
if f : (X,D) −→ (Y,E) is uniformly continuous then f : (X, δD) −→ (Y, δE) is uniformly

continuous.
λU preserves compositions and identities.
Therefore λU is a functor.

(b) We have
if f : (X, δX) −→ (Y, δY ) is uniformly continuous then f : (X,DδX ) −→ (Y,DδY is

uniformly continuous.
kU preserves compositions and identities.
Therefore kU is a functor.

(c) We have
(kU ◦ λU )((X,D)) = kU ((X, δD)) = (X,DδD).

Now we have to show D = DδD . We have

U ∈ DδD ⇐⇒ ∃α < 1, ∃σ ∈ IX×X , : δD(σ) = 1 and U = σα

⇐⇒ ∃α, ∃σ : U = σα and ∀ β < 1, σβ ∈ D
=⇒ U = σα ∈ D.
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Conversly if U ∈ D, let σ = 1U . Then σα = U for all α ∈ (0, 1) and so δD(U) = 1. It
follows that U = σα ∈ DδD .

(d) The injectivity of λU on morphisms follows from Theorem (10.1.9), together with the
fact that λU leaves underlying maps unchanged.

(e) If δ(σ) = 1 then for all α < 1, σα ∈ Dδ and so σ ∈ (Dδ)1. Therefore

δDδ
(σ) = sup{α : σ ∈ (Dδ)α} = 1.

¤

11.3.2 Theorem
Let

εF : FUS −→ SUS, (X,D) 7→ (X, δD)

and let εF leaves maps unchanged.
Let

γF : SUS −→ FUS, (X, δ) 7→ (X,Dδ)

and let γF leaves maps unchanged.
Then

(a) εF is a functor,

(b) γF is a functor,

(c) γF ◦ εF = idFUS ,

(d) εF embeds the category FUS as a coreflective subcategory of SUS,

(e) εF ◦ ωU = λU ,

(f) If σ ∈ IX×X such that δ(σ) = 1 then σDδ
(σ) = 1.

Proof.

(a) We have
if f : (X,D) −→ (Y, E) is uniformly continuous then f : (X, δD) −→ (Y, δE) is uniformly

continuous.
εF preserves compositions and identities.
Therefore εU is a functor.

(b) We have
if f : (X, δX) −→ (Y, δY ) is uniformly continuous then f : (X,DδX −→ (Y,DδY ) is

uniformly continuous.
γF preserves compositions and identities.
Therefore γF is a functor.

(c) We have
(γF ◦ εF )((X,D)) = γF ((X, δD)) = (X,DδD ).

Now we have to show that DδD = D. We have

DδD = {σ ∈ IX×X : δD(σ) = 1} = {σ ∈ IX×X : ∀ α < 1, σ ∈ D(α)}
= {σ ∈ IX×X : ∀ α < 1, ∀ β < α, ∀ γ < β, σγ ∈ Dβ}
= {σ ∈ IX×X : ∀ β < 1, ∀ γ < β, σγ ∈ Dβ}.

For any σ ∈ D and for any γ < β < 1 we have σγ ∈ Dβ and so D ⊆ D(δD). Thus for
each α ∈ (0, 1] we have Dα ⊆ (D(δD))α.
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On the other hand, for each α ∈ (0, 1],

(D(δD))α = {σα′ : α′ < α, σ ∈ D(δD)} = {σα′ : α′ < α, ∀β < 1, ∀γ < β, σγ ∈ Dβ} ⊆ Dα.

Therefore for each α ∈ (0, 1], (D(δD))α = Dα and so D(δD) = D [See Theorem 5.3.4].
(d) The injectivity of εF on morphisms follows from Theorem (10.1.9), together with the
fact that εF leaves underlying maps unchanged.
(e) For each (X,D) ∈ |US| we have

(εF ◦ ωU )((X,D)) = εF ((X,D1)) = (X, δD1)

and δD1 is the super uniformity generated by the collection {(D1)α}α∈(0,1). But for each
α ∈ (0, 1) we have

(D1)α = {σβ : β < α, σ ∈ D1} = D

and so δD1 is the super uniformity generated by D. That is,

(εF ◦ ωU )((X,D)) = (X, δD1) = (X, δD) = λU ((X,D)).

(f) If δ(σ) = 1 then σ ∈ Dδ = ∩
α<1

((Dδ)α)α. That is, δDδ
(σ) = 1.

¤

We have seen that there is a functor εF which embeds the category FUS into the category
SUS, thereby making SUS an extension of FUS. The categorical isomorphism

F : FUS → GUS, G : GUS → FUS

between FUS and GUS is established in [11.1.2]. We can therefore define

εG : GUS → SUS

by
εG = εF ◦G

and it follows that εG is a functor which embeds the category GUS into SUS. If we define

γG = F ◦ γF

then
γG ◦ εG = idGUS

and also
εG ◦ εU = λU .

Thus SUS is also an extension of the category GUS.

113



Bibliography

[1] J. Adamek, H. Herrlich and G. E. Strecker, Abstract and concrete categories, 1990,
Wiley-Interscience, New York.

[2] T. M. G. Ahsanullah, Some results on fuzzy neighbourhood spaces, Pure Math.
Manuscript 4(1985), 97- 106.

[3] T. M. G. Ahsanullah, Some properties of the level spaces of fuzzy neighbourhood spaces
and fuzzy neighbouhood groups, J. Bangladesh Acad.Sci. 13(1) (1989), 91-95.

[4] I. W. Alderton and F. Schwarz, Cartesian closed extensions of the category of uniform
spaces, Topology & Appl. 57 (1994), 95-109.

[5] A. A. Allam , K. M. Abd El-Hakeim and N. N. Morsi, On fuzzy neighbourhood spaces,
Fuzzy Sets and Systems 41 (1991), 201-212.

[6] G. Artico and R. Moresco, Fuzzy proximities compatible with Lowen fuzzy uniformities,
Fuzzy Sets and Systems 21, (1987) 85-98.

[7] G. Artico and R. Moresco, Fuzzy uniformities induced by fuzzy proximities, Fuzzy Sets
and Systems 31 (1989), 111-121.

[8] N. Bourbaki, Element of Mathematics General topology Chapter 1-4, (1989), Springer-
Verlag, Berlin Heidelberg, New York.

[9] M. H. Burton, The Relationship Between a Fuzzy Uniformity and its family of α−level
Uniformities, Fuzzy Sets and Systems 54(3) (1993), 311-315.

[10] M. H. Burton, Cauchy Filters and Prefilters, Fuzzy Sets and Systems 54(3) (1993),
317-331.

[11] M. H. Burton, Completeness in Fuzzy Uniform Spaces, Quaestiones Math. 16(1) (1993),
13-36.

[12] M. H. Burton, Precompactness in Fuzzy Uniform Spaces, Quaestiones Math. 16(1)
(1993), 37-49.

[13] M. H. Burton, Boundedness in Uniform Spaces and Fuzzy Uniform Spaces, Fuzzy Sets
and Systems 58(2) (1993), 195-207.

[14] M. H. Burton, The Fuzzy Uniformisation of Function Spaces. To appear in Quaestiones
Math.

[15] M. H. Burton, M. A. De Prada Vicente & J. Gutiérrez Garćıa, Generalised Uniform
Spaces, J. Fuzzy Math. 4(2)(1996), 363-380.

[16] M. H. Burton, M. Muraleetharan and J. Gutiérrez Garćıa, Generalised Filters, Submit-
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