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Abstract. Given a smooth action of a finite group on a closed manifold,
we derive simple sufficient conditions for the existence of a compatible codi-
mension one foliation in terms of Euler characteristics, and we also show the
conditions are also necessary if the group has odd order. The proof com-
bines results of W. Thurston on the existence of codimension one foliations
for manifolds not equipped with group actions, results of the first author on
compatible foliations, and an inductive construction based upon the usual
stratification of a smooth group action.

If M is a compact connected smooth manifold, then the Poincaré-Hopf Index
Theorem (see [28], p. 35) is a fundamental result relating the global analytic
properties of M to the Euler characteristic, which is a purely topological invari-
ant. In particular, this result shows that the Euler characteristic of M is zero
if and only if M has a tangent vector field which is nowhere zero [20]. A much
deeper theorem along the same lines, due to W. Thurston [37], involves a con-
cept known as a codimension 1 foliation (e.g., see [40]). Roughly speaking, this
structure is a partition of M into immersed (n − 1) dimensional submanifolds
{Nα} , which are called the leaves of the foliation, such that the tangent spaces
to the submanifolds are given locally by given by the kernels of nowhere zero
differential 1-forms with certain additional properties. It is often more conve-
nient to reformulate this in terms of tangent vector fields rather than 1-forms, in
which case the locally defined nowhere zero vector field will be complementary
to the tangent spaces of the leaves. From this perspective Thurston’s result
states that every nowhere zero vector field X can be approximated by a vector
field X ′ such that X ′ is the normal bundle for some smooth codimension 1
foliation on M .

In [9] S. Costenoble and S. Waner proved a partial analog of the Poincaré-
Hopf Index Theorem for manifolds with smooth compact Lie group actions and
nowhere zero equivariant vector fields. This paper establishes an analogous
result for smooth actions of odd order finite groups on compact manifolds and
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codimension 1 foliations which are compatible with such group actions in an
appropriate sense.

A precise statement of the main result requires input from two distinct branches
of topology and geometry that are not often seen together; namely, the theories
of compact transformation groups and of foliations on manifolds. The necessary
background on compact transformation groups can be found in Chapters I, II,
IV and VI of Bredon’s book [3] on the subject, with additional input from the
first two chapters of [14] (see also [33] and [10]), while the books by Candel
and Conlon ([5] and [6]) and Tondeur [40] contain the necessary background
on foliations. We shall also use results from the first named author’s doctoral
dissertation [7] about compatible foliations on manifolds with smooth finite
group actions (see Section 1 for a discussion of compatibility).

Theorem 0.1. Let G be a group of odd order, and suppose we are given a

smooth action of G on a compact connected manifold M . Then there is a

codimension 1 foliation on M which is compatible with the group action if and

only if for every subgroup H and every component C of the H -fixed point set

MH , the Euler characteristic χ(C) is zero.

Remarks. Although the Euler characteristics of M and the H -fixed point
sets MH satisfy some standard identities (compare [38], Section 1.3), there
are many examples such that χ(M) = 0 but χ(M H) 6= 0 for some subgroup
H ; one simple example is the Z2 -action on S3 ⊂ R

4 which sends (x, y, z, t) to
(x, y, z,−t), and in fact for each odd prime p one can also construct examples of
Zp -manifolds M such that χ(M) = 0 but the Euler characteristic of the fixed
point set is nonzero. Furthermore, the condition χ(M H) = 0 for all subgroups
H , which plays a key role in equivariant homotopy theory (compare [38]), is
much weaker than the condition in the theorem. Elementary examples for the
preceding two sentences are given in [35].

The significance of the odd order hypothesis. We shall prove that the
Euler characteristic hypotheses are also sufficient for the existence of compati-
ble foliations if G has even order, but the following example shows that these
conditions are not necessary if G = Z2 . Let Z2 act on S1 by the complex con-
jugation map sending (x, y) ∈ S1 to (x,−y), let F be any positive dimensional
closed smooth manifold whose Euler characteristic is nonzero, and consider the
codimension 1 foliation on S1×F whose leaves are the slices {z}×F for z ∈ S1 .
This foliation is clearly compatible with the product involution on S1×F (with
trivial action on the second coordinate), but the fixed point set is S0 × F and
the Euler characteristic of each component in the latter is χ(F ) 6= 0. More will
be said about this example after the statement of Proposition 1.2.

Here is a brief outline of the paper: Section 1 develops the basic setting for
studying codimension 1 foliations which are compatible with smooth actions
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of finite groups. Much of this material is contained in [7], but the discussion
is taken further in a few directions, and this leads to the proof of the “only
if” implication in Theorem 0.1 (see Theorem 1.3). A proof of the converse
implication for special cases is given in [7], and the next two sections describe
the tools needed to generalize this approach so that it applies to a wide range
of smooth actions of finite groups. In [7] the orbit structure of the group action
was describable in terms of a partially ordered set of smooth submanifolds, and
for more general cases we need to analyze the standard description of the orbit
structure as a stratification in the sense of R. Thom [36] and J. Mather [27]
(see also [17]); for the sake of clarity, we shall interpret some aspects of this
stratification in terms of the approach in work of M. Davis [10]. The material
in Sections 2 and 3 leads to a proof of the “if” implication in Theorem 0.1;
in fact, we prove a more general result which also applies to groups of even
order (see Theorem 3.3). Section 3 describes the construction of the foliation;
this is done inductively on the strata in the orbit structure, and at each step
the two main issues are extending a well-behaved nowhere zero vector field to
each stratum and applying the results of [37] to find codimension 1 foliations
associated to some approximations of these vector fields. Finally, Section 4
discusses the corresponding problem for noncompact smooth G-manifolds, and
the analogous existence result in this case is stated.

Acknowledgement. A crucial step in the proof of the main result relies
heavily on a theorem of M. Morse about the index of a vector field on a compact
bounded manifold [29]. The second author is grateful to Dan Gottlieb for
discussions of Morse’s result in connection with some of his research [16].

1. Leaves and fixed point sets

We shall begin by summarizing some basic facts about codimension 1 foliations
which are compatible with smooth actions of finite groups. Details and more
general results appear in [7].

Since every smooth action of a compact Lie group on a manifold M has a G-
invariant riemannian metric, we shall choose such metrics whenever it is conve-
nient to do so. However, we do not make any assumptions about the extent to
which deeper riemannian structures on M (e.g., the geodesics) are compatible
with a given foliation; a considerable amount of work has been done on foli-
ations which are compatible with such structures (riemannian foliations), but
our emphasis lies in an entirely different direction; one reference for riemannian
foliations is [40].

1.1. Some basic definitions. If M is a smooth manifold, we shall let τ(M)
denote the tangent bundle of M , and we shall let T (M) denote its total space
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(i.e., the tangent space of M ). Given a foliation F on a smooth manifold M n

with arbitrary codimension q (where 0 < q < n), the tangent bundle τ(M)
splits into a direct sum of two vector bundles τ(F) ⊕ ν(F), where τ(F) is the
bundle of tangents along the leaves and the restriction of ν(F) to each leaf
Ln−q is the normal bundle of the immersion L → M . Note that if q = 1 then
the restriction of F to some open subset U is defined by a 1-form with special
properties if and only if the restriction of ν(F) to U is the trivial real line
bundle (compare [5], Exercise I.2.15, p. 28).

We shall say that a diffeomorphism f : M → M preserves a smooth codimen-
sion q foliation F if the induced diffeomorphism on the tangent space of M ,
which we shall call T (f) : T (M) → T (M), sends the subbundle of tangents
along the leaves to itself. If a diffeomorphism preserves a foliation F , then f
permutes the leaves of the foliation, and conversely if this condition holds then
f preserves the foliation in the sense of our definition. When q = 1 and the
foliation is defined locally by a nowhere zero 1-form ω on some f -invariant
open subset U , then on this subset then f preserves the foliation if and only if
the pullback form f ∗ω is equal to h×ω for some nowhere zero smooth function
h : U → R .

Definition. Suppose that the group G acts on a smooth manifold M by
diffeomorphisms, and let F be a smooth codimension q foliation on M . Then
the group action is compatible with F if for each g ∈ G the associated diffeo-
morphism Φg : M → M preserves the foliation F . In this paper we are almost
exclusively interested in actions for which the group G is finite.

Example 1. If G acts smoothly on M1 and M2 is an arbitrary smooth
manifold with a trivial action of G , then the slices M1 × {z} ⊂ M1 × M2 are
the leaves of a codimension q foliation for q = dimM2 , and the product action
of G on M1 × M2 is compatible with this foliation.

Example 2. View S3 as the unit sphere in R
4 ∼= C

2 , and let T ⊂ S3 be
the torus in S3 = {(z1, z2) ∈ C

2 | |z1|
2 + |z2|

2 = 1} defined by |z1| = |z2| .
It follows that the subsets of S3 defined by |z1| ≤ |z2| and |z1| ≥ |z2| are
both diffeomorphic to S1 × D2 , and if F is the Reeb foliation of S3 ([5], p.
93) associated to this decomposition, then the action of S1 on S3 by scalar
multiplication is compatible with F .

Example 3. If F is a codimension q foliation of a smooth manifold N and
h : M → N is a smooth submersion, then there is a pullback foliation h ∗ F

on M whose leaves are given by the sets h−1[L] , where L is a leaf of F in N
(see [25], p. 373, for even more general statements). When M and N have
smooth actions of a compact Lie group G such that h is G–equivariant and
the action of G on N is compatible with F , then the action of G on M will
be compatible with h∗

F .
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1.2. The induced map on normal vectors. If F is a smooth codimension
q foliation on M and f : M → M preserves F , then by definition f maps
the subbundle τ(F) ⊂ τ(M) to itself, and passing to quotients we obtain an
isomorphism from ν(F) to itself which sends normal vectors over the point
x ∈ M to normal vectors over the point f(x). From this point on, we shall
only consider codimension 1 foliations unless there is an explicit statement to
the contrary.

For our purposes it is particularly important to understand how this map of
normal vectors behaves near a fixed point of f when f comes from a smooth
action of a finite group G . One way to recognize the significance of such ques-
tions is to note that the proof of the main theorem on compatible codimension
1 foliations for free smooth actions of a finite group G on a compact manifold
M quickly reduces to the corresponding existence question for codimension 1
foliations on the orbit space M/G : The existence of either is equivalent to the

Euler characteristic condition χ(M) = 0 , which in turn is equivalent to the

condition χ(M/G) = 0 because χ(M) = |G| · χ(M/G) . For the sake
of completeness, here is a quick proof: If χ(M) = χ(M/G) = 0, then by [37]
there is a codimension 1 foliation on M/G , and the pullback of this foliation
to M will be a compatible foliation for the free G-action on M . Conversely,
if M has a compatible codimension 1 foliation, then its tangent bundle splits
as α ⊕ β , where β is a line bundle. If β is trivial, then χ(M) = 0 by the
Poincaré-Hopf Theorem, and hence 0 = χ(M) = χ(M/G) implies that M/G
has a codimension 1 foliation; if β is nontrivial, then there is some 2-sheeted
covering M ′ → M such that the pullback of β to M ′ is trivial, and hence by
the Poincaré-Hopf Theorem we have 0 = χ(M ′) = 2χ(M), so that χ(M) = 0.
Therefore the new content of the main result concerns smooth group actions
for which the isotropy subgroup at some point is nontrivial.

Suppose now that G acts effectively and smoothly on the manifold M , which
is not assumed to be compact at this point, let F be a codimension 1 foliation
such that the group action is compatible with F , and let x lie in the fixed point
set MH for some nontrivial subgroup H ⊂ G . The cyclic subgroup generated
by h will be denoted by C(h), and ϕ(h) will denote the diffeomorphism of M ,
or some C(h)-invariant open subset, given by the group action.

We shall need the following refinement of a key result in [7]:

Proposition 1.1. Let M be a compact smooth manifold without boundary, let

F be a codimension 1 foliation on M , let G act smoothly on M , and assume

that the group action is compatible with F . Also, let x ∈ M be fixed by the

nontrivial element h ∈ G such that x is not isolated in M C(h) , and let U be

a C(h)-invariant open neighborhood of x on which F is locally defined by a

nowhere zero 1-form.
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Then either F is transverse to the fixed point set M C(h) near x or else the

component of MC(h) containing x is contained in a leaf of F . In the first case

there is a nowhere zero 1-form ω defined near x such that ϕ(h)∗ω(x) = ω(x),
and in the second case there is a nowhere zero 1-form ω defined near x such

that ϕ(h)∗ω(x) = −ω(x).

Proof. Details are given in [7], but we shall sketch the argument because part
of our main result relies heavily on this proposition. The first step is to choose
a G-invariant riemannian metric on M .

The conclusion only concerns the behavior in a C(h)-invariant open neighbor-
hood of x , so by the local linearity of smooth actions (e.g., see [3], Corollary
VI.2.4, p. 308) we might as well assume that M is an open disk in some orthog-
onal representation V of C(h) with x = 0 ∈ V and C(h) acting orthogonally
on V . General considerations imply that the original G-compatible foliation on
M restricts to a C(h)-compatible foliation on V . Note also that the hypotheses

imply dimV C(h) > 0.

Since V is contractible, the foliation on V has a trivial normal bundle and hence
is defined by some 1-form ω ; if f is a nowhere zero smooth function, then f ·ω
is also a defining 1-form for the foliation, and therefore we may as well assume
that |ω| = 1 (here we take the C(h)-invariant inner product on the dual space
V ∗ which is naturally associated to the given invariant inner product on V ).
Since the metric is invariant under the group action, we must have |ϕ(g)∗ω| = 1
for all g ∈ C(h), and since C(h) is compatible with the foliation on V it follows
that ϕ(g)∗ω(x) must be a scalar multiple of ω(x). These observations combine
to imply that ϕ(g)∗ω(x) = ε(g) · ω(x) where ε(g) = ± 1. The map g →
ε(g) is a homomorphism, and therefore it follows that W = Kernel(ω(x)) is a
C(h)-invariant subspace of V and likewise for the complementary 1-dimensional
subspace W⊥ . The discussion of this paragraph shows that the action of h on
W⊥ is multiplication by either +1 or −1.

If the action h on W⊥ is through multiplication by +1, then it follows that
W⊥ ⊂ V C(h) , which means that the linear subspaces W and V C(h) intersect
transversely; in other words, the foliation is transverse to the fixed point set
near x . On the other hand, if the action is through multiplication by −1, then
W contains V C(h) , which means that the latter is tangent to the leaf Lx of the
foliation such that x ∈ Lx .

Finally, we claim that a small neighborhood of x in V C(h) is also contained
in the leaf Lx . Suppose that y lies in some small open disk centered at x in
the vector subspace V C(h) , and let yt be a linear curve joining x to y . Then
ϕ(h)∗ω(yt) = −ω(yt) for all yt , which means that for each t the tangent vector
at yt is contained in the kernel of ω(yt). Since ω is associated to a foliation,
it follows that the entire curve lies in a single leaf, and this leaf must be Lx .
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In particular, we have y ∈ Lx , and since y was arbitrary it follows that every
point in C(h) which is sufficiently close to x must lie in the leaf Lx . �

If we specialize to odd order groups, we obtain a much stronger conclusion.

Proposition 1.2. Let M be a compact smooth manifold without boundary, let

F be a codimension 1 foliation on M , let G be a group of odd order whichs act

smoothly on M , and assume that the group action is compatible with F .

If H is a subgroup of G and C is a positive dimensional component of M H ,

then F is transverse to MH .

Proof. This will be a consequence of Proposition 1.1, so we shall adopt the
setting in the proof of that result, starting with the choice of a G-invariant
riemannian metric.

By local linearity we might as well assume that M is an open disk in some
orthogonal representation V of H with x = 0 ∈ V where dimV H > 0. As in
the proof of Proposition 1.1, the foliation is locally defined by a smooth 1-form
ω with |omega| = 1, and there is a homomorphism ε : H → {± 1} such that
h∗ω(x) = ε(h)·ω(x) for all h ∈ H . Since H has odd order the homomorphism is
trivial. Therefore, if W is the H -invariant subspace Kernel(ω(x)) then V H is
transverse to W by the reasoning in the proof of Proposition 1.1, and hence by
the argument proving that result we know that C is transverse to the foliation
F . �

In the introduction to this paper we gave an example of a smooth Z2 -action on
S1 × F such that χ(F ) 6= 0 and a compatible codimension 1 foliation whose
leaves are the slices {z} × F for z ∈ S1 . In this case each component of the
fixed point set is homeomorphic to F , and in fact each component is a leaf
of the foliation. This example shows that one cannot extend the conclusion of
Proposition 1.2 to actions of even order groups and compatible codimension 1
foliations.

The preceding results yield half of the main theorem.

Theorem 1.3. Let G be a group of odd order, suppose we are given a smooth

action of G on a compact connected manifold M , and suppose further that F

is a codimension 1 foliation on M which is compatible with the group action.

Then for every subgroup H ⊂ G and every component C of the H -fixed point

set MH , the Euler characteristic χ(C) is zero.

Proof. Suppose first that C is positive dimensional. By Proposition 1.2 we
know that the foliation is transverse to C , and as in ([25], p. 373) it follows
that the original foliation induces a codimension 1 foliation on C . As noted
earlier, if such a foliation exists then χ(C) = 0.
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Suppose now that C is zero dimensional and hence consists of a single point,
and assume that M has a compatible codimension 1 foliation F . Take the
trivial action on S2 , and consider the foliation of S2 × M whose leaves have
the form S2 × L , where L is a leaf of F . Then S2 ∼= S2 × C is a component

of
(

S2 × M
)H

, so by the preceding paragraph its Euler characteristic is zero.

Since χ(S2) = 2 this yields a contradiction. The source of the contradiction
was our assumption that M had a compatible codimension 1 foliation and M H

had a zero dimensional component. Therefore at least one of these is false.

The first paragraph shows that all positive dimensional components of each set
MH have zero Euler characteristic, while the second shows that if a compatible
codimension 1 foliation exists then there are nonzero dimensional components.
Therefore all components C of all subsets M H must be positive dimensional
and satisfy χ(C) = 0. �

2. Stratifications and Euler characteristics

The results in Section 1 show that the Euler characteristic conditions in the
main theorem are necessary, and most of the material in the remainder of this
section is devoted to showing that the Euler characteristic conditions are also
sufficient.

If a finite group Gacts smoothly and freely on a compact connected manifold
M , then the orbit space projetion M → M/G is a covering space projection,
and we have already noted that the existence of a G-compatible foliation on M
is equivalent to the existence of an ordinary foliation on M/G . More generally,
by [3], Theorem II.5.8 (p. 88), the same conclusion holds if the action has
exactly one orbit type, so that all isotropy subgroups are conjugate to a single
subgroup H . In both cases, one crucial piece of input is the the observation
that χ(M) = 0 if and only if χ(M/G) = 0. In particular, it follows that the
reasoning in Section 1 yields a proof of the main result if the group action on
M has a single orbit type.

Results in [7] prove that the Euler characteristic conditions are sufficient for a
class of odd order group actions which are not free but have a relatively simple
lattice of isotropy subgroups. Specifically, the assumption on isotropy subgroups
is that they are all normal and linearly ordered by inclusion; one motivation for
such a hypothesis is that if p is a prime then the isotropy subgroups of a Zpr

action always satisfy the condition, for in this case the lattice of all subgroups
is linearly ordered. One of the main tasks facing any attempt at generalization
is to find a setting for handling actions whose lattices of isotropy subgroups can
be more or less arbitrary.

In fact there are two related bookkeeping schemes for dealing with the combina-
torial issues related to the lattice of isotropy subgroups, and we shall use both
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of them; one is implicit in the statement of the main result, and the other is
needed for the constructing a foliation on increasingly large subsets of a smooth
G-manifold which satisfies the hypotheses of the main result.

If G acts smoothly on a manifold M , then by local linearity we know that for
each subgroup H ⊂ G the fixed point set MH is a union finite of connected,
smoothly embedded submanifolds, possibly of varying dimensions. We shall let
Π(M) denote the family of all subsets C ⊂ M such that C is a component of
MH for some subgroup H of G (as in Section I.10 of [39], this construction
can be viewed in several equivalent ways). There is an associated decompo-
sition of M into pairwise disjoint subsets which can be defined as follows: If
C ⊂ MH and H is an isotropy subgroup of the action for some point of C ,
define the relative singular set RelSing (C) to be the intersection of C with
∪K MK , where K runs through all isotropy subgroups which properly contain
H , and define the set of nonsingular points Nonsing (C) to be the difference
C − RelSing (C). If M(H) denotes the set of all points whose isotropy sub-
groups are conjugate to H , then Nonsing (C) = M(H) ∩ C , and M(H) is the
union of the sets Nonsing (g · C), where f runs through all the elements of G ;
standard considerations show that g1 · C = g2 · C if and only if g−1

1 g2 lies in
the normalizer of H in G .

By definition the sets M(H) partition M into pairwise disjoint subsets which
are smoothly embedded submanifolds by local linearity (possibly with varying
dimensions), and if we fix H then the subsets Nonsing (g · C) form a similar
partition of M(H) . The submanifolds Nonsing (g · C) define smooth stratifica-
tions in the sense of Thom [36] and Mather [27] (see also [17]); one proof of this
appears at the end of Chapter 2 in [14], and a more general approach is given
in in Chapter 4 of [33].

The stratification of M in the previous paragraph also passes to a stratification
of the orbit space M/G which will be useful for our purposes. In the setting of
the preceding paragraph, the strata are given by the components of the subsets
M(H)/G ; by [3], Theorem II.5.8, p. 88, the restricted orbit space projection
M(H) → M(H)/G is a finite covering with |G/H| sheets, and by [3], p. 89, for
each isotropy subgroup H the strata in M/G given by orbits of type G/H all
have the form Nonsing (C)/N(H), where C runs through the closed substrata
of M which are components of MH .

2.1. Default hypothesis. At this point it is convenient to impose the following
restriction on the group actions under consideration, and unless explicitly stated
otherwise we shall assume it holds for all group actions which arise:

Codimension ≥ 2 Gap Hypothesis. If C is a component of M H for some

subgroup H ⊂ G and Nonsing (C) is nonempty, then the relatively singular

set RelSing (C) satisfies dimRelSing (C) ≤ dimC − 2 .
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This assumption has two simple but far-reaching consequences. First, standard
general position considerations imply that Nonsing (C) is connected. Second, it
establishes the following strong connection between the set Π(M) defined above
and the stratification. Namely, if K is a subgroup of G and C is a component
of MK , then there is a subgroup H such that C is a also a component of M H

and C and C(H) is nonempty. In the terminology of [14] this means that C is
a closed substratum of the group action. In the discussion which follows, when
we discuss an element C of Π(M) we shall view it as a component of M H

for such a subgroup H , and as in [14] we shall say that H is the subprincipal

isotropy subgroup for C . Basic results in group theory imply that if C is a
closed substratum with subprincipal isotropy subgroup H and g ∈ G , then the
subprinicipal isotropy subgroup for the closed substratum g ·C is the conjugate
subgroup g−1Hg .

Before proceeding, we shall verify that the Codimension ≥ 2 Gap Hypothesis
always holds for smooth actions of odd order groups.

Proposition 2.1. Let G be a group of odd order acting smoothly on the man-

ifold M , and assume that C is a closed substratum of the group action with

subprincipal isotropy subgroup H . Then dimRelSing (C) ≤ dimC − 2.

Proof. We need to show that if L is a subgroup of G which properly contains
H and x ∈ ML ∩C then the connected component D of ML containing x is a
proper subset of C and dimD ≤ dimC−2. Note that the containment D ⊂ C
is trivial because D is a connected subset of M H (which contains ML ) and C
is a component of MH such that x ∈ C ∩ D .

Let V denote the tangent space to x in M , and consider the local representation
of L on V associated to the action of L on the equivariant tangent bundle of
M . By local linearity the tangent spaces at C and D correspond to V H

and V L respectively, and therefore we have V L ⊂ V H . Now D is a compact
smooth submanifold of C , so if V H = V L then dimD = dimC and hence
C = D by Invariance of Domain. Therefore we must have dimV H 6= dimV L ,
which means that dimD < dimC and hence by local linearity D is a proper
subset of C .

In fact, by local linearity it will now suffice to verify that dimV H − dimV L ≥
2; local linearity implies that the L-representation V splits as a direct sum
V L ⊕ WL , where WL has no nontrivial irreducible summands, and similarly
the restriction of the representation to H splits as a direct sum V H ⊕ WH ,
where WH has no nontrivial irreducible summands.

We claim that both WH and WL are even dimensional. More generally, if Ω
is an arbitrary nontrivial representation of an odd order group, then a funda-
mental result of representation theory states that Ω is given by restricting the
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scalars for some irreducible unitary representation, so that its real dimension is
automatically even (compare [15], Exercise 3.38, p. 41); since WH and WL are
both direct sums of nontrivial irreducible representations, it follows that their
dimensions are also even. Therefore the difference

dimV H − dimV L = dimWL − dimWH

is even, and since this difference is positive it must be at least 2. �

2.2. Euler characteristic identities. The proof of the main result requires
information about the Euler characteristics of the strata in M/G , where G acts
smoothly on M and M is compact. Everything we need is contained in the
following result:

Theorem 2.2. Let G be a finite group acting smoothly on the compact con-

nected manifold M , and assume this action satisfies the Codimension ≥ 2
Gap Hypothesis. Let Π(M) = {Mα} denote the set of closed substrata in

M , and define the relative singular and nonsingular subsets of each Mα as

above. If χ(Mα) = 0 for each closed substratum Mα , then we also have

χ(RelSing (Mα) ) = 0 and χ(Nonsing (Mα) ) = 0 for all α . Furthermore, if

Vα denotes the image of Nonsing (Mα) in M/G, then χ(Vα) = 0 for all α .

Proof. For each substratum Mα let Hα denote its subprincipal isotropy sub-
group. Order the substrata linearly so that Mα ≤ Mβ if the subprincipal
isotropy subgroup Hβ is contained in Hα . If Mα is the first substratum, then
its relative singular set is empty and hence the theorem is true in this case for
trivial reasons. We shall prove the general conclusion inductively, so assume
the theorem is known to be true for all closed substrata Mγ < Mα .

If we can prove that χ(RelSing (Mα) ) = 0 then by Lefschetz Duality (with mod
2 coefficients in general) we have

χ(Nonsing (Mα) ) = ±
(

Mα,RelSing (Mα) ) =

± (χ(Mα) − χ(Nonsing (Mα) ) )

and since the two summands in the right hand expression are zero it follows
that the left hand side is zero. Therefore proving χ(Nonsing (Mα) ) = 0 reduces
to verifying that the Euler characteristic of RelSing (Mα) is zero.

By definition RelSing(Mα) = ∪γ Mγ , where the union runs over all closed sub-
strata Mγ such that the subprincipal isotropy subgroup Hγ strictly contains
Mα and Mγ ⊂ Mα . If we list these closed substrata in order as Mγ(1), · · · ,Mγ(k) ,
then we shall prove by induction that

χ
(

Mγ(1) ∪ · · · ∪ Mγ(i)

)

= 0

for 1 ≤ i ≤ k . Since each summand has Euler characteristic zero, we can use
the standard Mayer-Vietoris identity χ(A∪B) = χ(A) +χ(B)−χ(A∩B), the
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distributive laws for unions and intersections, and induction to prove the Euler
characteristic identity for finite unions if we can prove the Euler characteristic
vanishes for each finite intersection

A = Mγ(j1) ∩ · · · ∩ Mγ(jq)

of closed substrata.

Let K be the subgroup generated by the subprincipal isotropy subgroups
Hj1, · · · Hjq

, then K fixes every point of A , and in fact A is the disjoint

union of all components in MK which are contained in Mγ(j1), · · · ,Mγ(jq) .

By Proposition I.2.3 in [14] each such component of M K is a closed substratum
Mδ for some δ with Hδ ⊃ K . Since we know that χ(Mδ) = 0 and A is a
disjoint union of some subsets of the form Mδ , it follows that χ(A) = 0, and
as indicated before this proves that the Euler characteristic of Nonsing (Mα) is
zero.

To prove the final assertion in the theorem, recall that the restricted orbit space
projection from Nonsing (Mα) to Vα is a finite covering, so that one vanishes
if the other does. Since the first Euler characteristic is zero, it follows that
χ(Vα) = 0. �

2.3. Properties of the stratification. Thus far we have used a limited amount
of data from the stratification of a smooth G-manifold, but in Section 3 we shall
need more information about the ways in which the various strata fit together
in a smooth G-manifold, so in the remainder of this section we shall summarize
the basic setting.

By local linearity, for each closed substratum Mα the subset Nonsing (Mα) and
its image Vα in M/G are smooth manifolds. Furthermore, since smooth G-
manifolds have equivariant triangulations (compare [22]), some standard piece-
wise linear topology and the Cairns-Hirsch Theorem (see [21], Section I.7) show
that both Vα and its finite covering Nonsing (Mα) are canonically diffeomorphic
to the interiors of compact bounded smooth manifolds Bα and Cα . One can
view the data associated to a stratification as the raw material for constructing
attaching maps

∂Bα −→ RelSing (Mα)/G , ∂Cα −→ RelSing (Mα) .

The stratification data imply that these attaching maps have some special prop-
erties, and we shall need some of the latter in Section 3. For our purposes the
description of stratification data related to [10] is particularly useful. One cen-
tral concept in [10] is the notion of a normal system associated to the relative
singular set; an equivalent construction in [14] is called a vector bundle system.
These are compatible families of closed tubular neighborhoods for the closed
substrata Mβ which are contained in RelSing(Mα), and the union of Tα of
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these closed tubular neighborhoods is a closed neighborhood of RelSing(Mα)
such that the inclusions RelSing(Mα) in Tα and its interior are homotopy
equivalences.

As noted in Chapter IV of [10], the closed complement Pα = Mα − Tα is a
compact smooth manifold with corners in the sense of [8] and the appendix to
[2] (see [11], [12] and [13] for additional details).

Given a smooth submanifold B of a smooth manifold A and an open neigh-
borhood U of B in A , it is always possible to find a tubular neighborhood
of B which is contained in U , and if M is a smooth G-manifold (where G is
finite) then for each closed substratum Mα one has a similar result for tubular
neighborhoods of RelSing(Mα) in Mα .

Proposition 2.3. In the setting described above, assume that M is compact

and let U be an open neighborhood of RelSing(Mα) in Mα . Then one can

construct the splitting Mα = Tα ∪ Pα so that Tα ⊂ U .

This follows because Tα is a union of closed tubular neighborhoods given by
disks of radius ε for some small, fixed ε > 0; if ε is sufficiently small, then by
compactness all of these closed tubular neighborhoods will be contained in U .

The functional stratification data of Section 8 in [27] (see (A6)–(A9) in partic-
ular) have simple interpretations in terms of the normal vector bundle system
over RelSing(Mα); namely, if the closed substratum Mβ is properly contained
in Mα then the retraction πβα is given by the bundle projection in an equi-
variant tubular neighborhood of Mβ in Mα , and the tubular function ρβα

corresponds to the length of a normal vector with respect to a suitable G-
invariant riemannian metric on M (since Tα is a union of disk bundles, this
concept of normal vector length is defined in a natural way). These func-
tions have a few properties which are stronger than the general conditions for
stratification data; for example, the function πβα is a smooth submersion on
an entire tubular neighborhood W of Nonsing(Mβ) in Mα and not just on
W − Nonsing(Mβ), and the function ρ2

βα is also smooth on all of W and not

just on W − Nonsing(Mβ).

Since Pα is a manifold with corners, its boundary has a decomposition into faces
∂sPα as defined in Section IV.2 of [10]. In the setting of [10], each face of ∂Pα

corresponds to an orthogonal sphere bundle over a piece of some submanifold
Nonsing(Mβ). The corners arise as follows: Over the closed substrata in Mα

the normal bundles are presented as orthogonal direct sums α1⊕ · · ·⊕αk , and
the intersection of Pα with the fiber over a point corresponds to all k -tuples
of vectors w = (v1, · · · , vk) such that |vj| ≥ ε for all j and for some suitably
small value of ε ; if we are given a k -tuple of vectors w such that |vj | ≥ ε for
all j ,it follows that w has a neighborhood in Pα which is smoothly equivalent
to an open neighborhood of the origin in [0,∞)k ×R

m−k , where m = dimMα .
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Finally, if we factor out the action of the group in the preceding description of
the stratification, then we obtain corresponding interpretations for the stratifi-
cation data associated to the orbit space M/G .

3. Controlled vector fields and extensions of foliations

In Thurston’s result on the existence of codimension 1 foliations [37], the un-
derlying idea is to begin with a nowhere zero vector field and to construct an
approximation which generates the bundle of normals to the leaves for some
codimension 1 foliation. In order to apply Thurston’s methods to manifolds
with group actions, we need to construct a nowhere zero vector field X on a
smooth G-manifold M which is G-invariant (i.e., g∗X = X for all g ∈ G)
and is well-behaved with respect to the stratification on M . More precisely,
we need to find a G-invariant smooth vector field with satisfies slight strength-
enings of the control conditions in [36], Section 1.F, p. 256, or [27], Section 9.
The main conditions on such a vector field X are (i) if a point p lies in the
closed substratum Mα X(p) is tangent to Mα , (ii) if the closed substratum
MB is properly contained in Mα and ϕ : E → Mβ is an open G-invariant
tubular neighborhood of Mβ in Mα , then the restriction X|E can be viewed
as a pullback of X|Mβ with respect to the smooth submersion ϕ (in fact, if we
dualize to 1-forms via some invariant riemannian metric, then the associated
1-form on E is the pullback of the 1-form on Mβ ). The main difference between
our control conditions and those of [36] and [27] involves the fact that the sub-
mersions into the proper substrata Mβ are defined on the entire neighborhood
E and not just on the complement of the zero section.

3.1. Controlled foliations. We shall construct foliations which satisfy analogs
of the defining conditions for a controlled foliation.

Definition. Suppose that we are given a smooth G-manifold with associated
stratification data, and let (F ) be a compatible codimension 1 foliation on M
which is transversely oriented (i.e.,, defined by a G-invariant 1-form ω ) and
transverse to every closed substratum. Assume further that we are given some
fixed but unspecified smooth G-invariant riemannian metric on M , and let X
be the the G-invariant vector field which is dual to ω . Then (F ) is said to be
controlled with respect to the stratification data if X is controlled with respect
to the stratification data for M . More generally, if Σ ⊂ M is a G-invariant
union of closed substrata (i.e., Mα ⊂ Σ implies g · Mα ⊂ Σ for all g ∈ G),
then we can define a compatible controlled codimension 1 foliation on Σ to be
a family of foliations Fα which are G-compatible on Σ and controlled on the
closed substrata in Σ.
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3.2. Extending controlled codimension 1 foliations. As in [7] we shall
construct compatible foliations inductively, assuming that we have what we
want on the relative singular set of a closed substratum and extending every-
thing to the entire closed substratum. More accurately, we shall work instead
with the orbits of closed substrata under the action of G which was described in
the preceding section, with an inductive hypothesis that the foliation is already
given on G · RelSing(Mα) for some closed substratum Mα , and the goal is to
find an extension to all of G · Mα .

The first step is to extend the foliation to a small neighborhood of RelSing(Mα)
in Mα . This extension should be equivariant with respect to the N(Hα)/Hα

action on Mα induced by the action of G on M , and if this is the case then
one can extend it to the strata g · Mα — where g runs through a sequence of
representatives for the cosets in G/N(Hα) — by equivariance.

Proposition 3.1. Let G be a finite group, let M be a compact connected

smooth G-manifold which satisfies the Codimension ≥ 2 Gap Hypothesis, let

let Mα be a closed substratum of the group action. Suppose that F is a com-

patible codimension 1 foliation which is defined on RelSing(Mα), transverse to

each closed substratum Mβ ⊂ RelSing(Mα) and controlled with respect to the

stratification data. If Tα is the tubular neighborhood of RelSing(Mα) given by

[10], then F extends to a compatible, controlled codimension 1 foliation F
′ on

a neighborhood of Tα in Mα such that F
′ is transverse to ∂Tα and F

′ is also

transverse to each closed substratum Mβ ⊂ RelSing(Mα).

In this proposition, compatibility involves the associated action of the subquo-
tient H(Hα)/Hα on Mα , where Hα is the subprincipal isotropy subgroup of
the closed substratum Mα .

Proof. For each closed substratum Mβ ⊂ RelSing(Mα) we can extend F to
an open tubular neighborhood Nβ of Mβ in Mα using the bundle projection
N → Mβ , which is a smooth submersion. Furthermore, the control hypothesis
on F and the compatibility properties for the bundle projections (compare [10],
property (iv), p. 352, and [27], axiom (A9), p. 492) imply that these pulled
back foliations agree on the intersections of two suitably chosen tubular neigh-
borhoods, and therefore one obtains a well-defined compatible codimension 1
foliation on the union N of these neighborhoods. By construction, this extended
foliation is also transverse to each closed substratum Mβ ⊂ RelSing(Mα). Fur-
thermore, we claim that the normal vector field X to the leaves satisfies the
conditions for a controlled vector field ([27], (9.1) and (9.2), p. 493) on N .
Condition (9.1) will follow from the local triviality of the orthogonal disk bun-
dles, for by construction the integral curves of the pulled back vector field are
contained in spheres of fixed radii in the disk bundles, and therefore the Lie
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derivatives of the tubular functions with respect to X must vanish. Condition
(9.2) is satisfied because the normal vectpor field X is formed by pulling back
the normal bundle to the leaves on the closed substrata Mβ ⊂ N .

It remains to verify that if Tα is a closed tubular neighborhood of RelSing(Mα)
in N , then the extended foliation F

′ is also transverse to ∂Tα ; recall that
the latter is also the boundary of the manifold with corners Pα . Since the
corner and collar structures on a neighborhood of ∂Pα are determined by the
tubular functions, the foliation will be transverse to all the faces in ∂Pα if X is
orthogonal to ∇ρ for each of the tubular functions defined on open subsets of
Nonsing(Mα). The orthogonality conditions are a consequence of the following
sequence of equations

〈X,∇ρ〉 = dρ(X) = X ρ = 0

in which the first equation is the definition of a gradient vector field in a rie-
mannian manifold, the second is the definition of the 1-form dρ via its values
on vector fields, and the third equation is merely the previously cited (9.1) from
[27]. These observations show that the extended foliation is transverse to each
face of ∂Pα = ∂Tα . �

We shall need a slightly stronger version of the preceding result:

Corollary 3.2. Let G be a finite group, let M be a compact connected smooth

G-manifold which satisfies the Codimension ≥ 2 Gap Hypothesis, let let Mα

be a closed substratum of the group action. Suppose that F is a G-compatible

codimension 1 foliation which is defined on G · RelSing(Mα), transverse to

each closed substratum g · Mβ ⊂ g · RelSing(Mα) and controlled with respect

to the stratification data. If Tα is the G-invariant tubular neighborhood of

G ·RelSing(Mα) given by [10], then F extends to a compatible, controlled codi-

mension 1 foliation F
∗ on a neighborhood of G · Tα in G · Mα such that F

∗

is transverse to G · ∂Tα and F
∗ is also transverse to each closed substratum

g · Mβ ⊂ G · RelSing(Mα).

Proof. We shall work in the setting for the proof of 3.1, in which V is a neigh-
borhood of RelSing(Mα) in Mα on which an extension of (F ) has been defined.
The action of G on G · Mα is equivalent to the action on the balanced prod-
uct G ×N(Hα) Mα , and since the extended foliation F

′ from the proposition is

N(Hα)-compatible, the balanced product extension F
∗ = G ×N(Hα) F

′ defines
a further extension to a neighborhood G ×N(Hα) N of G ×N(Hα) RelSing(Mα)
in G ×N(Hα) Mα . �

3.3. Rounding corners. The next major step in constructing a compatible
foliation on the G-manifold M is to extend everything from the invariant neigh-
borhood G · N of G · RelSing(Mα) to all of G · Mα . In terms of the splitting
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Mα = Tα ∪ Pα , this step is equivalent to constructing a suitable extension of
the foliation from an invariant neighborhood of G · ∂Pα to all of Pα . Since
the induced action of G on G · Pα has a single orbit type (namely, G?Hα ),
the foliation on a neighborhood of G · ∂Pα , the compatible foliation on the lat-
ter is equivalent to an ordinary foliation on the corresponding neighborhood of
∂Pα/N(Hα) ∼= G · ∂Pα/G in the orbit space Qα = Pα/N(Hα) ∼= G ·Pα/G , and
therefore the extension problem reduces to finding an extension of an ordinary
foliation on a neighborhood of ∂Qα to a foliation on all of Qα . The results of
[37] provide criteria for finding such extensions of foliations if we are working
with a smooth manifold W whose boundary is also smooth. It seems clear
that such results should also be valid for smooth manifolds with (boundary)
corners such as Qα , but since the details do not seem to have been verified we
shall explain how one can derive a version of this principle which suffices for
our purposes. The underlying idea is to approximate the original manifold with
(boundary) corners by a smooth manifold with a smooth boundary, and such
an approximation process is generally described as rounding (or straightening)
the corners in the boundary.

There are several approaches to rounding corners in the published and unpub-
lished literature; we shall use the setting in the Appendix to [2] and [11]–[13].
In this approach, the crucial idea is to show that if W is a smooth manifold
with boundary corners, then one can find an open collar neighborhood U of
∂W in W such that U − ∂W is diffeomorphic to L × (0, 1) for some smooth
manifold L and L is an approximation to ∂Q in an appropriate sense (e.g., L is
homeomorphic to ∂Q and the homeomorphism is a diffeomorphism on an open
dense subset). We shall sometimes refer to L as a smoothed out boundary . The
diffeomorphism and smoothed out boundary are constructed by means of a real
valued function on a collar neighborhood known as a carpeting function (called
a fonction tapissante in the Appendix to [2]), which is constructed from real
valued functions on U that carry the smooth collar and corner neighborhood
data for ∂W .

For the example Qα arising in question about extending foliations, we also
want the smoothed out boundary Lα to be transverse to the foliation which
was constructed on a neighborhood of ∂Qα . If X is the vector field defined
on a neighborhood of ∂Pα which is transverse to the leaves of the compatible
foliation and Y is the quotient vector field on a neighborhood of the orbit space
∂Qα , then Y will be transverse to Lα if Y and the gradient of the carpeting
function are perpendicular at every point of Lα .

We have already noted that the carpeting functions in the Appendix to [2]
are given by constructions which start with the real valued functions carrying
the collar and corner neighborhood data (e.g., see Section 5in the Appendix
to [2], especially page 488). For our example Qα , we have noted that these
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functions are given by the tubular functions in the stratification data, and
therefore one can view the carpeting function τ as as an expression involving
the tubular functions as the coordinate variables. Since the original normal
vector field X is perpendicular to the gradients of the tubular functions, it
follows from the Chain Rule that the corresponding vector field Y on the orbit
space is perpendicular to the gradient ∇τ , which in turn implies that Y is
perpendicular to the smoothed out boundary Lα . In fact, the normal vector
field Y is tangent to Lα , and it follows that the original foliation defines a
transverse intersection foliation on Lα which extends to a neighborhood of Lα .

To summarize, we have split Qα into a union of two pieces Kα ∪ C such that
Lα = Kα ∩ C , ∂Kα = Lα , C is a closed (topological) collar neighborhood of
∂Qα and Kα is a smooth manifold with a smooth boundary. Furthermore, we
can choose everything so that the foliation is defined on a neighborhood of ∂Qα

containing C and it is transverse to Lα .

3.4. Extension to a closed substratum. Our objective has been to take the
partial foliation defined on G · RelSing(Mα) and extend it to G · Mα . If we
can find an extension of an ordinary foliation on Lα to an ordinary foliation on
Kα , then we can lift this extension to the covering space G · Pα over Kα , and
this lifted extension and the previously defined extension to G · Tα will yield
an extension of the original controlled foliation on G · RelSing(Mα) to all of
G · Mα . We shall assume that χ(Mβ) = 0 for all closed substrata which are
contained in Mα (this hypothesis includes Mα itself).

By [37] the codimension 1 foliation on a neighborhood of Lα extends to a
codimension 1 foliation on Kα if Y extends to a nowhere zero vector field on
Kα , and this happens if there is a vector field Y ′ on Kα which extends Y and
has index equal to zero. Since Y is tangent to Lα = ∂Kα and nowhere zero
on the boundary, the results of [29] imply that there is a nowhere zero vector
field Y ′ extending Y if the Euler characteristic χ(Kα) is zero, or equivalently
if the Euler characteristic of the homeomorphic manifold Qα is zero. Since Pα

is a finite covering of Qα , it suffices to check that χ(Pα) = 0. We can prove
this using the methods of the preceding section as follows: By duality we know
that χ(Pα) = ±χ(Mα, Tα), and since RelSing(Mα) is a deformation retract of
Tα we know that χ(Mα, Tα) = χ(Mα,RelSing(Mα)). Since we are assuming
χ(Mα) = 0 and we have χ(RelSing(Mα)) = 0 by Theorem 2.2, it follows that
0 = χ(Mα,RelSing(Mα)) = χ(Kα), and therefore we have an extension of Y to
a nowhere zero vector field Y ′ on Kα . Using [37] we can use Y ′ to construct
an extension of the foliation on ∂Lα ; as noted above we can now lift this to
G · Nonsing(Mα) and combine this lifting with the foliation on Tα to obtain a
controlled compatible foliation on all of G · Mα .
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3.5. Sufficiency of the Euler characteristic conditions. With everything
we have done thus far, the proof of the following result becomes straightforward.

Theorem 3.3. Let G be a finite group, let M be a compact connected smooth

G-manifold which satisfies the Codimension ≥ 2 Gap Hypothesis, and suppose

that for each closed substratum Mα the Euler characteristic χ(Mα) is equal to

zero. Then there is a controlled compatible codimension 1 foliation F on M
such that F is transverse to each closed substratum and the bundle ν(F) of

normals to the leaves is trivial.

Proof. Let S be the set of all G-orbits Oα = {g · Mα | g ∈ G} , where Mα is a
closed substratum of the group action. Order S linearly such that if Mβ ⊂ Mα

then the orbit (O)β precedes Oα . We shall inductively construct a foliation
over the substrata in each of the orbits Oα .

We need to begin with the first orbit O1 . On these substrata the group must
act with exactly one orbit type, and in this case a compatible codimension 1
foliation with the desired properties is merely a codimension 1 foliation on the
orbit manifold. By previous remarks, such a foliation exists if and only if the
Euler characteristic of a closed substratum in O1 is zero; since this is true by
hypothesis, we have a compatible foliation on the union of all closed substrata
in O1 , and this foliation has all the required properties.

Assume by induction that we have constructed the foliation over all the strata in
all the orbits Oβ which precede Oα . The discussion preceding the statement of
the theorem implies that one can extend the foliation to all the closed substrata
in Oα provided χ(Mα) = 0, and since this is a key assumption in the theorem,
it follows that one can always construct such an extension.

We may continue this inductive process of extending the foliation over each
union of closed substrata until we finally obtain an extension over the last orbit
Ofinal , which consists of M alone. Of course, the foliation constructed on M
in this fashion will have all the required properties. �

FINAL REMARK. The results of [24] provide additional information on the index
of a controlled vector field on a smoothly stratified set; in particular, if the Euler
characteristics of all the strata vanish then one can construct a nowhere zero
controlled vector field. However, this conclusion is not quite strong enough for
our purposes because the construction of the foliation uses the fact that the
stratification data for a finite group action satisfy strengthened versions of the
defining conditions for a Thom-Mather stratification.

4. The noncompact case

For noncompact manifolds, it is much easier to construct codimension 1 folia-
tions because of results due to A.Phillips (see [31] and [32]), A. Haefliger [19],
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and M. Gromov [18] (in fact, the ideas in the latter apply to a wide range of
other flexible geometrical structures). In particular, if we combine our results
with an equivariant version of Gromov’s work due to E. Bierstone [1], we can
prove the following result:

Theorem 4.1. Let G be a group of odd order, and suppose we are given a

smooth action of G on a noncompact connected manifold M . Then there is a

codimension 1 foliation on M which is compatible with the group action if and

only if for every subgroup H and every compact component C of the H -fixed

point set MH , the Euler characteristic χ(C) is zero.

The idea of the proof is straightforward. We can use the methods of this paper
to construct the foliation on all of the compact closed substrata, and then
we can construct an extension to the rest of the G-manifold by combining a
relative version of Bierstone’s equivariant Gromov theory with the existence
of nowhere zero vector fields on noncompact manifolds; recall that the latter
follows because a connected noncompact n-manifold has the homotopy type of
an (n − 1)-dimensional complex (e.g., see [30], Lemma 1.1, p. 176).
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Cartan 1961/62, Exp. 1 , 11 pp. Secrétariat mathématique, Paris, 1962. Available on-
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[23] B. Jubin. A generalized Poincaré-Hopf index theorem. ArXiv e-print, available electron-

ically at http://arxiv.org/pdf/0903.0697.pdf.
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