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In this chapter we consider the formsl propsrties of
- " Thom epectra, and how they arise in Spanierw@hitehead duality,
There are many peculiar homomorphisms in algebralc tepclogy,
defined im widely differing ways; one of our objects is to
cunify seVGral off thess under the.nam@ Yeransfer homomorphism’®.
We also intfoauca the bordlsm homology and cob@rﬁism
. cohomology theories (ses [C5]). We éhow how to defline generally

the cobordismicharacteyiatic elasgses of a vector bhundle over =
W-complex: these take values in the cobordlsm cohomology

ring of the base space.

- This chapter comprises the sections:

1. Thom spectra
.  Combinatorial Poincaré duality

« The Thon construction

2

3

li»  Thom isomorphisms

5. Bordism and cobordism theories

6. Transfer homomorphisms

7. Riemann-Roch theorems

8. Characteristic cobordism classes

f ' 9.. Some geometric homomorphisms.

oy



w D

&1, Thom spectra,

S

In [AélglAtiyah'cdnsid@red the Thom complex of a vector
bundle over a finlte CWecomplex from the stable polnt of view,
and observed thaﬁiita stable homotopy type depended only on
the stable class of ths bundle. Now %hat we naVeﬂthe correct
stable homotopy theory o worlk in, we can carry thle througn‘

for vector bundles over arblirary CW-complexes, and indeed for

virtual vector bundles.

%

We shall assume that all our vector bundles have been
glven an orthogonal structural group. Those with fibre dimension
n are classified by means of a universal bundle Yy over a

clasallying space»Bg(m)w We shall assume thet for the various u

Cthese Tit together nicely:

(a) We have a CWecomplex BQ filtered by subcomplexes
cooBO(n) & BO(n+1) coe,
(b) We have a universal vecitor bundle T, overlBQ(n)g with
| fibre dimension n, | | ‘
(¢)  We bave for esch n & bundle isomorphism
w10 =
- line bundle,

® 1, where 1 stands for the trivial

g " ;;‘ -N ‘
(4} We have bundle isomorphisms u Yan = g % Ty (cross

- preduct of vector bundles, over BO(m) x BQ(n)),

where 1:BO(m) x BO{n) = BO{m+n) 1s induced by

1

- 0(m) x O(n) @ O(men)s
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(e) The bundle Lsomorphisme in {(¢) and {(d) are compatible.
This can conveniently be done By uelng the universal
bundles constructed by Milnor [Mu].
Bundles are determined by thelr classilying maps. We
shall work with spaces over BQO(n) rather than with vector
bundles themselven., Let Z be the additlve group off integers,
with 0 as base point.

A L Defindtion The category 4 of finite CWucoﬁplexes over

BO x Z has ss objects pairs (X, ), where X is a finlte CW-complex,
Without_basa polnt, and X w“BQ x Z ls a map. A mgrphiam'from
(X, £) to (Y, g) i a2 map h:X - ¥ such that g © h = £..

Composition is evident., We have also the subcategory L(4AJ),

with the same objects, which contains the morphism h 1f and 6nly

if h dis an inclusion of CW-complexes.

1.2 Definition The category Ay of CW-complexes over BO x Z,
.witn the subcategory ;(gw)y is the Wwextension of the pair of
| categories I(A) ¢ A (see Chapter I), 

We observe that A, and hence AW’ 1521topologiéal category.
By means of wsBQ »x BO - BQ and group addition in Z, we have a -
multiplication on BO x Z. The definition of i 1s not obvious
(see Chapter II). Given a vector bundle & over X, with fibre
dimension n, we take [:X - BO w gltc have & ciassifying‘map £8

first component, end n as second, IFf the fibre dimension ‘
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varies, we treat each component of X separately.
1.3 Definition We define

Ko(x) = [m , BO x Z1:

the set of unbased homotopy classes of maps. from X to BQ x Z.

It is an abelisn group. We call the elements virtual vector

pundles over X. The projection X = Z is called the pank of the
Cyirtuel vector bundle.

When X 1ls finlte, thie 1s the ususl Gpothendieck group of
vector bundles over X. When X is infinite, XO(X) is much blggew
than the Grothendieck group m'a virtual bundle is not in general

~the difference between two honestlbundles, glse the universal
Stiefel-Vhitney classes would not be algebraically independents
Cur object ig to censtruct the Thom spectrum of a virtuél

vector bundle. Given f£:X =+ BQO(n), the Thom complex of & = den

is obtainéd fram the unit dlsk bundle in & by identifying the
boundary sphere bundle to a base point o, It has a natural cell
structure. We follow [46], and write %% for this space. Also,
Vadd;ng a trivial 11ne bunGLekto E simply suspends XEO In particular
%% 45 the aisjoint union of X and o, as before! If we write n
for the trivial bundle of filbre dimension n, and 3 for a point,
we soe that 3™ is on n-sphere!

Wrlte ﬁoofor the category of finlte Gwmcémplexaa over BQ,

" and ﬁh‘for the subcategory of complexes over Bg(n). By
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compactness, A I8 the unlon of the subcategories gﬂa We can
. 00 -

maltiply (¥, ) A with (v, g) & 4, by meens of
wiBO x BO = BQ to form (X x ¥, we (£ x g)); this dnduces a
Tunctor 4 - x &w = &wa The elementary information shout Thom
gomplexes 18 summarized ing

1.l Lemma  For each n > 0, we have the Thom complex funcior

T och o+ B L(4,) - L(E), o
where ' is the category of finite Gwmcamplexca with bage polnt.

We have natural isomorphlsms

' v
.a) 8T w T 434 - L,

b T A T8 ~ m+n(ax B, (o @ Ao B & ﬁn)
: (

whicn yield the comnutative diagran | S

ST&ATBWS(T&ATB)P.T&AS f:’»

SN TC)

Tyt ® » TP~ P (0xB) & Tpo a Ty 4B o 1

We now feed all this material into the categorical

machlnery developed in Ohaptera I and IT. We recall that the

ausp@nsion category Qﬁ was delfined as the Tlimit? of the

- Beguence

oo Bpmg By By g By TR B e
in which each ity ia a copy of P, ' R ‘ '

"“*Il
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1.5 Demma We bave the Thom spectzum Tunctor
'E:& ¥ ES’ ;;(.:{\f\} > L(E\g)P

and a natural isomorphism

T(o % B} » Ta 4 TP (a; B & 4).
Proof Take a map LX = B x Z, where X is a finite
Ciecomplex, which 1s an object of A. By compactness of X,
there exlsts & least n such that L factors through
f*:i < BO(n} % 2. We assume X is connected, Tor the moment .
Then £' has first component £y :X - BO(n) and second component
r ez, éayﬁ We define the functor T on this objecﬁ of A to
be Tncxp fe) & @nmry an object of gﬁa Now suppose g:Y'w X,
where Y is also finite, connscted. Then £ © g:¥ - B0 x Z
factoras through BR(m) = Z, say, where m € n. We require a
. map T@:Tm(yg £ © g) = Tn(xy f1) in By« Now Tm(Ys Prog) e

, B e T

‘ is isomorphic in Eﬁy canonically, to Sn“me(Y9 fg ° g) Eﬁmrab

Since T, is & functor, we have a map Tn(Y, £, 0 g)~»Tn(X9:fl)

ip En»f“ Naturality in 1.4 yields a map

sn“mwm(yg Tooog) » T (Y, €2 . ). The required map Tg is the
- composite of these three. On: <an verify that T is a functor,

defined so far for connected X.
. If X 1s not connected, we treat each component of X
. aeparately; and take the wedge in ES’ go that T respects sums.

If a, B € A, the natural isqmor@hisms of 1.4 yield a'
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notural isomorphism of T{ax p) with the smash product

Ta o Tp (see II). Care is needed at this stage, but the

machinery of II is equal to the task. )] ‘
1.6 Lemmg Suppose the meps £, gsh - BO » Z are homotoplc.

Then the Thom spectra of (X, £} and (X, g) are isomerphic,
in I(Egl-
Proof This derives from the covering homotopy property
for bundles. ]
We can now take Weexbtensiong of everything (see I)a Also,

our funcitors are all continuous, and we may take homotopy classes.

1.7 Theorem We have the Thom'speétrum functor
Tg{}w ~+ E‘SW = B, "I"‘(&W} “¥ .I,,(.,‘?l) s &Nh - §,h=-

W@ Frite the Thom spectrum of the wvirtusl vector bundle o over

the CW-complex X as %, There are canonical mnatural isomorphisms
(X x )PP x® B g% xR

for each of the above three functors. The first is coherently

commuitative and agsociative. 7] |

In particular, when Y . &, the diagonal map A:X - X x X

- .induces from ¢ x # over X x X the Whitney sum o + B, which makes

KQ(X) an abelian group.

1.8 Corollary There is a canonical natural diagonal map
$

£:30FB Ly, %P

which is. commutetive and associative. ]]J"h
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Given a topological group ¢ and & continucus orthogonal
representation & - Q{n}, or ¢ ~ ¢, we have the Borel map
BG - BO(n) er BG -~ BQ (see [B2] or [Mh]). Hence a map
BG - BQ x Z, with sccond component n in the first case, 0 in
the second.

4.9 Definition The Thom spectrum MG is the Thom spsctrum

of the virtual vector bundle BE - BQ = Z. In particular HQ
is the Thom spectrum of the identity representation of 0.

1.10 Definition  Denote by ¥ the universal virtual vector

e, Lyene)

bundle of rank 0, so that Bgy = MO. Then any vietual vector
hundle over X, g say, of rank 0, is induced from v by a

clessifying map X = BQ, unique up to homotopy. The Thom

Apna gt

gpeﬁtrum functor spplied to the classifying map of a yields

the classifying map 3% MO

More generalliy, a virtual wvector bundle o over X of
congtant rank n has a2 classifying map of Thom spectra Xa'w iQ
of degree -~ n.

We have observed that a genuine vector bundle & o#@r p
gives rise to a (homotopy class of) virtual vector bundle over
X whose rank 18 the fibre dimension of &. By convention, we
write Xg for ita Thom spectmun; this'ia consistent with what

we already, have.

1.11 Theoren Given a genuine vector bundle & over ¥, let N

A3



be i1ts unlt dilsk bundle, oM its unit sphere bundle, and
il - X othe bundle projection. Then for any virtual vector
bundle o over ¥, we have an iiomarpﬁiﬁm of Thom spectra

R N%'ayamwia
in 8, 38, or g,
Proof . Our categorical machinery requires simply a natural
isomorphiam of OWecomplexes defined when £ ls a finlte
waémmglex and o is a genuine vector bundle, and thig isomorphilism
must comnute with the suspenslon operations on a, N &9 and
K€+aﬂ We do this canonically in sach fibre. This amounts to
finding for each p, @, 2 0(p) x Q(g)~eguivariant homecmorphisan
¥ 5 DYo(DP % DY) = pPTe /oDt which has to be associative:
This becomes & trivial matter if we first choose for each p
an equivariant homeomorphism of RY with the interior of DP. 1]]

. As an application, suppose given genulne vector bundles
a,.n ofer-X? b4 wegpéctivelyg haﬁing unit”diék hundlies M and N.
Then Xgum M/0M, and VAL /0N, Suppose we are giveﬁ an embedding
ofIN in ¥ &s a tubular neighbourhood of ¥ < M, not meeting OM.
Then identification induces a map of Thom spaces @:Xg w YN,

112 Theorem Under these condlitione, we have also a canonical

“I

map of Thom specirsa )
. H
' X£+a N Yﬂ+f o

for any virtual vector bundle o over X, where £:¥ = X is the
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composite Y ¢ W o ¥~ Ao This mep 1s compatible with the

. diagonal maps, In the sense that the diegram
4 ot -
gEHC . 5 %80
I ({)/ﬂ
j'. »::"é' . i
YW O s T, vrf“ L. gy
. I F .ﬂ& b
.. - . . . . l, ! " ) . . ' P
gommutes. 1) . . e

$2.  Combinatorial Poincaré Duality

SRR NP L

In this section we itranslate G.W. Whitehead's duslity

theoren [#Wh] into eur theory, wilth the wvaricus simplifications
pogsible. |

Let Z be any finite triangulatcd simplicial complex.

Given any subcomplex X, the supnlement X of X is +the union

of all simplexes of the first derived complex X' that do nod

e et A o =4 =2

meet K. We ohserve that

(K v L) =x" n L, (Xn LY = X7 uL", X e L implies I ¢ K™.

There Is a unigue simplicial map X' < X™*X (the Join) exntending
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the ineclusions of ¥~ and K. Tet a:X #K - [0, 1] be the
pimplicial map taking K- to 1 and X to 0. Then we set, as fwng,
NEK) = 5700, 41, NWET) =" [k 1],
which sre trilanguleble subspaces of X. We sges that we have
-~ homoetopy equivelcnces

£:l "o WE ) e X - K, KalE cX-X,

AL o W) /N(L), K7ALT e W(E™)/A{(LTY.
If Lo X, we can deline a map
A o (TY/NETY) A (H(E)/H(LY)
in the obvious way on N(L7) n W{K), and zero elsewhere.,

2.2 Definition

&
3

Glven subcomplexes L « K of X, the diagonal

g

'

8:x%  (17/07) A (K/L)
is defined from the above map up to honotopy, by using the
homotopy equivalences 2.1.
G2, Bemarlk

When K = X, L = 4, A is the usual diasgonal
ﬁ:XG

0 (recall X/4 = Xojo

QXG !\X

The disgonal has the expected naturality properties.

- Given subecomplexes K » L o M of X, we have 1:L/¥ < K/H,

p:k/M - E/L, and in Sy,x the boundery umep &5:K/L = L = L/4 of

degree - 4, end similarly for X, L7, ¥, We consider the

diagrams -

1
-



(0) %Y. . s (ALY A (L)
%A ‘ : : iini
(/7Y A (840 = =5 (/L) & (B
(b)) A ; s (M™/K7Y A (K
A ‘ "imjp
"No £ o B cszl i :\L -
(L7/87) A (RAL) wwmomgmey 2N/ A (B/L)
(s) %’ g (LK) (K/D)
' . | - ' .
' RS . l’lz\(’i
. . - ol
CANT/LTY A (L) 573 » (L7/K7Y A (/1)
2.0 Temma The diagrems (a) and (b) commute, and (c)
anticommutes, up o homotopy.
Proof (a) end (b) are obvious. Although (¢) looks forbidding, .

4% is sufficient, by {(a) and (b}y to teke K = X, M = g. ]7]
The dlegonal induces cap products. Given a map
wedh oA B oob O of mpédﬁrag and z & HR(XG; A), we have the cap
product _
z o EHLT/ET B) - Hnmi(K/L;'G)e
The naturslity of the diagonal in 2.4 shows that we have

the disgrom, for any subcomplexes K o L 5 M of X,
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2%}

WHRT/LT BY - KO/ B) W‘Hi(L”/K“; BY - w8 L.

lan Lza lan’ c ban
&nwi(Lfm; ¢ R Hnwi(ﬁfig C) ~ Hn#i{K/L; G) - Hnmimi(L/M? ¢)

\J"

in wﬁich the flrst two aquafasfgommute and'the third commutes
Up ﬁ@‘th@ 8.em {m}n+%e ‘

Néw puppoese that K and a-diff@r by one simplex P
B ow Ly P, and the boundary 0P of F liles in L. Let ¢ be the
barycentre of P, and V = VO the closed star of ¢ in X', the

union of all simpliexes containing c¢. Let @ be the union of all

simplexes of X' that meet P only in ¢, and R the subcomplex of

Q consisting of those simplexes not meeting P, the ‘Llink' of
Pin X', Then K/L = /9P, L7/K" = Q/R, and V/oV 2 (Q/R) A (p/opy,
where oV i1s the Ffrontier of V. |

2.6 Lemma  Under these conditions, the diagonal

833 5 (L7/E7) A (K/L) 2 (Q/R) & (B/0F) & v/av

‘agrees, up to homotopy, with. the ildentification map

Dok’ = X/CL(X - V) = V/ov. 1]
Homolaopy manifolds

2.7 Definition We say X is a combinatorial homology n-manifold

i1t is a ﬁfiangulablc gpace haviag the same local nomology
Il

groups aa an mmmpheroa B ' § jQ;fﬁ U : \
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We shall always choose a Fized triang&l&tianﬁ Various
facte are more opr less lmmediate from the definiticon. Assune
Yor simplicity that X is compact and gonneoted,.far-tbe. moment.
Then HH{X; Z) ® 72 or fe. Bvery simplex 18 contained in some
nesimplex. Let Vc be the 6103Qd ghay éf ¢ in X’,lfar any
vertex ¢ of X%, and pmzxﬂ b VCX&VQ the ldentiflcation map:
then'va/&V¢ is & homotopy ne—sphers (being & suspengion), and
po UMV 8V 5 Z) ~ BN g) is epi. We write q_:x0 - 20 for
the depuspended compoesite XO = vc/avc . of degree - .,

determined up o sign. Then by & theorem of Hopf,

Hn(X; AR {X09 30§m9 and is generated by o

1, for any .

Qrientability

Let ¥ be any trianguleted compact combinatorial homology

menifold. Suppose given a . gpectrum A, and a 'unit'® map

i:BD « A, of degree Q.

2.3 Definition We say @ & Hn(X; A) is a Pfundamental class

of X if for every vertex ¢ of X', <ﬁ9 qﬁ} = %1 e %O(A)a We

then say X 1s A-oriented. '

Duality

. . Y
Ne suppose given 1:2° - A as above.

2.9 Definition Na say the spectﬁum'ﬂ hag A-action 1L we are

given & wmorphism, LA A B -+ B, such that the composite -

0

" ‘ By 3 » B““€§WM%A A B‘@ B,

is the identlty morphism of B.
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Ropark ~— From IV, the only spectra with K{Z)-actlon ars the
graded Bilenberg«llaclane spectra.

2:.10 Theorem et ¥ be a triangulated compact combinatorial
dh L3

homology n-manifold, A-oriented by # € Hn(X; A}, Then for
any subcomylexes K o L of ¥ and any spectium B with A-pction,

masE(LT/AT; B) 2 Hnmp(li,/ o BY, H(K/L; B) Hn“v(L‘”/E{W;' BYo

[EERMETSRIS es

Proofl If K and L &iffer by one simplex, the theorem holds .
by éaﬁ aud the definition 2.8 of orientebillty. If the resuld
18 brue for X/ and L/, it is true for K/ by exactness,
commutativity of 2,5, and the filve-lemma. The reault therefora

follows by induction. ]]

We may toke X = %, L = f.
. e N 0 |
2.14  Corollary %0 Hx(xog B) Hnwr(x s BY. 1)1

There 1 no longer any nesd to work with a Pixed
‘ & N

triangulation.

212 Thégr@m Let X be a compact combinatorial homology
n-manifold, A-oriented by z & H (X; 4). Let K oL be‘élo$é@'
subsets of ¥ which are subcomplexes In some triangulation
of %, and XK' < L' a pair of closed subsets of X homeomorphic
to a CWe-complex and a subcomplex, such that ' and L' are
deformation retracts of X - K and X -~ L respectively. “Then
2z N induces

w(n; B) = B (/L BY, EU(R/L; B) mm_ (L'/K'; B),

for any spectrum B with A-action. 1]
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Glearly the n-aphers 57 18 Eowari@nﬁabley and any spectium
B has a unique Eﬂwactionv hen glven subcomplexces K D L
such that X £ 3%, L £ £, the diagonal mep A:z® - (L7/K7) n (K/LY
induces the iscmerphisma of 2;%& fop ony B &fter depuepending,

o recognitimn‘rasult (seo IV) for dual spostiia shows that we

heve dustle here. We have

, Rl 0.
S 2.4%  Thooren given subcomploxes K o L of &7y K £ 3, LAY,
,: s . o Dy e qn ;p‘ & - e . . o o
we have, as spechtra, L /K & § D(K/L). The hypotheses may he
weakencd os in 2.12.  11]
In particular, take L to be a point; then gels /KT e 8K,

2.4l Gorollary " =~ 877Dk, 1]]

Historically, 2.1l was usced tSﬁ] ag the definitlon of the
duale

We may also add duality isomorphiens (see IV)
gt (x5 2) = 1 (0x°; B) and B (x0; B) = 5 (0x’: B) to 2.1

to give a new form to Poincaré duallity.

2,15 Theoren Let X be a conpact A-oriented combinatorial
hemology nemonifold. Then we have‘iSGmovphismay for any spsetrun
B with A-~actlon, . |

by By o= BTl B, HP{XO; B) =z o, (0x%; B). 1]
Remark ~ The preof of 2.10 did not make essential use of spectra.
It could have be@n cxpressed entirely ln terms of half-enach

Ponetoera.
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53, The Thopm construction

e

We give the elementary facts about the Pontryagin-Thom
construction, expresscd in a form suitable for our gpplications.
To this section, all menifolds shall he amooth C%
Triangulation theorems show that we may freely use the resulls
in §2. We sgain write n for o trivial vector bundle of fibre

dimension n. !

%4 Tonma (Milnor, Spanisr [M5]). Let M be & smooth compact
menifeld, and o any virtval vector bundle over M. Then the
dual spectrun DM® o ™%, where « i1s the tengent bundle of M.

. { ; ' . .
In parsticular, DM) « ¥, These aguivelences are cancnical.
-

- Proof Since D8'X = 8' DX Tfor any spectrum X, and M is

compact, by suspeanding we may assume o is a genuine vector bundls.
If n is large enough, we can embed M in 32 amoethly, and the
pundle o in the normal bundle v to M in Eny go that v = ¢ © B,
58V . Then the ALlsk bundle, with ﬁofal spacé ¥, boundary L,
of a, is embedded in a tubuler neighbourhced of M in-zoo We
haﬁe e = ¥/L. We see geometrically, for sultuble representatives,
that in the notation of 2.12 L'/K' = P, Hence, by 2.13,
DU = gt o PR L ¥TY provided o £ 0, since T® o © B:x T
Tf we teke B = 0, we find DE™T = 10, 11]

Lot ©:X ¢ B x ¥ be & smooth embed&ingp where X and Y are

compact, with normel bundle v. Then the Thom construction [T4]
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yiclds a map hﬂ oW~ va which, compactilfied, glves o map
s™0 XY, an ¥R o xY,

s.2.. Definition ©  The Thom map T(L£) of £ is this map v %Y,
or any map T{E) ¥ ﬁvmm:fig congtrected Trom it by 1.12,

where o 1s & virtual veotor bundle over ¥, and £::X «+ ¥ is
the conmposlis of € with projecition..
In partieoular toke - o = (¥}, the tengent bundle of Y.

" ’ &E |

Then over X we have foo(¥) o m = 2{X) @ v. Hence a Thom map
T .

T{?}gywm{yf wt K“%Qx}

L

3.5  Tienma Under the ldentifications of 3.1, the Wnom man

el |
INEDE oY) (30 sgrees with the dusl Dfi:BYG - pxP,

Proaof Let ¥ be the dilsk bundle over Y having E@ % ¥ as
interlior. Let M be a tubular nelghbourhood of X in N. We
embed N smoothly in Ek@ Thenrwe_find tubular nelghbouwrheoods
' Y paa, By definition the identification
map NN - W/0M is the Thom.map T(£), and we see from 1.%2 that
QA0 - P/OP is an associated Thom map T(f). Comparison of
2.(a) with the definition of Dfy shows that the latter map,

after desuspension, gives Dfi. 1]

2. Corollary The stable homotopy class of T(f) depends
only on the stable homotopy classg of £. ]]]

Thia was clean anyway.

Seb  Temua Under the sbove hypotheses, the dlagram commutes
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4
1

oo

for any vivtual veatow bun tes o end B over Y

Y(.:L.{“ ¥ 3 Y& Yﬁ

o :'e iy ' e ", g
G £ I -
gVLLORELR L, gVATL0 ;zf L PR A LI L
4 ' LA ) N
gggo__ This ig clear for genulne Taochar HUNALeSawm B

&omgactn&aa of ¥ the virbual bundles may Dbe augpondcd o glive
genuine bundles. 11]]

Vow suppose we have a second smooth embedding,
. - rp PEVE e o s 3 o [0S 8] -
g e R % Z, with normal bundle p. Then (1 wg) oLl o R K &
is & third, with normal bundle v ® fipw

3,6 Lemms, Under these hypotheses,

s

now

b
T4 % g) of) = T(L) o T g)s ,f,@ L £ib.
for eny virtnal vector bundle o over Z. :

Proof . ﬂi?@@'“y; or from 3 j ]JJ
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We give in this seotion the gbstract theory hehind the
Thom leomcrphisms, which a@plieé regardless of the honesty .
or ovharwisae of fthe bundles iﬂVGlV@@nA We daeduce that a
ameobh manjfald is A-opienteble 1 arﬁ enly 4L¥ its stable
normal bundle is A-0X ioﬁt&biwe

Let ue take g (Wecomplex X, and a viwtua12Vector hundle
a over ¥, having conatant f&nm.ma :Taka aleo a gpectrun A

withh & ‘unit? 137 = Al

-0 ) is Qﬂfﬁﬁ'&f@htDi clsss of 3% or of ¢ Lf for every point
.4 t.‘Ilm.,w Y ; -+
¥ & A, the composite & = RN u'%A.iﬁ -~ 1. We then

aay that %% and o mre A-oviented.

!CL

L.2 Definition Given a “undamcntal class u: - A of a,
and bsA B -+ 3, we have the Them homomorphisms
6% = wus ixP, BI® - [xPre, oyR

O' il

induced by the Aisgonal map {(1.8)
AP
5O s 28 2 '“"'?Z?{I““*’ %P a4,

whers B is any virtual vector hundle over X.

We ooy wix® - A {of codegree n, l.e. degrea

= (- )m( nw) s f20, wPamy o 120 %P o

“zmmn

Also, by means ‘of the diagonsl 43 Yﬁ+Q/Lﬁ+& ‘(Kﬁ/mﬁ) A X

we can define weeful Thom homomorphlsms



1% o {1 ﬁ/ 5 gm ; EKﬁ+a/Lﬂ+“9 G§m+n

RN
o :{;305, (1{:5“‘““/:{4{5“'"“'} ABL - (59, (PP ao

for any subcomplexes L <« K of X, nauuﬁﬁl in X and T,

em

including boundary mapd.

, N ¢ wl 4 R
Lol Theoreom  [Deld] Suppose glven 1457 = A, and & spectiunm

£

B with A-action (see 2.9) ihAaAB = B. Suppose the viritual

vector bundle o over X is A-oriented. Then .
' G P B S i1 %]
CrxP oo (yPre gy

0

2 (87, xPT% ) = (20, 2P AB)

m M2

are isomorphisms, for any virtual vecitor bundle B over X. We
also have Thom isomorphisns 4.3 for any subcomplexes L ¢ K of X.
gggg@ By induction on.cells. BSuppose Lfirst that L ¢ X < X,
and K m.L U eky .. X i8 ODtdiﬂbd from L by adjoining one
k-cell. Let x:Dk - X be 1ts characteristic map; then to prove

L.t for K/L we need only prove 4.l for /oD% for the virtual
%

“pundles x o and x 8, which are trivial., For either Thom

homomorphism, this result follows from 4.1 and the hypothesis

1

on U, by suspendingo

Let X be the r-skeleton of X. Then by addlitivity, Lfrom
th& previous cage, we have 4.l for X L. ‘
induction on r, that L.U4 holds for Xrnﬂn Then by naturallty

/ﬁ _4¢ Buppose, by

Cof L.% and the five lemma, we deduce the lsomorphism for Xro

Hence we have the Thom isomorphilem for Xr for all r, by
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. . - A ) . .
induction. By Milnor'a Jemma (IV), we therefore have the
leomorphisme for general X.

In pariiculer, we have lsomorphisma for the restricted

bundles al¥ and oL, whenever L.c K.z X are subcomplexes.
The theorem for K/I. now follows from the five lemma. ] ]
Remark  Agaln, when the vector bundles are genuine, this
theorem dees not make essentisl use of spectra, and could be
expreamed in terma of half-sxoct functors. Theoram L.l 1s in
pome sense ‘dusl'  to 2.40. |

Because we have allowed Ffor the possibllity B # 0, Thom
lsomorphisms can evidently be composed.

3

b5  Temma Suppose given spectra zzzQ - A, 1:20 - B, and a
spectrum C with A- ad Beactions wiAAC < G, uiBaAC - C that
commute, in the sense that they yleld only one (A A B)-action
MiAABAC ~ O on G, Suppose glven virtual vector bundles

-y P oover X, such that o ia A-oriented, and B is B-oriented.

Then we can (A A B)~orient o +B canonically. With these
01:“&‘ {3 - B

. G
orientetions, we have O = O7@ D wawm b P oo
rientations, have @ o7y @G+B o

Proof Let usX® - A and v:.}{{3 <+ B he the given orientations

of a and B. We orient ¢ + B by

y
KO e y® 4 P

WA/&B«

The commutativitylaﬁ@ associativity of 4 yleld the compositiocn

lawa, x]l];'




1
... ¥
~

We always ovient the zero bundle by means-of the

. o W 07
obvioun projection X 5 5 T 3o
we ..{.}' P h.\“‘."- *
ho.6 Temms Then ® and &, are ldentlty homomorphlams. 1]}

Theae two results yileld a simpler procef_of the-Thom
isomorphiem, In the common cases. Gilven an L-action on A,

pedoa b o= A, commutative and associstive, one deduces from

LB snd L6 thet ¢°% is inverse to 0%, and that 2., ip inverse

't@ é_;:-“rv
.
Let X be a compact smocth ne-menifold with tangent bundle

0

Te gnd 1337 - A & map of spectra. We can consider

Aworientanility of X, ox of <.

4.7  Theorem  With X end A ac above, X is an A-orilentable

monifold If ~and only if -9 i an A-~cricntoble bundle. The possiblc

fundemental classes correspond, under the isomorphisns

e # -
20 = 37 (see 3.1), and {220, a}% & (2%, 20 AaA), (eee 1V).

The Thom isomorphlsms @ T:{KOy Bl = {x77, BE* and
o :45%, x.p], =138, %O

— ~ B}, agree with the isomorphisms

2.1, Tor any spectrum B with A-sction.
Proof - We have the stated isomorphisms. We must check that,

0

e O N, - L
1 weX" T o A corresponds to z:2 =+ X A 4, the local conditions

on w and z for these to be lfundamental classped are equivalent.
, n-+ke . ' .
We embed X smoothly In 3 ., With normal bundlie v. Then

we maey conveniently talke wixY o A, of degrec -k, instead of the



o St 5

o . ) “ " y
glven mop X ch.ap by suapending, since v 4+ v = 4+ k. The

H ' -"‘«'.”1 1 } 1. ]
Thom construction glves a map st L xY, Then z is obtained

Lrom ¢ as the composite , :
It 0
LA = A LS S S

desuspended og neceopary. The apsertion about Thom isomerphisme
Follows.,

Take any point x of X. Then we have ﬁh@‘@ompegite
i e . . in Fx ) '
vias = A, defined by inclusion of a fibre, 8 o R~ & waf@éw

o0

. . .o ) . : pe
Toke o dlsk neighbourbood DV of % in %, and let q:ix” = 3™ be

the Thom GGT%LWHGbxﬁﬁ applied to this disgk neighbouwrhood P

off B in X, Than our two local conditions ere that £or all

I

&
. N '
% & Xy the maps vi8™ < A and {gaf)e z2:3 =+ 5% A A ave each

XL, apart from @u p enslions. But it is immediste Trom the

_Glegram below thah Lh@S@ conditions are egulvalent. This

[N

diogram 18 made up of Thom consiruc tions, and commubtes up to

homotopy (compere 1.11),

eV a0 Vi 40,

kei ot i ,av.'}x :Aa 4/\11““‘_"?"."‘33/\&
i ne fgat : igA‘?
: .

B AT s 3R I APV b )

Multinlicative structurs
Take 4327 - A, and let B and C balap@ctré wilth A-gction,
such that 3 A0 inhierits a wellmdafined_Amdctian LidABAC =+ Bal,

Let & De an Aw@Ti@nLcd virtuqi vectav bunale of rank » over A,

.




o

D3
“’J-]

. g 0
Then we hove scen that the disgonnl ydﬂjydx‘A‘h~men AA
indunes Thom Lsovworphlspe. Also, the diagonala
B0 g0 0 g0 e et
AeX™ « &7 4 &7 and Aex = 30 A X7 dnduce cup and ¢ap products.
Then by coamutativity and associstivity .of-eup products and
dinponals & (mew 1.8), and the mixed pule for cup and oup

proivc»“ﬁ ve deduce the multiplication formulae

w8 faup) e 05 aup = ()™ audtp (aeix?, B, selx®, o)
) QQCXE?&§ﬁ=Qm)mP %0 8% = &% (i ‘ '

(x e (2%, xFuml, oe (x0, 0%,
Eeturelity | :

» W U, u oo o] '
Consider the Thom maps T(i): y® o X “f % inauced by a

' . e s . k . .
smooth embedding f:¥X ¢ ¥ w R of amooth manlfold$9 as in 3.2
whoere o may be any virtusl vector bundle over Y.

L,10 Temna Let B be an A-oriented virfual vector bundle

over Y. Then the Thom maps £} and Thom isomorphisms @B_yialﬁ

commutatlve diagr 1m for any spectrum B with A-action,

(% L;«f;ﬁ BT - T(f) - fy0, B}“‘
& 1 (I){,:L Q . . o i (_I:)B
b e i v B Je
. Ri
and ’ ZEO % YG&Q A B} ¥ T o ? 5 0 XM+11 (.'L+.=.g_ ;3 ﬁ} o
] I (:{') 5 . bl

& (:f i ‘.
l 3. B
(20, ¥® ALy ~—gpay A IZO? RASEL N 1

Proof Both parts are immediate from 3.5, ]]]
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DfsL.Bordiom nnd oo Dordism theolies

/

Thom's fundnm@nﬁml‘lmmma [ ] relﬂﬁihg cobordism classasn
to homotopy classes shows that the use of Thom mggaﬁra e
coelficient spectro gives ribe-dergeometrically intercating
homelogy and cohonology thooplos.

Let & be any vector bundle, rank k, over a CW-complex

%‘-}-j

Let ¥ be any smooth {(n + k)-munifold, and M, 1ts one-point
compactification,

5.4, Definition A E-pubmanifold, or submanlfold with

. , . ‘ ¢ s n .
Lestructure, is s snooth compact submanifold Vo of M, with a

bundle map from its normel bundle v to £. Two Eesubmanifolds

Vi and Vg are cobordant if there exists a E-submanifold W of

N

K% I, with boundary V, = W 0 (ix1) (i = 0, 1), where W meets
Mo 0 and M ox 1 ﬁfansvevaalyy and the E-~atructure on W extends
that on Ve and ng under the natural ldentifications

v]Vi = vy (i = 0, 1), where v, vo, vy, &re the normal bundles .
of Win M x I, Vo in M, Vg in M.

In particular? if the same submanifold V is given two
homotopic structure maps v = &, the two resuliting E-submanifolds
are cobordant. Cobordism is an sguivalence relstion.

The Thom constructlon applied to the E-submanifeld V of

. ¥
Noylelds a map M -+ BT with compact support, and therefore a

. JE . ‘ .
Cmap Mc « 37,  Unigueness of tubular nelghbourhoods and the .



e 2 ? e

definition of cobordism show that this construction yields
) I

a well defined map fron et el cobordism classes of

th
Eeoubmanifolds of M, to ﬁlcw B*].

]

The Thom Cons LI cbion induces an

laomorphian

Ly E) = i, Bg}s
where L(é ) denotes tﬁ@ get of cobordism classesn of
@mwubmdﬂ?JPidb of M.
Eroof The method of proof in [T1] is valid for the case when
£ is aléonth vector bundlie over a smooth manifeld Bs We reduce
the gencral case to this case. '

Since ﬂny Zeopubranifolid V of M is compncet, 1ts structure
map v = § factors througn EIC, for some finite éubccmnlax Crof
B. Bimllerly fox the structure map of a cobordion manifold
bhotween two E-gsubmanilolds. Hence .

L{M; &) = 1im L{M; E|C); and [mey ng = Llim [MGF oalag;
8B 7 runs through finite subcomplexes of B. Thus we need
consider only the case when B ls a finite CW-compleX.

We may clearly repliace D by auny space Bt oof the seme
homotepy type, and E by the induced bundle E' over B'. We can
choose B to be o smooth manifold (eag; an open neighbourhood
of B in R° for some suitobie w), snd give &Y a swooth structurc. ).

Remark  The conditien on B can be removed.
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wWe now stabilize. We shall be concerned only with the

?n+k 4

: o L
cnge H = R 5 e

s then Mé , a sphere. We may replace B

2

by Lts {n +1)-skeleton wlthout loss of generality; then iFf
ks n mﬁy viptual vector punéle £ over B of rank kK ie Leomorphlo
to a pgenuine vector bundle. Aiﬂoﬁ if k o» w1t the partioular
embeddimg of V in g@*k becomes lrrelevant, and we ignore it.

We pext give the stable veraton of 5.1. Let & be &
virﬁual vestor bundle with base B (igeﬂ @ man E:B - BO), of
ranlk 0.

* vy & e, S » " &£ :{l' - hy L)
5.5 Pefinition The smooth n-manifold V& ls s L-manifold

1f we eye given & moap -~ % <+ & =D of virtusl vector bundles,
woere T is the tengent bundle of V. Two compact E-manifolida.
- without boundary V2 snd VR are sald to be gobordant Lf there is
a compact gmmanifald Wn+ﬁ with boundary Vo U Vi, whose |
E.structure extends these of Vo end Vy. We define Ln(g) a8
the set df cobordism clagges of compact smooth Z-manifolds
without houndary.

| The word 'extends' needs amplificatieno In compéring the
structures of W and V, over Vg (1 = 0y 1), we need to make use
of bundle isomorphlsms erﬁ %7, @ 1, WHEDG T, To, Ty, aTC the
tangent bundles of W, Vo, Vi, respectively, and the extra
trivial bundle 1-pepr§aents the inward normel bundle of V, in W

or the outward normal bundle of Vi in W. - - '



Viith the hely of the remarks

5o

ETI
o s i

With o= R
assumed honasth.

Bely., Theorem

Lu(ﬁ} the set of cobordism clogses

Then the Thom construction induces

8 })

Bnoe 2, to k

Lot & be a virtual

-
Lnﬁﬁz

This theoren le

well nown cases [0

5

, M1, AG].  As examples, we

. . g 9 L

2 {50, 551,

1]

preceding 5.3, we apply

+ ¥, which bundle nay be

3

vecetor bundle over B, and
af E-manifolds of dimension n.

the lsomorphism

to the computation of Ln(ﬁ) in various

E~manifolds

nave

Lg(ﬁ)

gero bundle over polint

stably framed manifolds

framed cobordism
LLOUPS

identity virtual

bundle over BQO

H

unoriented manifolds

(i.e. no extra structure)

Ig Y3

universal virstual

bundle over BSQ

orisnted manilfolds

2

universal wvirtual

bundle over BY

fundtaryt manifolds

B

%t

universal virtual

o~

bundle over B

Spin

apin manifolds

gpin cobordism

groups

The ‘unitary' manifolds are commonly called ‘weakly almoest

complex' manifolds. Spin cobordi m appears net to have been

properiy defined until [ME],
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Track oddition in.Ln( Y in 5.l is clearly expresoced

geometrically Dy disjoint union of &-nmanifolds. If we are
given a bundle map & w €& = &, we can introduce multiplication

nto L$(€} in the obvious woy, which eorresponds under S to
that induced by the mep of

e

- rE A &
Thom spestra B‘¢xﬁa & CB;:B}é S . op®

Suppose

we mre given a space X and a virtual vector bundle
E over B of rank 0.

5.5 De “inition A singular E-manifold of

¥ is a pair (V, ©),
where V is a Bemanifold and £:V - £ ie an {(unbased) map. Two

singular manifolds (V, £) and (V', £7) are bordant if there is a

cobordism E-manifold W.between V and VP, and a map g:W ~ X
P

extending £ and £,

Denote by Bn(X; g} the set of bordism clasaes
of gingular Zemanifolds of dimension n. (Compare [0530)
Thus the structure of a singular E-manifold (V, f£) of X

consists of o bundle map ~7T= & «n and a map V ~+ X, We may

‘combine these into a single virtual bundle map -»T=1-n, where

Y is the virtual bundle over X x B induced from & by projection.

singular &-manifolds of X correspond to M-manifolds, and

We have, therefore, B (X; £)8 Ly (nr»
By 1.7, (% x B)? w %0 A BS,

5.6 Theorem  The Thom construstion induces an isomorphism,
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' . . w0
the coofficient rings N = {3

natural din £ oand I, _ '

i 3 o .Nl‘ we b (P?
. (%5 &) 2 129, %% A 8%,
hetween the groaded group B*(K; EY of Bordism classes of singular

" . . Cnn ' LB RE
Eemanifolds of X and the stable homoteny gooupy of X A B 11]

Thus B.( &), epart from reduction, is the stoandard

. b -
homology theory (mee IV) with B® as cocfficient spectrum. It

e
pra)

therafore prodent to introduce the assoclated cohomology theoly.

Tn accordonce with general peliey, we deflne all homelogy and

cohomology theories in the reduced form.

5,7  DPefinihion N (%) = ZZOQ X angl s gn(x) = {x, uo}"
| - U (%) = (50, x IS Ut (x) = iz, md ™
nn(x):zizos;gmmgggﬁ o) = {x, wgo}”

(see 1:9 For MU and MSQ).
Then §$(XO) are the bordism groups of X; but N, and i

L4

are now
defined on ull spectra. The products MO A MO - MO, ete. from
1.8, induce commutative end agsociamtive products im all the

ahove pairs of theories. In particular, these are modules over
57, MQl., eto.

Conner and loyd show in [c5] that when A is a subspace of

. o . . <0
X, the relative bordism group @n(xg A) = {27, {X/8) A Mg}n; ete.,
‘can alsc be given a geometric lnterpretation. Klements are

represented ag equivalense classes of singular manifolds with

boundary, £:(V, oV) = (X, A), under a rather artificial eguivalence
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relation., This has somce uses, PFor purely homologleal
conslderations, relative groups are superflucus: 1nstead a
Hayer-Vietorls boundary homomorphism 1s okl that ig required,
Beratoln has glven an elegont method of doing this. Let

A= AW B, where A and B are open subscts, and let £ = X

be & singular manifold of ¥. Then fmi(ﬁ w A) and f”q(ﬁ ~ B}
are disiolnt closed pubsets of M. Take a mmooth Uryschn

L function @M < H, 0 on f“ﬁ(ﬁ - A), 1 on f“ﬁﬁh - B}, and transverse

5 - ‘m-»’f - v - .
to e Then N = @ 5(@) 18 0 smooth {(n «1)-manifold, and the class

of the singular manlfeld g = £ < A0 B is the required

boundary . | | :
Trivially, any virztual bundle over any CWecomplex X is
I M-oriented (L.t} by means of its classifying map X - MQ
! '(a3$uming it has constant rank), where i:EO = MQ is the
clasaslfying map of the zoro bundle over a polnt. Hence we

alwaye have Thom isomorphismsa for the MQ theoriecs. Tet us give

3 the geometric inxarpraﬁaﬁion in terms of singular manifolds.
| Q&QM;&gﬁﬁg; Let & be a smooth vector bundle over the menifold
Ko Lot fa(M, oM) < (Xﬁg o) be a singular menifold of (xgy 6),
% smooth near and transverse to X © Xgﬁ Put N = :1?"'"1(&{),ﬁ and

= LN, so that g:N - X is a singular manifold of X. Then the
Thom i somorphl sn @§:§$(X€) o §$(XD) i piven by @a[m £ = [N, gl.

. Broof.  In effoct, &y is induced by the map of Thom spectra

[ —




0
rememb X A X0 o K0 A MO

over the map of base spaces X -+ L w BO. This, composed with I

is homotople to the mapn B - XofuMg obtained by applying the
Thom conotruction to N in Mm' ]]] ‘

In particular, let ¥ be a smooth eubmanifold of the
amooth manifeld ¥ with normal bundle v, LM %'Y & sinpular
manifold of ¥ tranaverae to ¥, N = f (
g~ X ¥ ia a singular manifoeld of ¥. We recall that the
Thom isomorphism is & cap product. Let aF = Mg;be the
clagsifying mep of v, Then.n&turality of Thom speotra vields

e

the geometric interpretation of cap products:

5.9  Temnna We have (M, 21 a0 o = {1, gl. 111
Again, any smooth manifold Is canonically MO~oriented Dby

XY, and g o= £|N, Bo that

means of the identity singular manifeold. One can deduce that in

this case Poincaré duslity is given by the Thom map {see 3.2)
given £33 < X x Eéy we uge the map o T(fTﬂ MY - 10,
Evidently, cverything we have done for the MO theories
carries over te the other theories, provided the bundles and
manifolds have suitable structures.
It is well known when bundles are orientable for ordinary

CONOMGLOZY .

5,10 Definition

We have the fundamental classns

weh

0140, - K(Z2), oﬂu\ = K{Z), hence 9Ny - K(3),
defined in:the uaual way (e.z. [T11).
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There arc cortaln well-known Imporsent homomolphisms

in nlgehralc topology whilch do not quits ii into the usual

=

fupctorial framework. We propose te-call-them transfer
homomorphisms, by analogy with the represcntotion theory of :
groups. There is one for cach homology and cohomology theol®y.

The transfer homomorphism is defined Llike a Tunction en
o nendfold « we define it locslly, on vearious domains of
definition, and show that it is well deflined on the intersection
of any tﬁ@ gf these domainsg. :ﬁa i‘ll content ourselves with
eight types of transfer homaporphismg there are many.more 1n
COMMON UBE . |

Since our applications are to smeoth manifelds, we shall
often resbrict attention to this casy case, even though it i
well known, and sometimes obvious, thal the definitions work
much more goenerally. We also say nothing about manifolds with
boundary. We give noprdism transfer homomorphisms only for the
theory N but agein the definitions held for other berdlam
theories, under the qbvioms orientation conditions;

We ghall usc the, same symbol & for sll transfer Romomorphisms,
however defined, to distinguish them Cfrom ordinary induced
homomorphisms {this Aiffers Lfrom acme current practice).

Axlomntic ds crintion

WD A ¢

‘

w0 .
We recall thet X° = ¥/f. . For gertain maps £:X = ¥ ef

s v neams e £ 1 RN 8 Wm0 8
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o BB

spoces with odditionsl structure, ln addition to the ordinary

induced homomerplulans

4
4t

PRI AN S POt LR AU S | DU A o

wa have troansfor homenorphlamns, both of the same gensrally

non-sere Acgred, m 8al,

off ?a{] & . ..0 }1" ti ' 0 U O y-O
f@zgz}; , B~ v, Bl o227, v aBl, o (37, X A Bl
. B : .
These ¢ functorial to the extent that 1, and 1 are identities,

& s e
and thot LT we have im and & where gi¥ - Z, then

' an mn b R
S, (ge iy = BTy (gof) = ()17,

L wWhoero fhy s and (gcif)q have degrees m, D, M+n. Under the

conditions favourable bo cup and cap products, we have
i ) ‘
6.2 (a) f@(@anéﬁ} Ly, U -y BsYO - C)
xl .
(b) (£ aup) = (“ mlot WLy (ary? = B, B:x° = )

(c) f@(x na) w %0 (nga ~ Yostg arx’

5]

a U B (asX

i

e (j)
(a) J?$(fhx N o) (__)mlﬁi X0 £L0 (xa/ o y0 A B, ax’ - Y
in particular, for Kronecker products,
(e) <?hxp @} s (M)m]x[ ‘<§p fha> (xzzo ~ YOI\Bg a:xd - Cle
£ we are also givwﬁ C =08 = A and & mmlitiplication ugA/\AZW A,
thbh £y and fg are homomcrphisms of [ED, A}$wmoduleso We shall
give the products in the simplest forms available; they moy oll

be cmbellished with puliable qultiplm@nuiﬁn mape B a C = D ete,

Vorious transfer homomorphiema

We shall always need a sgpectrum A with a map i:ﬁa -+ A, and

a spectrun B with A-action WiAaAB= B (see F:Z@EB)}a
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Lol Poeincand duslita dnonefon
Let X and ¥ e A«mr ented combinaterial homelogy manifolds,
of dimonsions m and n, with fundanental classcs

.0 WO
and Y oa A Then

ZXS,ZO ~¥ }’;G A D

s n. Take £:X = Y,

? v{ai = ]np

v |2y
6.3 Definition  We define the Pozncmr’mduaiity tgggﬁﬁgﬁﬁ
£oelx?, 817 - w0 p1* pfgsl, ¥0asp, - 139, %0 A,
by the formuloe gy O L0 e fw(m noo) (azﬁg <+ B)
@

g 08 = P o 0% (e .

. ‘ b . . .
Thon Ty and £ have degree m - A, and the diagrams

. H ) s L
ix0, wm" mm$m‘£&0? B} 90 B s {27, B
' il : f
2 Jayh % Jeyn 2 Jayn Bl
ZEQS. XOA B"; Lkgmﬁ‘%;} i}:(}s ﬁfo N B} e 5209 YG s BE @ Wtwm‘-bgﬂog Xg M B} i
R - s f

commuie up to sign. The definltlon works in virtue of the
duality isomoryphisms 2.1

For these transfers, 6.1 is trivial.

Suppose we have also a epectrum C with A-actlon A A C =,
auch that the two pesulting A-nctions on B a C coincide. Then
the multinlicative formulace 6.2 foilow from the standard fermulae
(IV) for associativity, commutativity, and 1n&u09d homomorphisms
Cof cup and cap products, by algebralc manipulaticen or commutative
diagrome, according to taste. (To prove (a) and (B), apply
2y to ench aide. To prove (ﬁ and (4), expross x in the form

Zy O B.Y '
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s I - o . }
Next, assume that B = C = 4, and put B =1 ali¥y, B!, the

tunit element®, in 6.3, Then

6.4 £, (w)\mmp)n g
If we pub b= By in 6.2 (d} and (¢} and subgtltute Trom 6.l
we recover the formulae of 6.3. Thus
6.5 Temng Tn this cose, 6.4 and tho multiplicative formalae
5.2 charnctorlzo fh and £ . 111
'
Remark e Principle. of Signs brenks down ln 6.3, Decnuse .

£

\ . ” L L
and %, have non~mero degros.  In ARy Coge, We cormot regard €
or I, oas belng obiained from £ by o wunary operation. We have
chogen the signe to moke 6.1 hold.

(n)  gpanter-Whitoheod duniity tronsfer

pemeY

Tet ¥ and ¥ be A-oriented combinatorind homelogy monifolds,

Q
of Aimensions m and n, with funa%mgn tol classes zxsz - XOA.Ay

0 0 -
ZYZE <+ ¥ A A, Let £ - Y be a map.

6.6 Definittion We define the $panierwWhiteheag duality transfers
£o20%°, B = (w0 m1®, 020, ¥0 . Bl - (39 %0 4 B,
hy requiring the diagrams :
G Do 5 {0 Rl s B 0 0 j s § 30 0 .
(x’, B} o {v", Bl . iz v !\B}p o {2 QIX "sz«anmwn

2

< | el =l L

0

0 o pem SN -0 i) o 0 _ 0 .,O -3
fox”, B} ) g?i BY P ’ DY /\B}Pmﬁfwzﬁgjz {2Y, px AB}p

(o
) . (men)n et )
to comnmuite up ta.th@ gigne + 4 anﬁb(w) respectively, in

o



which D denotes dunl as in IV, and the vertical lsomorphlsns

are provided by 2.15

“

6.7 Lemna The  mier-Whitehead ond Poincoré duality
tranasfers agree, )
fJroof We recal rom 2.15 the definitlion of the vertleal

Lsomorphisme. This shows that the Firast disgram of 6.6 -can he
egpinded to give the coemmuitative diagram
G o
iz, 8P
. . ' o t:,j"
% Lm0 2 Jagn
10 0 ) U
F3Y, x-an] “w?gwmwmggh , TYaBi

. AL I
. > {y0, i

HioaT) @ _ 2 ety
. o] . ¥ e
fpx’, B2 e (ov0, B2,
N (o£y" Y
which shows the result for £y, Simllarly for £ . 111

(¢} The tronsfer of an_oriented map

Let £:% = ¥ be a map of CW-complexes, which need not now
be Tinite.

6,8 »Definitibﬂ We sny £ ia an A~pricnted map 1T we are

- -0 ‘
given o map of ﬂ@uﬁtyﬂ f“* - ngNAs of degres n, say, such that

YO ' ‘ X ’«v"Yo A YG
' \Lf’ \L‘EA%
XOAA"WWW"%XOA .'X,OA A ;CW YGAXGAA

cammuhea {op. to boma opy) It induces transfers

*'. {L‘; o R
fqe{xog ;31 s v, w0 st vl - 130, 20 anl,
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" . L0 0 )
as follows: O3ven o:f - B, we have ¥ s T B ermanenn3 By, e B
g oo v b

L}

' . vio . 0 0
end we define 0 = (“)nlalu o (g at)ef. Glven x:d = ¥ ab, we

o G ) ) 0 '
nave & -ms-;w-a»".»zﬁ AT e X0 A A A B ~gb X AB, ond we define
1 R A 1&g s
"0{:;1 - - - L B3
P o= (Tap) @ {(£Fa4)ex. {(One could always toke £ = 0, which
: '

i , :
would make £, and BETO. )

Suppose that we crae also given & gpecirum ¢ with A-nction,

guch that the twoe resuliting A-cctlons on Ba( agree. Then the

deduction of the multiplicative formulaoe 6.2 from the commutative
dingrom of 6.0 is another exercise in manipulating commutative
diagroms ox algebrale formulae, according to taate.

The multiplicative preoperties of the Thom isomorphisma

(see &L) sre included as o special cnse.

Now assume that we are in the simplified multiplicative

altnation with & = B = ¢, and we have a commutative and asgsoclative

map Mid ab - A, Then given maps £:4 ~ Yo g2¥ = %, A-oriented

by %:YO o XGK\Ay é:po = YOA A, we con A-orient g ° 34 - 7 by
putting
6.9 S e (™ (4 ap)o(Pa1)ogsz® o ¥0a - 108 na - 300

where m and n are the degrces of f and . The commutative diagranm

of 6.8 for ¥RI follows lmmediately.
We next domyar@ thie transfer with the Ppincaré guality

tranafer. Let X and ¥ be A-oriented manifolds, of dimenslons
m and N

.
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6.10 Definition = We say the A~orientotion of ©i¥X - Y is
compntible with the A-orientatlons of X and ¥ if £ hones degree
( ) (mm:n.')n

, o . ; a 4
m-n, and the transfer induced by T glves £ g zxﬂ

whaero EX cnd zy aroe the fundemental closses of X and' Y.
G4 Lemmna Suppose the map 3 -+ ¥ of A-oriented monifelds ls

A~oprlented compastibly, by'@z?a b XQA A, where diAa A = A is
commubtative and asscoliative. Then the tronsler induced by £

agrees with the Polncaré duvality transfer. If also ﬁ ig an
Leoriented manifold, and gi¥ -+ 2 is oriented compatibly, then the
A~orientution of g *f is comyatiﬁla with the A-orientations of

L and .

Proof It 1s immedilate from 6.5 that the two transfers agree,

for they agree on Z, by Gy and 6.40, and are both multipiicative. ]

(4) The Grothendlieck iransfer

Let £:X -~ ¥ he a map of compact smooth manifolds, whose
tangent bundles are t{X) and «(¥). - We suppose that the virtual
vector bundle f$W(Y} =T LX) over X is A-oriented, and deduce a
transfer.

We 1ift £, up to homotopy, to a smooth embedding

gk

s o ¥ = B Let v be the normal bundle. Then

Vo= ko £ (YY) «v{¥) is A-oriented. The Thom construction (3.2)
0 )

¥

yields a map T(£)sY” - X', of degrec K, and hence, by using

: . a0
dlagonals {1.8}, o map of npectra L7 = XVMmeﬁxﬁ,Mxv op xe,\g,

Ay



This A-oricnts the mop # {(the commutatlive diagram of 6.8 is

imnedinte ), and hence induces tronsfer homomorphlsms fh and L,

However, we ¢an express these transfers slipghtly differently,

as being induced by the composites of the ordinary homomorphisng

indaced by T(L) with Thom fsomorphlsms.

~ . B o . .
B8  Definitlion
Dot 280 X o O

In this situntion, the Orothendieck tronsfers

e 5t , S .
it 21" s v0, m, ezt vlamt, o 120, 0 am

a

a9

g A

nomomorphi ons

B

, 8} gt 12Y, B} s (37, 8]
& ' ()

L0 0 I N 21 B, R
{2& o ¥ J\B}m“"“”{i{ca";rtf g:lr p e A BI;;; ('j)v {B g A AB;#:“

We oee from %.0i, or by direct geometric construction, thot
these transfers are well defined. We deduce the multiplicative
formulae 6.2 from those for Thom isomorphisms (4.8 and L.9), and

the composition law &.1 from 3.6,

We have alreody observed that the Grothendieck transfers

are special cases of transfers induced by an oriented map.

6.4%  Tenma

Suppose that X and ¥ are also A-oriented manifolds,

and thaot we are given peda A = A, commubative and associative.

. , .
Then there is a canonical A~orientation for £ w(Y) - 7(X), and
with this orientation the Grothendieck and Spanier-Whitehead
dguallty teransfers agrec.

W .
Proof  Write v = £ 1(Y) ~v(ZX).

By W.7, we have A-oricntations
o weer {0
veY w(¥) -+ A angd wzx_q(h’

~ Ao We choose usX® = A corresponding
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v w ounder tho Thom Iaomorphlem

[
=YY

3

(Y W
gt

Y #
Q{} E.’ {i H‘L'} # [‘Lg ;:;

naturality of Thom fsomorphisms for the inclusion in ool ony
point shows that w la an d-orienintion of the virtual bundle v.

Further, by means of L.% and @, the crientotions w and v give

i
Rt - PR
Ly o=t wY) gV

. , Lo X “ .,mu‘"f;;‘ . .
haok the oplentation w, and @ ( ;3T , We consider

the dlagram
Yy o

£ ()
s L A NS
4 5 oy E ;}E‘:‘mﬂ{g(!&"’ . :B}

g B 3 !}) P x%.,; B (?
(20, B e (7, 3]

ks

leeey” | Loy’

ﬁ’EY%T(Y) . BE h—:y

@“‘“'g (.3—)>

which commites by L.10. From L.7, the Thom isomorphlisms of

w el Y and - (Y)Y are the Spanier-Whitehead duality jsomorphisms
L

2,45 for ¥ and Y, apart from putting DKO

= XMT(X) and‘BYQ = Y“?{Y}ﬁ
and from 3.3 TCf)m = (Df)“; we are bock to 6.6,
Similariy for homology. 1))

(e)  Intepration over the fibre

We now consider a fibre bundle 7:E = B whose fibre F is &

compact n-manifold, with fundamental Cclesses Z. & Hn(F; ) and

I
Up & HH(F; @), where & = Z or Zz. In the case G = J we also
require the fundamental group of B to act trivially on Hn(?; G)e

Mhen we have tronsfer homemorphisme (see e.g. [B3]) known as

Ctintegration over the fivret. The pileturesgue name arises from

the case when B, &, and F are amooth manifolds and =% ig a Smooth
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bundle, in v .ich the cohomology tronsfer can he expressed in
toarma of wntchﬁu¢nw diffarcatial fTorma.

We eghnll. alao all thewse transfers tThe apsciral segquence

tranafcrsy and use the dofinition [B3] in torms of tho Leray-30rre

i

apectral sequences ol .

66"]}‘4 T‘r\

o R T4 £ A A AL 2

ihion We define the gpectral sequence trangfeﬁﬁ

. . Ay denn,
or intepraiion over the fibre, %, ¢l (By = H (B}, « H (B)

. , iv%
in tewrms of the speebral sequences ol © as follows:

T, ls the composlte ﬂi{E) A= E@”Q = Himn(B);

- B &
[e]
% 4s the composite i, (B) S > (8),
i l.n i,2 1+n

where the isomorphisms are @u and © @.

We know {from IV) that we can pub cup and cayp products into
these spectral sequences. It 1s easy to deducs from this fact -
the multipliicative formuloe 6.2,

It is cilear that Ty and %h are natural for maps of bundles

with fibre bg hecanse the spectral sequences are natural.

6£.45 Temma . (Chern [C2]) Suppose B is a manifold. Then E

is also a mﬁﬁifoldy and the Speatfal gequence transfers agree with
the Poincard duality transfers.

ﬁgﬂg@ Both paire of transfers apye multiplicative, and hence,
by 6.5, we need o.nf!.‘;sf checlk T By = & Zpo This is evident from the
bdafi vition G ﬁw, aaaum@hg wa chooBe ﬁh@ ol rrect orientatlon zg

for B, J1]



()  The pulihzck tronafer

One wouldh expect that fer a geomstrically defined homo Jovv

et

theory such ns bordism theory varlous transfers could be defined

rocmetricelly. This is Indeed the <agc; although we shall
& 8

restrict nttention to the theory N, for simplicity.

Suppose we ore given s smooth map X - ¥ of compact
smaoth monifolds, of dimensions m and n. Given a si ingular
manifold el - ¥ of ¥, we con construct the pullback gpace i

and o map g - X, Under a sultable transversnlity condition

(viz. £ x heX » ¥ = ¥ x ¥ transverse to the dlagonal of ¥ x Y)
g1l - X ie n singular manifold of X

Cp ko ek . L
6.16 Definition The pullback tronsfer I °H,(Y ) -

0
Yy - n(X )
is defined by taking the class of n:N = ¥ to

One can show directly that fh 15 wall defined.

6,17 Leymn The pullback transfer agrees with the Grothendieck
tronsfer.
Proof We 1ift £ to o smooth embedding £':X € ¥ x EFW Then oup

pgsertion is evident. from two applica tions of 5.8, 1]l

() The bundle tronefer

FNVEIPEACRTIE TR

There is anclther case, vVery simj7 r to the previous, in
¥

which a goomebric definition can be given. Suppose 7:E = B is

a fibre bundle whose fibre ¥ is o swmooth compact n~manifold, and

whoae structure. group is a Liec group G acting smoothly on F.

the clags of g = X..
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Then given o uinﬁo?aw manifold £ M -+ B ai B, we construct the
lndufﬁ bundle M = ¥ over M and a nop f:M = B. We may give thisg
~ond
induced bundle o smooth structure, which makes LM - I
singular nanifold of E. ‘

. - . & 0
6.18  Definition The hundle transies ﬁ* (R Yo N, (BT

mhn
s defined by talking the oloss of £:M -+ B to the olass of

B v I
:f ol\:. “t e

Aguin one can show that ® 1s well defined. It obviously

agrees with the pullbock tranefer when B is a smooth manifold.
r [ kf > 1 a1} o'} » A,
It is alse trivial that = is natural Dor maps of bundles with

fibre ¥,

(h)  The Grothendieck bundle transfer

A serious disasdvantage of the two previous transfers is
that there 1s no obwvicus way to define the corresponding cohomology
tranafer, because §$ is not a geometrib theory . We should like
to have muﬁtmp11cdt3v0 transfers., Again, integration over the
fibre has only heen defined for ordinary homology and cohomology.
We £ili this gop by constructing ancther transfer,., available f@r
generel cohomology and homology theories.

Let B = B be a fibre bﬁn&le whose Tibre F 1s o smooth
compact n-mnanifold, and whosge structure group 1s a compact Lie
group ncting smoothly on B, Wo shall need the bundle v of

tongents along the Fibre (so¢ o0.g. LB31): +this 1s o vector bundle
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93]
!

over L whos :ﬁriction to a typical fibre F ls the tangent

bundle of F. |

6,39 Lonna Let ¥ be a smooth compact manifold, and G & compn et
Lic group achting smeothly en . Then there exists a finlte-
dimonsional repregentotion space V for G, and & amooﬁh eegquivariant
embedding F & V. |

Proof. We use a neeful lemma of Mostow [ M7 haped on Lhe
A TS ¥

peter-Weyl theorem. Let S be the algebra of smooth resl funcilions

on B: then O acts on 8. Take a Linite aet of elements {hi} of 8
wnich separate points of ¥, By [M7] we can approximate these

vy thil, still separsting, such that for all i ¢h! ie contained

Ly

an @ Cinite-dimensional subspace of 8. Let W be the subspace oF
g8 spanned by all the sets Ghi; it is finite%dimensionala rut
Vo= Hom{W, @jm Then evaluation of W at each point of F ylelds
the xequi?é& equlvariant embodding ¥ ¢ V. 13]

Given a r@presanta%ion space V as in 6.9, let 1 be the
vector bundle over B with fibre V agmociated to % {s5], Then

6.19 yieldns an embedding of B in the total space of fi. Choose an

equivariant metric on V, and let U be a metric tubular neighbourhood

Cof T in V. Then U gives rise to an associated subbundie of' M

having fibre U, total space N, say. We have a tubular neighbourhood

aisk bundle W of B in v, with norr:Ll bundle v, say. Without loss

of geneprallty N_is contained in the unit d;sk bundle of ne' The
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Thom construction now gilves a map 57w ., and hence & map of

R & by 1.12 for sny viritual vector bundle &

3

. L
spectra B [

- 04

over B. In partieular, we have a map ol spectra

2sld 7(x):B° 57,

e et
since @4 1 =

T @ Ve The Thom mep 6.20 is well defined (for if &
L8 another buadle contalning =, edding & to M dess not alfect
T{n), and we then have to compare two isotoplc embeddings of L
inme L.

Now we guppose that - T is A-oriented, and that C is a
spectrun with A«action.

6,21  Definit
0

We define the Grothendieck bundle transiers

3 '.s é'
msin’, ol » (8%, o, w%ed3?, BYacl, - 2%, 2¥acl,

as the composite homomerphlsms

: o = b B
(%, o} s (57T, ) (8%, o]
® (%)
(2%, 8% 0}y gy (27, 27T a0 20, 50 a0,

-
Formally we have exactly the same situation as for the

Grothendieck transfers, and ws shall not trouble to repeat the
details. These transfers are multiplicative, i.e. satisfy 6.2.

It is clesr that they are natural for maps of Libre bundles with
Libre F. As before, wauhava herc a particular case of an oriented
MEP e |

If B leg in fact a smooth manlfold, we can choose 7M to bhe a
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i

v

trivial veetor bundle (it doos net have to come from a
representation space). Then these transfers agree with the
Grothendicck ranefors 6,12, ‘

Agaln, naturallity and two applications of 5.8 show that

our trenefer inclvden the transfer 6,18 In Bopdiem groups.

6,22 Tieming If the speotral seqguence tranalers G.1L are also

deflned, they agree with the Grothendleck bundle transfers,
l We observe that we can relativize the transfers 6,2{
as we Ald Thom laomorphisms, by constructing a map of spectra
6.2% () iRy /Be (B /Ea) AT
for subcomplexes By « By ¢ B, where Ei w ﬁ”ﬁ(Bi)0 The spectral
sequences of ® can also be relativiged. By using natwrallty Qf_
both pairs of transfers, we guickly reduw to the case of a
trivisl bundle over (D, oDV}, which is clear. 11)

Let us gather together what we have. PFor the map X = ¢
oflCchampiaxesﬁ under the respecitive orientation conditions, we
'have various transfer homomorphisms fh and fh:

(a) Poincaré duality - X and ¥ A-oriented menifolds.

(b} Spanier~Whitchead duality - X and Y A-ariented manifolds.

(a} Oriented map ~ A«orientation %:YO ﬁ.XOA.AG

(3) Grothendicck « X, ¥ smooth manifolds, f$T(Y)mT(X)

¥

A=oriented.
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-
(e) Integration over the fibre ~ £ a bundle, Libre a
manifold,
(£} Pullback - % and ¥ smooth manifolds. {Only in bordism.)
(g) Bundle « f a bundle, Cibre a smooth monlifold,
group & Lie groupn acting smoothly. (Only in bordlsmn. )
{h} Grothendicek bundle - £ 8 bundle, Fibre a smooth

manifald, geoup & compact Lle group acting smoothly,

- T A-orlented. .
6.2l Theoren Under suiteble conditions, these transfers are

maltiplicative, If two transfers are defined for £, and the
appropriate compabibility conditions on the orientationg hold,

the twe transfers sgree. 444 : .



57, Tiemann-Roch theorems

Aale e maton cas, wimes!

We give here the formal theory {compare [bg]) of
Ricmann-Roch theorems Tor smooth manifelds (c.g. [ABl) and othowr
situations in which transfer homomorphlsms arc avallable.

We shall suppose throughouwt this section that we are glven
two coefficlient éﬁ@ctfa A and €, with maps 1320 - A, 1220 ¥ Cy

and commutntive and assoclstive multiplication maps Wih aA 2 A,

%
wiCa€ « G, guch that A = Bﬁn ALWEKTM%AJ\ANWEf@A,and similarly
G - O are identity maps of spectra. We suppoese also that we
have a éhomamerphiam* G4 - C, such that ﬁﬁghm¢L0(®k 0) cAah = G,
and 691 = izEQ “+ G

If E i8 a virbtual veclter bundle over ¥, with A~ and (o

orientationt,. there is no reasen for expecting the diagran

t 0 ,
(%0, a}" g (X, o}
1
z]o® QL@&:“
' e . . :
£K§9 A} “‘““*“““”@'""""53’ gxgs G}w

aty
hid

to commubte. Indeed, we use thias diagram to define a new
homomorphism, |
T.4  Definitlon We define a homomorphism
o :(x0, 43" - 30, al®
by putting  Op = (®g3m1@¥®g Qoo

(+]

Associativity of cup producis yields the formula .

SrrRi

L5 B (aUB) =B 0U8B8. (s, Beix, A7)

;



Next, we suppose that ¥ and Y are smooth manifolds, cach

A~ and B~ oricnted, snd £:X - Y a map. Then the transfer

!’:A I W v ‘ ,;:4' - o - - “m o R
EWSEL” Al = ¥, Al may be defined (6.6 and lL.7) by Thom

WY Gl ¥ e .
loomerphismug and the Thom map Y w{¥) - X ) (essentially the
dual of £ by 3.3), where ©(X) and v{Y¥) are the tangent bundles

of X and ¥. Then naturality snd 7.1 yields the formula ' -

" °C' ) [3 . P.O i Y s 0 Bt
'K.u%}& ig?amﬁg(‘:) & "G'( )J) 'Lg;?“{} *Lg - EY Ci @
Talke o YG “ Ay Bz%a =+ A. Then G.2, 7.2, amd 7.2 give
G P . - > g N A,
500 T 0 U 8,8) = fqamw(x){f o U B = amT(Y)fﬁ(f %
1 ( }{Q, L ‘L?-}'B) M(Y)O‘ W 8*3’;";{3,;
Le@e
. 4 ,—,":ﬁ : - _jA 4 7 '
;ng,&i& fg( @w,[;(x}lﬂ o U @h}:ﬁ} L2 @w”ﬂ'CY)a‘ L4 @!%’-f i?{D {JCLgYQ - A, 1‘3 gKO i A) .

&

X3
In the cchomology ring {X7, Al of X we heve the identity clemaent.

t (} " L, [ » & )
1, given by X7 = howw?weﬂy where the Tirst mep is inducsd by

projucting & to a point.

7.5 Derinition. We put A(X) = O T(X)ﬁ = gﬂ 65,

7.6 _Theorem fﬁ(é(X) U 9,Me= &(Y) U 8, fuB (R w‘A}Q
Proof We put o = 1 in 7.4, and use 7.5. 1]]

The proof of this *Riemann~Roch® thoeopom is trivial, It
ie the vorification of orientability and computation of &(X)
and &(Y) that are liable to causo difflcultios (ec.g. [48]).

Mory genorally, wo neod only the diffcrence bundle

<

i , ,
£ (Y v (X) to bDe oricnted, 1f we usc the Grothendiecck transfer
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[

&

. w3 .
Lol Pefiniiion It v o= £ w(Y) - (X)) 1s A» and G orlentod,

i

ve puth

&(1) = Sv"i e (3% o},

4
If also X and ¥ are oritnted as before, and the difference Pundlea

*

vy is oriented sccording to 6.13, it 1 not ALCficuldt to prove

7.8 A(x) = £ A(Y) U a(e,
0

and that &(Y) iz invertible in {¥°, Cl, so that in this.cape

o

A{L) can be determined from this formula.

oF

Tn the same way as for 7.6 we obtaln
7.9 Theoren f‘g(é‘.(f} U 8,p) = @,,}éfﬁﬁ (g:x? = a). 111
Again, suppese we have a fibre Bun@le i - B as in the
context of the Grothendieck bundle transfer 6.21, and let T be
the bundle of tangents along the fibres. Formally, the situatlon

i exectly that of 7.9. Suppose -7 is & and G- oriented.

1210 Befinition  We put a(n) = 6_.1 & (%, of.
Ledd. Thgoren np(8(n) U 0,0) = 0,0 (a:80 » Ay, 111

. . C ~ .
Thus 1f 6, is mono, and we know % and &(%), we can compuio
A s
Tye It is this case that will cecntern us.

One could, of course, derive Riemsnn-Roch~type thoorems for

homology and cap products, along the sam: lines. Therc arce

cbvioug advantages, however, in arranging the ¢r  tations so

“that they only invelve cohomology and cup prodoc
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Characteristic cobordism closses

AP

583,
Given n complex vector bundle & over a (W-complex B,
ve shall define notural characterlstic classes of &, called
L b0
she Chern cobordism clesses of &, taking velues in U (R"),
{Recall that BO = B/#, and that all cohomology ls taken reduced. )
Simiterly we obtaln Whitney classes in the real case, and an

i ¢}

Buler class. Ffor the Chern ccobordism ciassesp this has been
dong by Goﬂn@r and'Flﬁydﬁ under the restriction that B is finlte.
Now that we hnwve g$( ) defined satlafactorlly for arbitrary
GWwcomplexes, this restrilction ls lrrelevant; also we may
perallel Borel's approach [B2] and work only with the universal
bundle over Bg(n)y thus guaranteeing naturality. PFinally, we
show that our definitlion agrees with that of Comner and Floyd.

The importance of these classes in g$(BQ(n)O) and Q*(Bg(n)o)
1s that they pick out canonical elements, which makes more
pracise investigations possible, as we shall see in VI. Furthenr,
we shell find in 59 some geometric properties of these classes,

For any honest vector bundle & over B,.there is a canonlcal
incluslon of BO in the Thom complex Bgy as the zero section.
(apart from base point). In particular, we have Bg(i)g o Mu(i), ete

8.4 Definition The first upniversal Chern cobordism class

Gy & T__,_f@ag;q-i-)o) is the composlte Bg(-z)o < MU(1) - MU.
The first universal Stiefel-Whitn-v cobordism c¢lass Wy & §1(BQ{1)0>




8,3 Lemma (a) g&(ﬁﬁﬁnlg} = g[&ag S eeey SnJAE snd ©,.°8

4 ) - {:1 ow Y
18 the composiie BO(4)" © MO{41) = HQ.

. ' . - o : G amT
The nth universal Tuler cobordipm class X@ & B 0{9) ME im
b ikl . SIEEED Ay W A
is the composlte Bﬁﬂ‘g\a < ugQlng - MEQ.
In cach ocasec, the sccond map of apectra iz the tlasellying

2

map - of a Thom apooltium.

i

Thepce ape our initisl charsctoristic c¢lasmes, from which

wo ghall construct the others. We do this by uslng the

fundomental classse (e 50107 00 HO < K(Za} and ﬁUaMﬁ i V{g)g

ghaorving thet they induce »iog homomorphisms 00 cobordism G

ardinery cohomelogy, and using the resulbs of Borel [B2].

Donote by Tin) the usual maximal torus of dlagonal
it 4

r

matrices in Uln), and Q{n) the dlagonal subgroup of g{n). Then

Tln) 2 T{1) w 201 % oo x T{1), and we may thoerefore tale

[l

BR(nY = BR{1) w BU(4) « ... x BR{1), end similarly for f(n).

woa ©

: - . S . 2 :
Define the cohordism classes 8, &€ U (Bgﬁnjo} (1 & 1 € n) induced

o i .
from Go € US(BR(1)°) # gaéﬁﬁ(i)g) by prejection BR(n) - BL(1)

to the 1 th factor; similarly we cbtaln T, @ gﬁﬁﬁg(nje}w
| In cohonology we have the cmrrempanﬁing conomology clasgsses
By and tig and by Borel woe have
8.2 2’5 2) = zlec, 82, ceoy 8.0,

B (80(n)% Ze) = Zaltes Bos ooy 1,
greded pelynomial rings. '

Ey
v
AT TR AT T A2 T

i

Y

5]

i

'3



T e

(b} N (35{ {I’A‘) '\ =2 Ei{_,lfip T?{!? o ap ‘T‘alﬂp and GQ‘}QTi =t ’tj‘e

o e A ; 3 . e
JIn cash casc, completion i with respect to the shkeleton
ctopolopy (aee EVjﬁ which here is the augMﬂ%uabjOﬂ ideal

i

generated by th@\Sf or the T,, and its powers.

i

Proof We soe from 8.4 that Oy ﬁbg = C1, the firsgt cohomology
Ghorn classe, Trom LB2) or [Hil, and honce fd By = By (We may
take the fncluslen BU(T) « MU{1) ss inclusion of a hyperplane in

Pw{i}m} By IV we have & apewaﬁ 1l 5@ onﬁum with Bs term

prlie T . : *
Ew°@ e HEQT“(*\Q U}, ‘where wo write Qq‘m U o Milocer hes

L em

ghown thet U is a gesded polynomial ring over Z, with one

gonerator in oaah gven negative codagree, and in particular is
fres ab@l;&n M1l hanmg y &.2 all the differentials vanish.
‘WHG b*@ﬂ* the derlved fterm RE, venlishes, and the spectral secquence
converges (secc IVy this is a fourth guadrant spectral BEQUENTE )
to E_ s asscclated o 8 cdmplata Hausdorif filtration of
g$(Bg(n}G)g The hﬂmomerﬂﬁism induced by Oy eppears here as an
edge homomorphisnm U Jp(Pﬁ{n) } o ﬂgv ' Bince o 08, = 8,, and the
A
spectral sequence has products and U-module structure, EQQBgﬁn}Q}
miat e as stated. :
Similarly for B(n), except that we have to invoke the

ract {compare [05]) that again the difforentiala vanish, because
'aa we snoll sce in ?is‘mg,is g graded Eilenba ﬁ&mMagLsne

BROCEIUL. - 111
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. o ; ;
86111 following Borel, we consider the map piBI(n) - BU(n)
© induced by inclusion T(n) « Win).

8.0 TLemma (=) Incluslon induces the monomorphism

1 el . . t.“
p U (BU (n) } o U (“”fﬁ) } whose image i1s the symmetiric
e 0 e ) A
subalgebra of g (ﬁg{n; j o= UlSa, Bry ocoos SnJ 5

(b) Inclusion @(n% o O(n) induces the monomofphism

1 Wt
posl (Eaiﬂiﬁ‘ - W kLﬁLﬂ§ Y, whose image ls the synmetric

b
. £
subalgebra of Y (Eg(n) Yo NP2, Toy ooes Tn] )
Proof The symmetric group ¢ of permutatlions of n objects actn

on T{n) by permuting the factors, and hence also on BI(n).
However, each permutation can be expressed as conjugation by an
Celement of U{n}, which is path gonnected., It follows that G acts
. on gm(Bg(m}Q} e g{%ig Sn, cooy Snlﬁ.by permuting the S, end
é that thoe image of p$ s contained in.ihe gymmetric subalgobra of
UlS1, eoes Snlaa Consideration of the spoetral sequences for
‘EQW(BT(n}O) and U${BU(n}O) and of the map bBetween them induced by
:p shows that p must be mone end its. image the whole of the
syminetric subslgebra, since H"(Bg(n) Y= 2lei, B2, seey © ] and
9$H$(Bgﬁn)0) is the symmetric subalgebra of Z[aig agy cvep By 1.

Similarly Cor BQ(n). 1]]

The aituatioﬁ s thercfore exactly as we_WQuld expect frbm
thet in cohomology, apnrb from the neod for completion. Wo can

therefore % 2o , . Co o



)

L
o g

R §

8.5 Definition We define the univorsal Cmm Gtﬂmfo BN

claasen ©, & U5 (Bu(n)®) (4 < i < n) so that p"0, io the 1 th

elementary syvmnetric function of the Sjc;

W o define the noiversal Sticfel-lhitney cobordien cloasen

Wt

; 4y 0 o as . . .
LW, @l (B0} ") so thet p W i ts the 1 th elementary syometrla

Lt
1

[

funation of the T,

‘"i‘hw definition is permitted by 8.1 ' .

We can now complement 8.1 I

8.6 G @_gngﬁgim}@} i the composite BU(n)Q o ME(nY - M.
1 W, @ Enéﬂggjﬂ‘}@} is the composite ,:»Oém'} « l‘mi’n) “+ MO

Wa are ready fov the mein mmomm@

8.7 Theoren

| (gj 0 (P(n)") = Yloa, Gao enes 0% . (?U{%) ) = N[Wﬂﬂvmgawgw 1“,
) Q&[QGJ. =y 9 o W - ﬁi”

{¢} Inclusion b(n} T(n + 1) induces the homomorphism

. | s
| gaun + 1% = 0l0, eos O 1% T (BEIY) = HlC, wuey ERWJ
Cwhich tokes G, to O, for 1 € L €n, snd O, to 0, Simllarly v
i i T e

for Gln) © Qn + 1).
(a) By (c), we may define G, ggi{}%ge) o5 the inverse limit of

 the eloments G, e g?H(mg()®) (¢ > 4). Similardy W, € NH(BQ").

L

2 (e) gW(BEO} = g[cip Gf&.’s' 03991,\; ‘2‘ (BO ) = :NLV‘J:LQ n"gﬁy eewJA

(£} Tnelusion Uim) x Uln) © Uim + n) induces #he homomorphisn

g (sun + m)0) = u¥ (By(n) % BU@)TY)
- i = o
gEGiycﬁﬁg g e ep Gm-rﬁbn:lﬁ i ELG& (8) 19 cé’j @ ‘19 Ce S PH c ®'a ‘1@0&960; @‘:}n

‘”i‘

3



e s

in which

¢, ~ O ©1+C
with the convention thet C. = 0 in U {Bﬁ{r)g) AN I o
gimilariy for 0lm) x Q(n) ¢ o(m + n).
Froofl Ye cive only the unitary proofs, as the orthogonal
proofs are slmllar. By 8.l Eﬁ(BQ(n}O) is lsomorphlce by p*
to thoe symmetric subalgebra of Uf P, Bge evey S ]A, whilceh 1s
known {Newton?) to Be & completed graded polynomial slgebra on
the elemoents chﬁo Wo have {a}. Since G and ey are hoth
defined in terma of elementary symmetprlco funcimonqy (p) follows

from 8:.3. The inclugion gﬁn) " @(n + 1) induccs & homomorphxsm

taking S, to §, (1 €1 «n) end § to 0, clearly. Hence (o),

i i : 1+
T T S . WL
by 8.4 and 8.5. By Hilnor'e lemme {(see IV) U (iy ) = Lim U (Bg(n)oﬁy
since we heve herce a sequence of cpimorpbisms; hence (a) ard (e).
Tn (£), we need only work with maximal tori, T{m) x T(n) = T{m + n),

by 8.k4. For thesc, we have £, ~+ 8, @ 1 (i# 4 € 1 €m) or

Si s 4@ Si 0 {(ifm<ismw n). The result £ “ows Lronm 8.5, ]J]
& i ' o
8.8 Corollary The comultiplications inm ¢ .y ) and N (BQ?)

are given hy

C; »* Cy @1+ Gy ,®C w Gy 5 ®Ca+ oo +10@C;

o
- v Heow W, . ®W S ae - w .,
_hriwwig,*}ariﬁ@ +.im2®\\9§- _+’i®i ]J]
8,9 Definition  Glven a virtual vector bundle & over the

CWeconplex X, lts §tgcfelmWhiﬁney obopdism characteristic £lasses




we 0BG .

2
‘;’Ji({i) e ISJL (% ) ara wwiv ad by V (E"} w E W,_ {recall thaet 'bv
dcfinttion 1.3 we have EiX - BO) Similerly, C (Q) & B (k
is defined, 1 & is factored through BU. t
8,10 Corollary Lot B and 1 he virtual vector bundles over .
AhTPN ¢ P s L. \ht / r X‘_d_

Then W (E + M) = By g oW (B)g(n). 1))

Finally woe give an alternstlve description of the Chern

[N
o

nd equally of the Stlcefel-Whitney) cobordiem classes, which

g._'.\

(
the %c aion adopbed by Conner sad Floyd.

Suppeose & le an honcst complex vector bundle over the
finite-dimenalonal CW..complex X, with complex Ffibre dimension n.
Let ¥ be the total spsce of the assoclated projective bundle
‘with Fibre P wl(G)p nrojection wiY - X and let 2 be the unit
sphere hundle in E. Then the mep 2 = Y is a pf%n01pal U(ﬁ)mbund7e

with Chern class O € U (Y )P s%yn

free igg(xﬁ)immoﬂule with base {1, C, 029 vea, (3

8.91  Theooren By means of " :U (KO} ﬂ'g$(ye)g Qm(YG) is a
Hultiplicetively, there is one relation

812 ¢ - ™o (m) + PRarlCa(2) - Lo w ()PRTC(E) =

ggggﬁ We first econglder the universsl example w:T - B. When

we have unravelled the'vafious definitions, we find we are to
investigate the Borel bundle [B2]

8:.13 U(n)//f0(n = 1) % (1)} = BU(n =1) x BY(1) = B 7 BU(n) =B

induced by Yln «1) x U(1) « g(n)o= The class C is induced by



sk o= X, with MU as.coefflicient spectrum.

- B0 s

o . T . ! .
projection from Cy & UT{BU(4) ). Write

Qm(BQ(n*”1)G) = ULCH, Chy cauy G;m%]A? by 8.7. Then we know

“(from the usual spectral saguence) that ‘

b )
. wrt Y : . g M
J {ﬁ ) o gggﬁ Gi s 7§n LI o )

A e From 8,7, the homomorphism
)
0

Lt

wois plven by

i uwt >§C
S Lol L og, w0, o G 4 OO {44 < = (0,
ROy = 0+ C, w0 w Gl w0y 4 (144 <n), nC, =00

o] ”
Eliminating the ﬁ§ yields the relation 8.12. We alsc note that
for the fibre Poe P . (G) & Uln)//]

gloe4 ) e L, %) is

¥
l WA
e e F b e ey g {. 2 . l'l“““i e A e Y E. \‘
U-free with base [1, €, G5 w.e, G '}, and thercfore a free

abcolian group.

Let uwa aow return to wm:Y ~ ¥, Certainly 8.12 holds, by

naturality. We mupt show therce ars no new relatlons.

Consider the Leray-Serre spectral sequences of 7Y -+ X and

Let us write them as
(EP(Y)) and (Efﬁx)) respectively, and %$3Er(x} erP(Y) for tho

. N " - I H‘ )
map induced by ®, Now %z (X) acts trivially on U (FO); and

Ki VA 5 e
Bal®) = H (X; 2) ® U; EBalY) = H (X; Z2) @ U (FO)P

since thepe facts are true of 8.13. Now these arc graded rings,

and by mcans of x*g EE(Y) is a Tree La{X)-module, with Dbase
i1, C, Gg, cs o Gnmjlo Boreover, the differentiala are all
derivetions, and vanish on C© aincé they-do for 8.13. It followe,
by induction on r, that B, (Y) is a free E,(X)-module with base

i1, C, 029 sees anﬂ}a The speciral sequences converge without



Co w 61w
' . 0 0 ,
Aifficulty, to show that U (Y ) ie a free U (X )-module with

pase (1, 0, 0% vor, L 11

The dimensicnal vestrliction on & can he rem@vaﬁa

0. S008, feome tric homomorphiems

ake]

We éonaideﬁ here two geometriecally defined homomorphisms
in cobordisn th@OFylﬂi$CUBBéd Ty Cénner and Floyd [Gﬁ]g and called
by them the Smith homomorphism and J. The second is of cruclial
importance in the study ol Tixed pwints<seﬁs of invclutions on
manifolds, as wé shall see in VI. We show here that hoth
‘homemorphisms are speciai cases of homomopphismé already considered.
We lknow [C5] that gm(BGD),claSSifieh equivariant cobordism

clessee of manlifolds with frec asmooth G-action, where @ is a

Lie group (by considering the orb't spaces). Take a manifold
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O)a Tte orbit

, (39(1)

fl =]

10 with free involution, representing X &
space 1o a einguler monifold £i4 = Bgﬁﬁja We take BO(1) = P_(RY.

Since H i compnct,. we mey sssume M < P (R7 a P (R); Tor some

largs g, and that © i amcoth and Transverse Lo quﬁ in P@;

_ wd . ey —
put s D i(Pq N au%mqnlzmjt off M, end g « &N, Lot
N o i be the double covering of N. :

Q.4 Defiinitian The Smith homomoxphlen .
ot il b A 4R = = -

aeyy; (20(1)0) = 1y, (30(1)°)
is defined by teking the ¢lass of £l = BQ{1) to the class of
g: - BO(1). |
The inmportence of N is thatl th@ involution on M is trivial
on ¥ ﬁ; |
By 5.9, we are here simply toking the cap product with the
class of the Thom map of the normal bundle of P in Pq@ Write

g1
E for the canonical line bundle over Pr? for any r. Then clearly
this normal bundle is &, and its classifying map qu1 - BO(1) is
simply inclusion P = P -

Let us e more geﬁorala The normal bundle n of Pm 4 in

P ired 18 the "mitney swm of n coples of &. Clearly m extends
over P . 4 in the obvious way. We therefore obtain Lwo maps
from P to P i the Tipst is inclusion of the base of the

M1 4K
Thom complex, and the sccond is the composlite

Wb TLee M} mehed




9.2, Lermg These TWo

canivarinntly homotopic

- 6%

maps are

with re

homotoplia.

Moreover, they are

et o the obvious actlon of

j ; ¥ 0 the palr (k P ), Lf we slso moke DN
olm) » 0(n) on the pal (?m+an; qu), ak 0n)
transform the n copieg of & in 7M.
D100 This booopvm clear 1€ we note that ph w P /P
frool = ALrpe=t nwwwanfz
and work with the twe cbvious incluslon maps

) m 1 v Yt . . _
@? v R°c R ow B x B omitting elther muC%G&cR these mnapg are
plainly equiveriant’y homotoplc with respect o the aations of

0(m) » 9(n).

In ounr

the composite PO

BO(1) « 1o(1)

Lt R EIODIE,

The bordl

. 1
Teke a smooth vechor bundle § over a manifold X

fibre dimension n;

3, (30(m) ).

antipodal involutiocn repre

9.k Defindtion

1]

gase, the reguired

<P = BO(1) <

e

gives

v.'ﬁr:}__ 9 by ﬂOfiﬁitiOﬂ 80'!5 @

map Pq’ﬂ'mgﬁﬂ) is homotoplic bo

MO(1). The inclusion

The Smith homomorphism A 1g given by Ax = X 0 Wi

SR o =11C omomnorphism

Tis unit sphere bundle ¥

iz defined by taking the class of

Now conmsider ¥ as a singular manifold of BO(n).

that ¥

5T

senbts an element X

with

such are classified up to bordism by

when equipped with the

1}}: Qe ‘i(BOH) )

The bordism J- homomovphiqm

I N, (Bo(n) ) - N wpm

5 (BOL1) %)

the bundle £ 1o x.

Ve Bee

48 the covering singular me-iifold obtalned by the

o]

J11



- Bl

construction 6.18 of the bundle tronsfer for the universal oo
over Bg(n)g Lot & be a wniversal 0{n)~space, and put

BO(n) = E//Q{n}&-mThe@ the unlversal case ls The Borel fivrs
bundle [B2]

P (R) = 0(n)//0(n-t) % 9(1)] = B//{0(n~1) x (43F = w/
snduced by the inclusion 0(n-1} x g(ﬁ) e 0{n), Now
B//10(n=1) % Q1)) & BO{n-1) s BQ{1), and the antipodal invo:
on the sphere bundle B//0(n-1) is clapsified by the projectic
BO(ne1) % BO(1) = BOL1).

Let us write this RBorel bundle 2

9.5 Po4(R) = o(m)//500n-1) % Q1)1 = BOn-1) »x BQ(1) 72 BOL

Then we have proved

x

9.6 Theorem anﬁm(Bg(n)O) - gm(ﬁg(i)o) ig the composite o
the trangfer homomorphism %h of 9.5 wlth the homomorphlsm
gg(iBg(nwﬂ} x'EQ(?)}O; W-Eﬁ(ﬁgﬁijo) induced by projection.

Por the usual reasons, we would prefer to have mulbipli.
structure available, by means of a similar homomorphism in §$
Por transfer homomorphisms, this can he defined, if we use T
Grothendieck form 6.241 of the bundle transfer.
9.7 Definition The cobordism J=homomorphism

T 3§i(391§)0) - gimn+i(59(n)0)

is éefincd as the composite of the transfer homomorphism ﬁq Vi

the thOMO?phme snauced by the projection BO{n-1) x Bo(i)

!



Then we have the multiplicative properties 6.2.
We shall need to compare the homomerphisme J for different
vailues of .
]

9.8 Temma  Write 1:BO(n) < BQ(m + 1) for the map induced by

[T

inelusion. Then J % = AT, .1.% for X e W, {Bo(n) )G
Lo + pepy b
Proofl This can be seen directly from the geomgtric delfinitione.

It appears s Theovem 26.4 of [C5]. 111

‘ . W . P
9.9 Corollnry T = 4 Jnk%(awgwi} for a @ N (3g{1)0
Proof 9.8, wj@h 9.3, 9.7, and 6.2, shows that

{%g J'@>_m <$, 3, PT'(%L¥W§3> for all x € N, (BO(n) }e The regult
foilcwgg.sinc@ we koow the structurse of E (Bg(n) )9 and
(by e.g. [05]) M(30(a)%).

Still ugimg ap products, wWe ¢an ohtalan a very precise
relation hetween Jm and Jm+na “Let ®: be the bundle induged Lfrom
9.5 for m + n asg followss

|

By SBO{m+n-1) » BO{1)

J,?‘Cjﬁ \LT\:
BO(m) x Bgin)wwwwaﬁgﬁné-n}u
Write ¢ for the composite £y -+ BO{m+n~1) x BO(41) = BQ(1), and

pBO(m) x BQ(n} = BO(m) for the projecition.

#

9.40  Lemma J Dy X G)

ST il R M m.w.

(x?x na) for x & N ({Bo(m) x BO(n)i

¢

where ‘the element o & {J ) i induced from the Stileflel-Whnitney

- §E2‘

cobordism clasa W, eN (Bo(ﬂ) } bt means of tha'maps
By = BO{n) » BO(4) -~ B0(a),



where the Oir

ro

vt is oblained from w and g, and the second is

ca

induced by @:o(n) x (1) - Qln).

BERPEN

Proof Geometeieally, fy is e bundle over BO(m) x BO(n) with
3

o

. o g ot e ¢
fibre Pm$nmﬁ(gjp containing o subbundle Ha with Libre Pmmq‘ﬁ}

. and projection mg, say. Glven o singular menifold

%o BO{n) x BO(n} representing ¥, the constructlon .48 of ths
bundle transfers gives singular menifclds of By snd s which

b -
ek and o

!

1 e

et 2
fo=s

o | 5. o
yvield in N {B0O(1)}") repressentatives Tor g
respactively.

By 5.9 applied over ¥, we obtaln the required formula,

Cwhere w:ly - MQ{n) - MO is the Thom map of the normal bundle of

Be in Fi. Weite £ and n for the universal line and vector

wnéles over BO(1) snd RO(n). Then the normal bundle of Fz in

oy

=

ne Ht
2 a8 (men ® g E)|Be. This time making strong use of 9.2, we

see that the Thom mep we reguire ls homotopic to the classifying

’ e e
map Eq - BO(n) of mem ® q &, followed by BO{n) < MQ(n). The

latter gives‘wns by 8.6, 11]

. &% ¥om 7] 0.
9,41  GCorollary T (e pua)=pdp forPpel (Bo(1) 7.
Proof  This dusl result is obtained in the same way as 9.9, 111
Thege regnlts will ensble us to carry out computationn

in VI.
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