sOLUTIONS TO ADDITIONAL EXERCISES ON CONCURRENCE

Here are the solutions to the exercises in concurrence.pdf.
6. If V is the circumcenter of $\triangle A B C$, then one can find V by solving the system of equations

$$
|V-A|^{2}=|V-B|^{2}=|V-C|^{2}
$$

If we let $V=(x, y)$ and substitute for A, B, C, then we obtain the equations $x+y=6$ and $6 x-2 y=14$. The solution to this system of equations is $x=\frac{13}{4}$ and $y=\frac{11}{4}$.
7. The equation of the line M which is perpendicular to L (with equation $y=2 x+2$ and passes through $(1,0)$ must have the form $y=-\frac{1}{2} x+C$ for some constant C. Since the line passes through $(1,0)$ it follows that the constant must be $\frac{1}{2}$. Now the orthocenter is is a point which lies on all three altitudes, so it is enough to find a point where two of the altitudes meet. Since the altitude from $(0,2)$ is just the y-axis, the point in question turns out to be $\left(0, \frac{1}{2}\right)$.

Alternate approach. Another way to find the orthocenter of a triangle $\triangle A B C$ is to find the circumcenter of the associated triangle $\triangle D E F$, where $D=C+B-A$, $E=A+C-B$, and $F=A+B-C$; recall that $D E$ is the unique line through C which is parallel to $A B$, while $E F$ is the unique line through A which is parallel to $B C$ and $D F$ is the unique line through B which is parallel to $A C$. - For the specific example in this exercise, we may take $A=(0,2), B=(-1,0)$ and $C=(1,0)$, so that $D=(0,-2)$, $E=(2,2)$ and $F=(-2,2)$. The equations for the circumcenter of $\triangle D E F$ reduce to $8 x=0$ and $4 x+8 y=4$, so that $x=0$ and $y=\frac{1}{2}$. This is the same conclusion that was obtained in the preceding paragraph.

