II. 3 : Eilenberg-Steenrod properties

(Hatcher, §§ 2.1, 2.3, 3.1; Conlon, § 2.6, 8.1, 8.3-8.5)

Definition. Let U be an open subset of \mathbf{R}^{n} for some n. The de Rham cohomology groups $H_{\mathrm{DR}}^{q}(U)$ are the cohomology groups of the cochain complex of differential forms.

In Section 1 we noted that integration of differential forms defines a morphism J of chain complexes from $\wedge^{*}(U)$ to $S^{*}(U ; \mathbf{R})$, where U is an arbitrary open subset of some Euclidean space. The aim of this section and the next is to show that the associated cohomology map [J] defines an isomorphism from $H_{\mathrm{DR}}^{*}(U)$ to $H_{\mathrm{smooth}}^{*}(U ; \mathbf{R})$; by the results of the preceding section, it will also follow that the de Rham cohomology groups are isomorphic to the ordinary singular cohomology groups $H^{*}(U ; \mathbf{R})$. In order to prove that $[J]$ is an isomorphism, we need to show that the de Rham cohomology groups $H_{\mathrm{DR}}^{*}(U)$ satisfy analogs of certain formal properties that hold for (smooth) singular cohomology. One of these is a homotopy invariance principle, and the other is a MayerVietoris sequence. Extremely detailed treatments of these results are given in Conlon, so at several points we shall be rather sketchy.

The following abstract result will be helpful in proving homotopy invariance. There are obvious analogs for other subcategories of topological spaces and continuous mappings, and also for covariant functors.

LEMMA. Let T be a contravariant functor defined on the category of open subsets of \mathbf{R}^{n} and smooth mappings. Then the following are equivalent:
(1) If f and g are smoothly homotopic mappings from U to V, then $T(f)=T(g)$.
(2) If U is an arbitrary open subset of \mathbf{R}^{n} and $i_{t}: U \rightarrow U \times \mathbf{R}$ is the map sending u to (u, t), then $T\left(i_{0}\right)=T\left(i_{1}\right)$.

Proof. (1) $\Longrightarrow(2)$. The mappings i_{0} and i_{1} are smoothly homotopic, and the inclusion map defines a homotopy from $U \times(-\varepsilon, 1+\varepsilon)$ to $U \times \mathbf{R}$.
$(2) \Longrightarrow(1)$. Suppose that we are given a smooth homotopy $H: U \times(-\varepsilon, 1+\varepsilon) \rightarrow V$. Standard results from 205C imply that we can assume the homotopy is "constant" on some sets of the form $(-\varepsilon, \eta) \times U$ and $(1-\eta, 1+\varepsilon) \times U$ for a suitably small positive number η. One can then use this property to extend H to a smooth map on $U \times \mathbf{R}$ that is "constant" on $(-\infty, \eta) \times U$ and $(1-\eta, \infty) \times U$. By the definition of a homotopy we have $H{ }^{\circ} i_{1}=g$ and $H{ }^{\circ} i_{0}=f$. If we apply the assumption in (1) we then obtain

$$
T(g)=T\left(i_{1}\right)^{\circ} T(H)=T\left(i_{0}\right)^{\circ} T(H)=T(f)
$$

which is what we wanted.■
A simple decomposition principle for differential forms on a cylindrical open set of the form $U \times \mathbf{R}$ will be useful. If U is open in \mathbf{R}^{n} and I denotes the k-element sequence $i_{1}<\cdots<i_{k}$, we shall write

$$
\xi_{I}=d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

and say that such a form is a standard basic monomial k-forms on U. Note that the wedge of two standard basic monomials $\xi_{J} \wedge \xi_{I}$ is either zero or ± 1 times a standard basic monomial, depending upon whether or not the sequences J and I have any common wedge factors.

PROPOSITION. Every k-form on U is uniquely expressible as a sum

$$
\sum_{I} f_{I}(x, t) d t \wedge \xi_{I}+g_{J}(x, t) \xi_{J}
$$

where I runs over all sequences $0<i_{1}<\cdots<i_{k-1} \leq n$, J runs over all sequences $0<j_{1}<\cdots<$ $j_{k} \leq n$, and f_{I}, g_{J} are smooth functions on $U \times$ R.■

We then have the following basic result.
THEOREM. If U is an open subset of some \mathbf{R}^{n} and $i_{t}: U \rightarrow U \times \mathbf{R}$ is the map $i_{t}(x)=(x, t)$, then the associated maps of differential forms $i_{0}^{\#}, i_{1}^{\#}: \wedge^{*}(U \times \mathbf{R}) \rightarrow \wedge^{*}(U)$ are chain homotopic.

In this example the chain homotopy is frequently called a parametrix.
COROLLARY. In the setting above the maps i_{0}^{*} and i_{1}^{*} from $H_{\mathrm{DR}}^{*}(U \times \mathbf{R})$ to $H_{\mathrm{DR}}^{*}(U)$ are equal.■
Proof of Theorem. The mappings $P^{q}: \wedge^{q}(U \times \mathbf{R}) \rightarrow \wedge^{q-1}(U)$ are defined as follows. If we write a q-form over $U \times \mathbf{R}$ as a sum of terms $\alpha_{I}=f_{I}(x, t) d t \wedge \xi_{I}$ and $\beta_{J}=g_{J}(x, t) \xi_{J}$ using the lemma above, then we set $P^{q}\left(\beta_{J}\right)=0$ and

$$
P^{q}\left(\alpha_{I}\right)=\left(\int_{0}^{1} f_{I}(x, u) d u\right) \cdot \xi_{I}
$$

we can then extend the definition to an arbitrary form, which is expressible as a sum of such terms, by additivity.

We must now compare the values of $d P+P d$ and $i_{1}^{\#}-i_{0}^{\#}$ on the generating forms α_{I} and β_{J} described above. It follows immediately that $i_{1}^{\#}\left(\alpha_{I}\right)-i_{0}^{\#}\left(\alpha_{I}\right)=0$ and

$$
i_{1}^{\#}\left(\beta_{J}\right)-i_{0}^{\#}\left(\beta_{J}\right)=[g(x, 1)-g(x, 0)] \beta_{J} .
$$

Next, we have $d{ }^{\circ} P\left(\beta_{J}\right)=d(0)=0$ and

$$
\begin{gathered}
\left.d^{\circ} P\left(\alpha_{I}\right)=d\left(\int_{0}^{1} f_{I}(x, u) d u\right)\right) \cdot \xi_{I}= \\
\sum_{j}\left(\int_{0}^{1} \frac{\partial f_{I}}{\partial x^{j}}(x, u) d u\right) \wedge d x^{j} \wedge \omega_{I} .
\end{gathered}
$$

Similarly, we have

$$
P{ }^{\circ} d\left(\alpha_{I}\right)=P\left(\sum_{j} \frac{\partial f_{I}}{\partial x^{j}} d x^{j} \wedge d t \wedge \xi_{I}+\frac{\partial f_{I}}{\partial t} d t \wedge d t \wedge \xi_{I}\right)
$$

in which the final summand vanishes because $d t \wedge d t=0$. If we apply the definition of P to the nontrivial summation on the right hand side of the displayed equation and use the identity $d x^{j} \wedge d t=-d t \wedge d x^{j}$, we see that the given expression is equal to $-d{ }^{\circ} P\left(\alpha_{I}\right)$; this shows that the values of both $d P+P d$ and $i_{1}^{\#}-i_{0}^{\#}$ on α_{I} are zero. It remains to compute $P{ }^{\circ} d\left(\beta_{J}\right)$ and verify that it is equal to $i_{1}^{\#}\left(\beta_{J}\right)-i_{0}^{\#}\left(\beta_{J}\right)$. However, by definition we have

$$
P \circ d\left(g_{J} \xi_{J}\right)=P\left(\sum_{i} \frac{\partial g_{J}}{\partial x^{i}} d x^{i} \wedge \xi_{J}+\frac{\partial g_{J}}{\partial t} d t \wedge \xi_{J}\right)
$$

and in this case P maps the summation over i into zero because each form $d x^{i} \wedge \xi_{J}$ is either zero or ± 1 times a standard basic monomial, depending on whether or not $d x^{i}$ appears as a factor of ξ_{J}. Thus the right hand side collapses to the final term and is given by

$$
\begin{gathered}
P\left(\frac{\partial g_{J}}{\partial t} d t \wedge \xi_{J}\right)=\left(\int_{0}^{1} \frac{\partial g_{J}}{\partial u}(x, u) d u\right) \xi_{J}= \\
{[g(x, 1)-g(x, 0)] \xi_{J}}
\end{gathered}
$$

which is equal to the formuula for $i_{1}^{\#}\left(\beta_{J}\right)-i_{0}^{\#}\left(\beta_{J}\right)$ which we described at the beginning of the argument.

COROLLARY. If U is a convex open subset of some \mathbf{R}^{n}, then $H_{\mathrm{DR}}^{q}(U)$ is isomorphic to \mathbf{R} if $q=0$ and is trivial otherwise.

This follows because the constant map from U to \mathbf{R}^{0} is a smooth homotopy equivalence if U is convex, so that the de Rham cohomology groups of U are isomorphic to the de Rham cohomology groups of \mathbf{R}^{0}, and by construction the latter are isomorphic to the groups described in the statement of the Corollary..

COROLLARY. (Poincaré Lemma) Let U be a convex open subset of some \mathbf{R}^{n} and let $q>0$. The a differential q-form ω on U is closed $(d \omega=0)$ if and only if it is exact $(\omega=d \theta$ for some $\theta)$.

Both of the preceding also hold if we merely assume that U is star-shaped with respect to some point \mathbf{v} (i.e., if $\mathbf{x} \in U$, then the closed line segment joining \mathbf{x} and \mathbf{v} is contained in U), for in this case the constant map is again a smooth homotopy equivalence.

The Mayer-Vietoris sequence

Here is the main result:
THEOREM. Let U and V be open subsets of \mathbf{R}^{n}. Then there is a long exact Mayer-Vietoris sequence in de Rham cohomology
$\cdots \rightarrow H_{\mathrm{DR}}^{q-1}(U \cap V) \rightarrow H_{\mathrm{DR}}^{q}(U \cup V) \rightarrow H_{\mathrm{DR}}^{q}(U) \oplus H_{\mathrm{DR}}^{q}(V) \rightarrow H_{\mathrm{DR}}^{q}(U \cap V) \rightarrow H_{\mathrm{DR}}^{q+1}(U \cup V) \rightarrow \cdots$
and a commutative ladder diagram relating the long exact Mayer-Vietoris sequences for $\{U, V\}$ in de Rham cohomology and smooth singular cohomology with real coefficients.

Proof. The existence of the Mayer-Vietoris sequence will follow if we can show that there is a short exact sequence of chain complexes

$$
0 \rightarrow \wedge^{*}(U \cup V) \longrightarrow \wedge^{*}(U) \oplus \wedge^{*}(V) \longrightarrow \wedge^{*}(U \cap V) \rightarrow 0
$$

where the map from $\wedge^{*}(U \cup V)$ is given on the first factor by the $i_{U}^{\#}$ (where i_{U} denotes inclusion) and on the second factor by $-i_{V}^{\#}$, and the map into $\wedge^{*}(U \cap V)$ is given by the maps $j_{U}^{\#}$ and $j_{V}^{\#}$ defined by inclusion of $U \cap V$ into U and V.

The exactness of this sequence at all points except $\wedge^{*}(U \cap V)$ follows immediately. Therefore the only thing to prove is that the map to $\wedge^{*}(U \cap V)$ is surjective. This is done using smooth partitions of unity in last four lines of the proof for Lemma 8.5.1 on page 267 of Conlon.

The existence of the commutative ladder follows because the Generalized Stokes' Formula defines a morphisms from the vector spaces in the previously displayed short exact sequence into the following analogous sequence for smooth singular cochains, in which \mathcal{U} denotes the open covering of $U \cup V$ by U and V :

$$
0 \rightarrow S_{\mathrm{smooth}, \mathcal{U}}^{*}(U \cup V) \longrightarrow S_{\mathrm{smooth}}^{*}(U) \oplus S_{\mathrm{smooth}}^{*}(U) \longrightarrow S_{\mathrm{smooth}}^{*}(U \cap V) \rightarrow 0
$$

Since this is the short exact sequence which yields the long exact Mayer-Vietoris sequence for (smooth) singular cohomology, the statement about a commutative ladder in the theorem follows.■

II. 4 : De Rham's Theorem

(Conlon, § 8.9)

The results of the preceding section show that the natural map $[J]: H_{\mathrm{DR}}^{*}(U) \rightarrow H_{\text {smooth }}^{*}(U ; \mathbf{R})$ is an isomorphism if U is a convex open subset of some Euclidean space, and if we compose this with the isomorphism between smooth and ordinary singular cohomology we obtain an isomorphism from the de Rham cohomology of U to the ordinary singular cohomology of U with real coefficients. The aim of this section is to show that both $[J]$ and its composite with the inverse map from smooth to ordinary cohomology is an isomorphism for an arbitrary open subset of \mathbf{R}^{n}. As in Section II.2, an important step in this argument is to prove the result for open sets which are expressible as finite unions of convex open subsets of \mathbf{R}^{n}.

PROPOSITION. If U is an open subset of \mathbf{R}^{n} which is expressible as a finite union of convex open subsets, then the natural map from $H_{\mathrm{DR}}^{*}(U)$ to $H_{\mathrm{smooth}}^{*}(U ; \mathbf{R})$ and the associated natural map to $H^{*}(U ; \mathbf{R})$ are isomorphisms.

Proof. If W is an open subset in \mathbf{R}^{n} we shall let ψ^{W} denote the natural map from de Rham to singular cohomology. If we combine the Mayer-Vietoris sequence of the preceding section with the considerations of Section II.2, we obtain the following important principle:

If $W=U \cup V$ and the mappings ψ^{U}, ψ^{V} and $\psi(U \cap V)$ are isomorphisms, then $\psi^{U \cup V}$ is also an isomorphism.

Since we know that ψ^{V} is an isomorphism if V is a convex open subset, we may prove the proposition by induction on the number of convex open subsets in the presentation $W=V_{1} \cup \cdots \cup V_{k}$ using the same sorts of ideas employed in Section II. 2 to prove a corresponding result for the map relating smooth and ordinary singular homology..

The general case

Most open subsets of \mathbf{R}^{n} are not expressible as finite unions of convex open subsets, so we still need some method for extracting the general case. The starting point is the following observation, which implies that an open set is a locally finite union of convex open subsets.

THEOREM. If U is an open subset of \mathbf{R}^{n}, then U is a union of open subsets W_{n} indexed by the positive integers such that the following hold:
(1) Each W_{n} is a union of finitely many convex open subsets.
(2) If $|m-n| \geq 3$, then $W_{n} \cap W_{m}$ is empty.

Proof. Results from 205C imply that U can be expressed as an increasing union of compact subsets K_{n} such that K_{n} is contained in the interior of K_{n+1} and K_{1} has a nonempty interior. Define $A_{n}=K_{n}-\operatorname{Interior}\left(K_{n-1}\right)$, where K_{-1} is the empty set; it follows that A_{n} is compact. Let V_{n} be the open subset $\operatorname{Interior}\left(K_{n+1}\right)-K_{n-1}$. By construction we know that V_{n} contains A_{n} and $V_{n} \cap V_{m}$ is empty if $|n-m| \geq 3$. Clearly there is an open covering of A_{n} by convex open subsets which are contained in V_{n}, and this open covering has a finite subcovering; the union of this finite family of convex open sets will is the open set W_{n} that we want; by construction we have $A_{n} \subset W_{n}$, and since $U=\cup_{n} A_{n}$ we also have $U=\cup_{n} W_{n}$. Furthermore, since $W_{n} \subset V_{n}$, and $V_{n} \cap V_{m}$ is empty if $|n-m| \geq 3$, it follows that $W_{n} \cap W_{m}$ is also empty if $|n-m| \geq 3$.■

We shall also need the following result:
PROPOSITION. Suppose that we are given an open subset U in \mathbf{R}^{n} which is expressible as a countable union of pairwise disjoint subset U_{k}. If the map from de Rham cohomology to singular cohomology is an isomorphism for each U_{k}, then it is also an isomorphism for U.

Proof. By construction the cochain and differential forms mappings determined by the inclusions $i_{k}: U_{k} \rightarrow U$ define isomorphisms from $\wedge^{*}(U)$ to $\prod_{k} \wedge^{*}\left(U_{k}\right)$ and from $S_{\text {smooth }}^{*}(U)$ to $\prod_{k} S_{\mathrm{smooth}}^{*}\left(U_{k}\right)$.

If we are given an abstract family of cochain complexes C_{k} then it is straightforward to verify that there is a canonical homomorphism

$$
\prod_{k} H^{*}(C) \longrightarrow H^{*}\left(\prod_{k} C_{k}\right)
$$

and that this mapping is an isomorphism. Furthermore, it is natural with respect to families of cochain complex mappings $f_{k}: C_{k} \rightarrow E_{k}$.

The proposition follows by combining the observations in the preceding two paragraphs.

We are now ready to prove the main result:
DE RHAM'S THEOREM. The natural maps from de Rham cohomology to smooth and ordinary singular cohomology are isomorphisms for every open subset U in an arbitrary \mathbf{R}^{n}.

Proof. Express U as a countable union of open subset W_{n} as in the discussion above, and for $k=0,1,2$ let $U_{k}=\cup_{m} W_{3 m+k}$. By the preceding proposition and the first result of this section we know that the natural maps from de Rham cohomology to singular cohomology are isomorphisms for the open sets U_{k}.

We next show that the natural map(s) must define isomorphisms for $U_{1} \cup U_{2}$. By the highlighted statement in the proof of the first proposition in this section, it will suffice to show that the same holds for $U_{1} \cap U_{2}$. However, the latter is the union of the pairwise disjoint open sets $W_{3 m} \cap W_{3 m+1}$, and each of the latter is a union of finitely many convex open subsets. Therefore by the preceding proposition and the first result of this section we know that the natural maps from de Rham to singular cohomology are isomorphisms for $U_{1} \cap U_{2}$ and hence also for $U^{*}=U_{1} \cup U_{2}$.

Clearly we would like to proceed similarly to show that we have isomorphisms from de Rham to singular cohomology for $U=U_{0} \cup U^{*}$, and as before it will suffice to show that we have isomorphisms for $U_{0} \cap U^{*}$. But $U_{0} \cap U^{*}=\left(U_{0} \cap U_{1}\right) \cup\left(U_{1} \cap U_{2}\right)$, and by the preceding paragraph we know that the maps from de Rham to singular cohomology are isomorphisms for $U_{0} \cap U_{1}$. The same considerations show that the corresponding maps are isomorphisms for $U_{0} \cap U_{2}$, and therefore we have reduced the proof of de Rham's Theorem to checking that there are isomorphisms from de Rham to singular cohomology for the open set $U_{0} \cap U_{1} \cap U_{2}$. The latter is a union of open sets expressible as $W_{i} \cap W_{j} \cap W_{k}$ for suitable positive integers i, j, k which are distinct. The only way such an intersection can be nonempty for is if the three integers i, j, k are consecutive (otherwise the distance between two of them is at least 3). Therefore, if we let

$$
S_{m}=\bigcup 0 \leq k \leq 2 W_{3 m-k} \cap W_{3 m+1-k} \cap W_{3 m+2-k}
$$

it follows that S_{m} is a finite union of convex open sets, the union of the open sets S_{m} is equal to $U_{0} \cap U_{1} \cap U_{2}$, and if $m \neq p$ then $S_{m} \cap S_{p}$ is empty. By the first result of this section we know that the maps from de Rham to singular cohomology define isomorphisms for each of the open sets S_{m}, and it follows from the immediately preceding proposition that we have isomorphisms from de Rham to singular cohomology for $\cup_{m} S_{m}=U_{o} \cap U_{1} \cap U_{2}$. As noted before, this implies that the corresponding maps also define isomorphisms for U.

Some examples

We shall now use de Rham's Theorem to prove a result which generalizes a theorem on page 551 of Marsden and Tromba's Vector Calculus:

THEOREM. Suppose that $n \geq 3$ and $U \subset \mathbf{R}^{3}$ is the complement of some finite set X. If $\omega \in \wedge^{1}(U)$ is a closed 1-form, then $\omega=d f$ for some smooth function f defined on U.

Proof. It suffices to prove that $H_{\mathrm{DR}}^{1}(U)=0$, and by de Rham's Theorem the latter is true if and only if $H^{1}(U ; \mathbf{R})$ is trivial. If X consists of a single point, then U is homeomorphic to $\left.S^{n-1} \times \mathbf{R}\right)$
and the result follows because we know that $H_{1}\left(S^{n-1}\right)$ and $H^{1}\left(S^{n-1} ; \mathbf{R}\right)$ are trivial. We shall prove that $H^{1}(U ; \mathbf{R})$ is trivial by induction on the number of elements in X.

Suppose that X has $k \geq 2$ elements and the result is known for finite sets with $(k-1)$ elements. Write $X=Y \cup\{z\}$ where $z \notin Y$, and consider the long exact Mayer-Vietoris sequence for $V=\mathbf{R}^{n}-Y$ and $W=\mathbf{R}^{n}-\{z\}$. Since $V \cup W=\mathbf{R}^{n}$ and $V \cap W=U$ we may write part of this sequence as follows:

$$
H^{1}(V ; \mathbf{R}) \oplus H^{1}(W ; \mathbf{R}) \longrightarrow H^{1}(U ; \mathbf{R}) \longrightarrow H^{2}\left(\mathbf{R}^{n} ; \mathbf{R}\right)
$$

The induction hypothesis implies that the direct sum on the left is trivial, and the term on the right is trivial because \mathbf{R}^{n} is contractible. This forces the term in the middle, which is the one we wanted to find, must also be trivial.■

Generalization to arbitrary smooth manifolds

In fact, one can state and prove de Rham's Theorem for every (second countable) smooth manifold, and one approach to doing so appears in Conlon. We shall outline a somewhat different approach here and compare our approach with Conlon's.

