
II.3 : Eilenberg-Steenrod properties

(Hatcher, §§ 2.1, 2.3, 3.1; Conlon, § 2.6, 8.1, 8.3–8.5)

Definition. Let U be an open subset of Rn for some n. The de Rham cohomology groups

H
q
DR(U) are the cohomology groups of the cochain complex of differential forms.

In Section 1 we noted that integration of differential forms defines a morphism J of chain
complexes from ∧∗(U) to S∗(U ;R), where U is an arbitrary open subset of some Euclidean space.
The aim of this section and the next is to show that the associated cohomology map [J ] defines an
isomorphism from H∗

DR(U) to H∗

smooth(U ;R); by the results of the preceding section, it will also
follow that the de Rham cohomology groups are isomorphic to the ordinary singular cohomology
groups H∗(U ;R). In order to prove that [J ] is an isomorphism, we need to show that the de Rham
cohomology groups H∗

DR(U) satisfy analogs of certain formal properties that hold for (smooth)
singular cohomology. One of these is a homotopy invariance principle, and the other is a Mayer-
Vietoris sequence. Extremely detailed treatments of these results are given in Conlon, so at several
points we shall be rather sketchy.

The following abstract result will be helpful in proving homotopy invariance. There are ob-
vious analogs for other subcategories of topological spaces and continuous mappings, and also for
covariant functors.

LEMMA. Let T be a contravariant functor defined on the category of open subsets of Rn and
smooth mappings. Then the following are equivalent:

(1) If f and g are smoothly homotopic mappings from U to V , then T (f) = T (g).

(2) If U is an arbitrary open subset of Rn and it : U → U ×R is the map sending u to (u, t),
then T (i0) = T (i1).

Proof. (1) =⇒ (2). The mappings i0 and i1 are smoothly homotopic, and the inclusion map
defines a homotopy from U × (−ε, 1 + ε) to U ×R.

(2) =⇒ (1). Suppose that we are given a smooth homotopy H : U × (−ε, 1 + ε) → V .
Standard results from 205C imply that we can assume the homotopy is “constant” on some sets of
the form (−ε, η) × U and (1 − η, 1 + ε) × U for a suitably small positive number η. One can then
use this property to extend H to a smooth map on U ×R that is “constant” on (−∞, η) × U and
(1− η,∞)×U . By the definition of a homotopy we have H oi1 = g and H oi0 = f . If we apply the
assumption in (1) we then obtain

T (g) = T (i1) oT (H) = T (i0) oT (H) = T (f)

which is what we wanted.

A simple decomposition principle for differential forms on a cylindrical open set of the form
U ×R will be useful. If U is open in Rn and I denotes the k-element sequence i1 < · · · < ik, we
shall write

ξI = dxi1 ∧ · · · ∧ dxik
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and say that such a form is a standard basic monomial k-forms on U . Note that the wedge of two
standard basic monomials ξJ ∧ ξI is either zero or ± 1 times a standard basic monomial, depending
upon whether or not the sequences J and I have any common wedge factors.

PROPOSITION. Every k-form on U is uniquely expressible as a sum

∑

I

fI(x, t) dt ∧ ξI + gJ (x, t) ξJ

where I runs over all sequences 0 < i1 < · · · < ik−1 ≤ n, J runs over all sequences 0 < j1 < · · · <
jk ≤ n, and fI , gJ are smooth functions on U ×R.

We then have the following basic result.

THEOREM. If U is an open subset of some Rn and it : U → U × R is the map it(x) = (x, t),

then the associated maps of differential forms i#0 , i
#
1 : ∧∗(U ×R) → ∧∗(U) are chain homotopic.

In this example the chain homotopy is frequently called a parametrix.

COROLLARY. In the setting above the maps i∗0 and i∗1 from H∗

DR(U×R) to H∗

DR(U) are equal.

Proof of Theorem. The mappings P q : ∧q(U × R) → ∧q−1(U) are defined as follows. If we
write a q-form over U × R as a sum of terms αI = fI(x, t) dt ∧ ξI and βJ = gJ (x, t) ξJ using the
lemma above, then we set P q(βJ ) = 0 and

P q
(

αI

)

=

(
∫ 1

0

fI(x, u) du

)

· ξI ;

we can then extend the definition to an arbitrary form, which is expressible as a sum of such terms,
by additivity.

We must now compare the values of dP + Pd and i#1 − i
#
0 on the generating forms αI and βJ

described above. It follows immediately that i#1 (αI ) − i
#
0 (αI) = 0 and

i
#
1 (βJ ) − i

#
0 (βJ ) = [g(x, 1) − g(x, 0)]βJ .

Next, we have d oP (βJ ) = d(0) = 0 and

d oP (αI) = d

(
∫ 1

0

fI(x, u)du)

)

· ξI =

∑

j

(
∫ 1

0

∂fI

∂xj
(x, u) du

)

∧ dxj ∧ ωI .

Similarly, we have

P od(αI) = P





∑

j

∂fI

∂xj
dxj ∧ dt ∧ ξI +

∂fI

∂t
dt ∧ dt ∧ ξI
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in which the final summand vanishes because dt ∧ dt = 0. If we apply the definition of P to
the nontrivial summation on the right hand side of the displayed equation and use the identity
dxj ∧ dt = −dt ∧ dxj , we see that the given expression is equal to −d oP (αI); this shows that the

values of both dP + Pd and i
#
1 − i

#
0 on αI are zero. It remains to compute P od(βJ ) and verify

that it is equal to i#1 (βJ ) − i
#
0 (βJ ). However, by definition we have

P od(gJ ξJ ) = P

(

∑

i

∂gJ

∂xi
dxi ∧ ξJ +

∂gJ

∂t
dt ∧ ξJ

)

and in this case P maps the summation over i into zero because each form dxi ∧ ξJ is either zero
or ± 1 times a standard basic monomial, depending on whether or not dxi appears as a factor of
ξJ . Thus the right hand side collapses to the final term and is given by

P

(

∂gJ

∂t
dt ∧ ξJ

)

=

(∫ 1

0

∂gJ

∂u
(x, u) du

)

ξJ =

[ g(x, 1) − g(x, 0) ] ξJ

which is equal to the formuula for i#1 (βJ ) − i
#
0 (βJ ) which we described at the beginning of the

argument.

COROLLARY. If U is a convex open subset of some Rn, then H
q
DR(U) is isomorphic to R if

q = 0 and is trivial otherwise.

This follows because the constant map from U to R0 is a smooth homotopy equivalence if U is
convex, so that the de Rham cohomology groups of U are isomorphic to the de Rham cohomology
groups of R0, and by construction the latter are isomorphic to the groups described in the statement
of the Corollary.

COROLLARY. (Poincaré Lemma) Let U be a convex open subset of some Rn and let q > 0.
The a differential q-form ω on U is closed (dω = 0) if and only if it is exact (ω = dθ for some θ).

Both of the preceding also hold if we merely assume that U is star-shaped with respect to
some point v (i.e., if x ∈ U , then the closed line segment joining x and v is contained in U), for in
this case the constant map is again a smooth homotopy equivalence.

The Mayer-Vietoris sequence

Here is the main result:

THEOREM. Let U and V be open subsets of Rn. Then there is a long exact Mayer-Vietoris
sequence in de Rham cohomology

· · · → H
q−1

DR (U ∩ V ) → H
q
DR(U ∪ V ) → H

q
DR(U) ⊕H

q
DR(V ) → H

q
DR(U ∩ V ) → H

q+1

DR (U ∪ V ) → · · ·

and a commutative ladder diagram relating the long exact Mayer-Vietoris sequences for {U, V } in
de Rham cohomology and smooth singular cohomology with real coefficients.
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Proof. The existence of the Mayer-Vietoris sequence will follow if we can show that there is a
short exact sequence of chain complexes

0 → ∧∗(U ∪ V ) −→ ∧∗(U) ⊕ ∧∗(V ) −→ ∧∗(U ∩ V ) → 0

where the map from ∧∗(U ∪ V ) is given on the first factor by the i#U (where iU denotes inclusion)

and on the second factor by −i#V , and the map into ∧∗(U ∩ V ) is given by the maps j#U and j
#

V

defined by inclusion of U ∩ V into U and V .

The exactness of this sequence at all points except ∧∗(U ∩ V ) follows immediately. Therefore
the only thing to prove is that the map to ∧∗(U ∩ V ) is surjective. This is done using smooth
partitions of unity in last four lines of the proof for Lemma 8.5.1 on page 267 of Conlon.

The existence of the commutative ladder follows because the Generalized Stokes’ Formula
defines a morphisms from the vector spaces in the previously displayed short exact sequence into
the following analogous sequence for smooth singular cochains, in which U denotes the open covering
of U ∪ V by U and V :

0 → S∗

smooth,U(U ∪ V ) −→ S∗

smooth(U) ⊕ S∗

smooth(U) −→ S∗

smooth(U ∩ V ) → 0

Since this is the short exact sequence which yields the long exact Mayer-Vietoris sequence for
(smooth) singular cohomology, the statement about a commutative ladder in the theorem follows.

II.4 : De Rham’s Theorem

(Conlon, § 8.9)

The results of the preceding section show that the natural map [J ] : H ∗

DR(U) → H∗

smooth(U ;R)
is an isomorphism if U is a convex open subset of some Euclidean space, and if we compose this
with the isomorphism between smooth and ordinary singular cohomology we obtain an isomorphism
from the de Rham cohomology of U to the ordinary singular cohomology of U with real coefficients.
The aim of this section is to show that both [J ] and its composite with the inverse map from smooth
to ordinary cohomology is an isomorphism for an arbitrary open subset of Rn. As in Section II.2,
an important step in this argument is to prove the result for open sets which are expressible as
finite unions of convex open subsets of Rn.

PROPOSITION. If U is an open subset of Rn which is expressible as a finite union of convex
open subsets, then the natural map from H∗

DR(U) to H∗

smooth(U ;R) and the associated natural
map to H∗(U ;R) are isomorphisms.

Proof. If W is an open subset in Rn we shall let ψW denote the natural map from de Rham to
singular cohomology. If we combine the Mayer-Vietoris sequence of the preceding section with the
considerations of Section II.2, we obtain the following important principle:

If W = U ∪ V and the mappings ψU , ψV and ψ(U ∩ V ) are isomorphisms, then ψU∪V is
also an isomorphism.
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Since we know that ψV is an isomorphism if V is a convex open subset, we may prove the
proposition by induction on the number of convex open subsets in the presentation W = V1∪ · · ·∪Vk

using the same sorts of ideas employed in Section II.2 to prove a corresponding result for the map
relating smooth and ordinary singular homology.

The general case

Most open subsets of Rn are not expressible as finite unions of convex open subsets, so we still
need some method for extracting the general case. The starting point is the following observation,
which implies that an open set is a locally finite union of convex open subsets.

THEOREM. If U is an open subset of Rn, then U is a union of open subsets Wn

indexed by the positive integers such that the following hold:

(1) Each Wn is a union of finitely many convex open subsets.

(2) If |m− n| ≥ 3, then Wn ∩Wm is empty.

Proof. Results from 205C imply that U can be expressed as an increasing union of compact
subsets Kn such that Kn is contained in the interior of Kn+1 and K1 has a nonempty interior.
Define An = Kn− Interior(Kn−1), where K−1 is the empty set; it follows that An is compact. Let
Vn be the open subset Interior(Kn+1) −Kn−1. By construction we know that Vn contains An and
Vn ∩ Vm is empty if |n−m| ≥ 3. Clearly there is an open covering of An by convex open subsets
which are contained in Vn, and this open covering has a finite subcovering; the union of this finite
family of convex open sets will is the open set Wn that we want; by construction we have An ⊂Wn,
and since U = ∪n An we also have U = ∪n Wn. Furthermore, since Wn ⊂ Vn, and Vn ∩ Vm is
empty if |n−m| ≥ 3, it follows that Wn ∩Wm is also empty if |n−m| ≥ 3.

We shall also need the following result:

PROPOSITION. Suppose that we are given an open subset U in Rn which is expressible as a
countable union of pairwise disjoint subset Uk. If the map from de Rham cohomology to singular
cohomology is an isomorphism for each Uk, then it is also an isomorphism for U .

Proof. By construction the cochain and differential forms mappings determined by the in-
clusions ik : Uk → U define isomorphisms from ∧∗(U) to

∏

k ∧∗(Uk) and from S∗

smooth(U) to
∏

k S∗

smooth(Uk).

If we are given an abstract family of cochain complexes Ck then it is straightforward to verify
that there is a canonical homomorphism

∏

k

H∗(C) −→ H∗

(

∏

k

Ck

)

and that this mapping is an isomorphism. Furthermore, it is natural with respect to families of
cochain complex mappings fk : Ck → Ek.

The proposition follows by combining the observations in the preceding two paragraphs.
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We are now ready to prove the main result:

DE RHAM’S THEOREM. The natural maps from de Rham cohomology to smooth and
ordinary singular cohomology are isomorphisms for every open subset U in an arbitrary Rn.

Proof. Express U as a countable union of open subset Wn as in the discussion above, and for
k = 0, 1, 2 let Uk = ∪m W3m+k. By the preceding proposition and the first result of this section we
know that the natural maps from de Rham cohomology to singular cohomology are isomorphisms
for the open sets Uk.

We next show that the natural map(s) must define isomorphisms for U1∪U2. By the highlighted
statement in the proof of the first proposition in this section, it will suffice to show that the same
holds for U1∩U2. However, the latter is the union of the pairwise disjoint open sets W3m ∩W3m+1,
and each of the latter is a union of finitely many convex open subsets. Therefore by the preceding
proposition and the first result of this section we know that the natural maps from de Rham to
singular cohomology are isomorphisms for U1 ∩ U2 and hence also for U ∗ = U1 ∪ U2.

Clearly we would like to proceed similarly to show that we have isomorphisms from de Rham
to singular cohomology for U = U0 ∪ U∗, and as before it will suffice to show that we have
isomorphisms for U0 ∩ U

∗. But U0 ∩ U
∗ = (U0 ∩ U1) ∪ (U1 ∩ U2), and by the preceding paragraph

we know that the maps from de Rham to singular cohomology are isomorphisms for U0 ∩ U1. The
same considerations show that the corresponding maps are isomorphisms for U0∩U2, and therefore
we have reduced the proof of de Rham’s Theorem to checking that there are isomorphisms from
de Rham to singular cohomology for the open set U0 ∩ U1 ∩ U2. The latter is a union of open sets
expressible as Wi ∩Wj ∩Wk for suitable positive integers i, j, k which are distinct. The only way
such an intersection can be nonempty for is if the three integers i, j, k are consecutive (otherwise
the distance between two of them is at least 3). Therefore, if we let

Sm =
⋃

0 ≤ k ≤ 2 W3m−k ∩W3m+1−k ∩W3m+2−k

it follows that Sm is a finite union of convex open sets, the union of the open sets Sm is equal to
U0 ∩ U1 ∩ U2, and if m 6= p then Sm ∩ Sp is empty. By the first result of this section we know
that the maps from de Rham to singular cohomology define isomorphisms for each of the open sets
Sm, and it follows from the immediately preceding proposition that we have isomorphisms from de
Rham to singular cohomology for ∪m Sm = Uo ∩ U1 ∩ U2. As noted before, this implies that the
corresponding maps also define isomorphisms for U .

Some examples

We shall now use de Rham’s Theorem to prove a result which generalizes a theorem on page
551 of Marsden and Tromba’s Vector Calculus:

THEOREM. Suppose that n ≥ 3 and U ⊂ R3 is the complement of some finite set X. If
ω ∈ ∧1(U) is a closed 1-form, then ω = df for some smooth function f defined on U .

Proof. It suffices to prove that H1
DR(U) = 0, and by de Rham’s Theorem the latter is true if and

only if H1(U ;R) is trivial. If X consists of a single point, then U is homeomorphic to Sn−1 ×R)
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and the result follows because we know that H1(S
n−1) and H1(Sn−1;R) are trivial. We shall prove

that H1(U ;R) is trivial by induction on the number of elements in X.

Suppose that X has k ≥ 2 elements and the result is known for finite sets with (k − 1)
elements. Write X = Y ∪ {z} where z 6∈ Y , and consider the long exact Mayer-Vietoris sequence
for V = Rn − Y and W = Rn − {z}. Since V ∪W = Rn and V ∩W = U we may write part of
this sequence as follows:

H1(V ;R) ⊕H1(W ;R) −→ H1(U ;R) −→ H2(Rn;R)

The induction hypothesis implies that the direct sum on the left is trivial, and the term on the
right is trivial because Rn is contractible. This forces the term in the middle, which is the one we
wanted to find, must also be trivial.

Generalization to arbitrary smooth manifolds

In fact, one can state and prove de Rham’s Theorem for every (second countable) smooth
manifold, and one approach to doing so appears in Conlon. We shall outline a somewhat different
approach here and compare our approach with Conlon’s.

TO BE COMPLETED
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