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In the theory of transformation groups, two classes of manifolds play a special

role; namely, Euclidean spaces Rn and standard spheres Sn−1. There is a large

body of a literature devoted to finite (compact Lie) group actions on these spaces

(cf. [37]).

Classical results completely describe all finite group actions on R2 and S2 (e.g.,

see [10]), results from the late 1970s to early 1990s yielded strong partial results

for R3 and S3 (compare [2] and [19]), and breakthroughs during the past decade

have completed work on the three-dimensional case (see ?????). However, there

still are many basic questions left unanswered, beginning in dimension four.

One example is the following (Problem 11 in A. Edmonds’ extensive survey of

group actions on 4-manifolds [11]):

Problem 1. Is every finite group that acts on R4 is isomorphic to a subgroup of

O(4)?

Another question (Problem 9 in [11]) is:

Problem 2. Is a finite group acting on S4 (without fixed points) isomorphic to a

subgroup of O(5)?

Unless explicitly stated otherwise, all group actions in this paper are assumed

to be effective.

Our answers to these questions are contained in the following:

Theorem 1. If G is a finite group that acts locally linearly on R4, then G is

isomorphic with a subgroup of O(4).

Theorem 2. There are finite groups G that are not isomorphic to subgroups of

O(4) and which act (topologically) on R4.

Theorem 3. There are finite groups G that are not isomorphic with subgroups

of O(5) and which act locally linearly on S4 without fixed points. Moreover, if a
1
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finite group G acts on S4 locally linearly and orientation preservingly then G is

isomorphic to a subgroup of SO(5).

In order to make this paper relatively self contained we will include general

comments of somewhat expository nature. We hope that these comments will

also make the paper easier to read.

Remark. The results described in Theorem 1 and 2 had been known to the

authors for quite some time. For example, in an attempt in [5] to construct fixed

point free actions of a finite group on R4 the authors also determined that the

alternating group A5 is potentially only such group. This is essentially Theorem

1; however, this result was deleted from the final version of [5]. Similarly, see

([18],p. 454) for Theorem 2. On the other hand, Theorem 3 is new and will be the

main focus of this paper. The proof combines some fairly standard methods for

applying 4-dimensional topological surgery to group actions with computational

results for Wall’s surgery obstruction groups [42] in certain cases. More precisely,

these concern suitable versions of the Rothenberg exact sequences relating different

types of Wall groups, and the key quantitative input involves class computations

for certain algebraic number fields, somewhat in the spirit of papers like [3], [9],

[14] and [25].

A version of Theorem 1 for arbitrary acyclic 4-manifolds was proved indepen-

dently in [13]; their approach is similar in spirit but more group-theoretic.

The paper is divided into three sections. Section 1 discuses locally linear and

topological actions on R4, and Section 2 is devoted to constructing exotic topolog-

ical and locally linear actions on S4. A short third section discusses some further

questions in several directions.

1. Symmetries of R4
.

The following simple group-theoretic observation was made by the authors in

[5] (i.e., Assertion, p. 648).

Let G ⊂ SO(4) be a nontrivial finite group and let A5 be the alternating group

on 5 letters.

Assertion 1. Either G contains a nontrivial normal p-subgroup or G is isomor-

phic to A5 or A5 × A5.
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Now, let G be any nontrivial finite group acting locally linearly and orientation

preservingly on R4. If G has a normal p-subgroup H C G, then G ⊂ SO(4). For

(R4)
H

=

{
R2

{pt}
by Smith theory. The group G/H acts on

{
R2

{pt}
and since

every group action on R2 is conjugate a linear one then (R4)
G

6= ∅. Now local

linearity of the action of G in R4 implies G ⊂ SO(4).

Our proof of Theorem 1 essentially boils down to proving a version of the above

Assertion where instead condition G ⊂ SO(4) we assume G acts orientation pre-

servingly and locally linearly on R4 and then conclude G ⊂ SO(4).

Proof of Theorem 1. Our first simple observation is the following:

Observation 1. The only finite simple group which acts orientation preservingly

on R4 is A5.

This observation follows (somewhat inelegantly) from the direct inspection of

all finite non-abelian simple groups in the Atlas of Finite Groups (cf. [8]). The

point here is that each such group except A5 has a subgroup (solvable) which is

too large to act effectively on R4. (Note that an action of a solvable group on

R4 always has a fixed point). For example, in A6 one can take the normalizers of

Sylow 3-subgroups.

Suppose then that G is NOT simple.

Let H 6= {e} be a maximal normal proper subgroup of G (i.e., G/H is simple).

Case 1. H is a non-abelian simple group (hence H ∼= A5).

We have then an extension

(1) 1 → H → G→ G/H → 1

In order to classify such extensions (cf. [4] p.105) let ψ : G/H → Out(A5) ∼= Z2

be a homomorphism. Then ψ : G/H → Z2 is trivial except when G/H ∼= Z2 (note

that G/H is a simple group).
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The set of extensions (1) with fixed ψ is classified by H2(G/H;Z[H]) where

Z[H] is the center of H (cf. [4], p. 105). Consequently there is only one extension

G ∼= H ×G/H for G/H 6∼= Z2

and two extensions G ∼= H × Z2 and G ∼= S5 for G/H ∼= Z2.

Neither of there groups can act locally linearly on R4.

Case 2. H is simple abelian.

In this case (R4)
G ∼=

(
(R4)

H
)G/H

= {pt}. Consequently G ⊂ SO(4).

Case 3. H is not simple.

Repeating the argument from Case 1 and Case 2 with H replacing G one easily

concludes G ⊂ SO(4).

Case 4. Suppose G has an orientation reversing element.

Let K CG be the normal subgroup of orientation preserving elements, so that

G/H ∼= Z2.

Then either (R4)
K

6= ∅ and hence G ⊂ SO(4) or K ∼= A5 and we have an

extension

1 → K → G→ Z2 → 1.

This however was handled in Case 1 and hence the proof of Theorem 1 is concluded.

�

Before giving a proof of Theorem 2 we start again with general comments.

Let G be a finite group acting freely on some sphere Sn−1, where n ≥ 2 and

(n − 1) is odd. Then it follows that G has a free resolution of period n, and its

Tate cohomology Ĥ∗(G,Z2) is periodic of period n.

Now given a finite group G of period n one can ask if G can act freely on a

finite CW -complex (manifold) X with X ∼= Sn−1.

It turns out that there is a finiteness obstruction σn(G), (introduced by R. Swan

in [39]) for existence of such action. This obstruction takes value in a certain

quotient of K̃0(Z[G]), i.e. in K̃0(Z[G])/TG (cf. [9]).
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Computations of these finiteness obstructions is in general very complicated and

quite technical task. For various groups it was carried successfully however by R.

J. Milgram and I. Madsen (cf. [28], [25]). Quite extensive calculations were done

for the class of groups Q(2na, b, c). where a, b, c are coprime integers, n ≥ 2 and

Q(2na, b, c) is given by the semi-direct product

1 → Z/n× Z/a× Z/b× Z/c→ Q(2na, b, c) → Q(2n) → 1

in which Q(2n) is the quaternionic 2-group (cf. [9]). In particular for π =

Q(8p, q, 1), there are conditions on p, q (cf. [28], [25]) which imply σ4(π) = 0.

Let X̃ ' S3 be a finite complex with a free action of π on X̃ be given. Then

X̃/π = X is a finite 3-dimensional Poincaré complex and hence it is equipped

with a Spivak normal bundle (i.e., a homotopy spherical fibration; cf. [42], [26]).

Let f : X → BSG be the classifying map for this fibration (cf. [26]).

By considering p-Sylow subgroups πp of π and using the fact that there are

manifold models for each lifting X̃(p)
∼= S3/πp one can conclude as in ([9], [25])

that f : X → BSG lifts to f : X → BSO where BSO is the classifying space for

oriented bundles. The existence of such lifting leads to the existence of a normal

map

f : (M3, νM3) → (X, ξX)

where ν is the stable normal bundle, and ξX is the Spivak normal bundle. Rather

intricate and quite lengthy computations (see [3], [9], [25]) show that the surgery

obstruction λ(f) ∈ Lh
3(π) is trivial for each of the pairs

(p, q) = (3, 313), (3, 433), (3, 601), (7, 113), (5, 461), (7, 809), (11, 1321), (17, 103) .

In dimension 3 this means (cf. [16]) that there is a manifold N 3 and a map

k : N3 → X which is a Z[π]-homology equivalence (in other words: there is a free

action of π on some integral homology 3-sphere Ñ3).

Proof of Theorem 2. Let π be the group Q(8p, q), where (p, q) is any of the pairs

mentioned earlier. Let

k : M3 → X

be a Z[π]-homology equivalence. Consider the map

h = k × id : M3 × I → X × I

and let λ(h) ∈ Lh
0(π) be the surgery obstruction for changing h to a homo-

topy equivalence without modifying anything on the boundaries. Now let F :

Z[π] → Z[π] be the identity homomorphism and Γ0(F) be the Cappell-Shaneson

homological surgery obstruction group as in [6]. The natural homomorphism

j∗ : Lh
0(π) → Γ0(F) is an isomorphism (see [6] p.288) and clearly j∗(λ(h)) = 0 so
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that λ(h) = 0 in Lh
0(π). Let h : (W 4;M,M) → (X × I,X,X) be a homotopy

equivalence. Form a two ended open manifold

W0 := . . . ∪W 4 ∪M W 4 ∪M W 4 ∪ . . .

by stacking together copies of W 4.

Obviously π1(W0) ∼= π and the universal cover W̃0 of W0 is a manifold properly

homotopy equivalent to S3 × R and hence homeomorphic to S3 × R by [12].

Compactifying W̃0 by adding points on the respective ends, one gets an action

of π on S4 with two fixed points, whereas compactification at one of the two ends

yields an action of π on R4 with one fixed point. Since π is not isomorphic to a

subgroup of O(4) the proof of Theorem 2 is complete. �

The techniques used in the proof of Theorem 1 can be modified to show that

the existence of an orientation preserving locally linear action of a finite group G

on S4 implies G ⊂ SO(5). A detailed and independent argument for this claim is

contained in [27].

Consequently we have

Corollary 1. If G is a finite group acting locally linearly and orientation preserv-

ingly on S4 then G is isomorphic to a subgroup of SO(5). However, there is an

orientation preserving topological action of a finite group π on S4 such that π is

not isomorphic to a subgroup of SO(5).

Although the actions in the corollary are not locally linear, they obviously define

homotopy stratifications in the sense of [33].

2. Symmetries of S4.

Let k : N3 → X be the Z[π]-homotopy equivalence discussed earlier, and let

EX be the total space of a twisted I-bundle over X (= the unit disk bundle of a

real line bundle).

Now if Q(8) is the quaternionic group given by

Q(8) = {x, y|x4 = 1, x2 = y2, yxy−1 = x−1}

let ω : Q(8) → Z2 be a nontrivial orientation homomorphism given by

ω(x) = +1, ω(y) = −1.
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It induces a corresponding homomorphism

ω : Q(8p, q) → Z2

which in turn yields a specific line bundle, and hence a specific choice of EX .

Next, let EM be the pull back of EX by k. Then there is a degree one map

h : (EM , ∂) → (EX , ∂)

and h is a Z[π] homotopy equivalence of manifolds with boundary. Once again

λ(h) ∈ Lh
0(π, ω) is trivial (i.e., Lh

0(π, ω) ∼= Γ0(F , ω)).

Consequently we can replace the manifold EM by a manifold (W 4, ∂) homotopy

equivalent (rel ∂) to (EX , ∂).

In particular, h0 = h|∂W 4 : ∂W 4 → ∂EX is a Z[π]-homotopy equivalence where

τ ⊂ π is a subgroup of index two; in fact, τ ∼= Q(4p, q).

Now applying the argument used in the proof of Theorem 2 to

h0 × id : ∂W 4 × I → ∂EX × I

one obtains a manifold (N 4, ∂) homotopy equivalent to EX × I(rel ∂). Let

N = N4 ∪M N4 ∪M . . . .

and form M4 = W 4 ∪M N . Then M4 is a one ended manifold with the universal

covering M̃4 ≈top S
3 × R.

As in the preceding section, a two point compactification of M̃4 gives an action

of π on S4; the induced group action on the two “points at infinity” is given by the

homomorphism ω described above. This action is fixed point free (it is pseudo-free

with two singular points having isotopy group τ).

Consequently we have

Corollary 2. There is a finite group G acting topologically on S4 without fixed

points such that G is not isomorphic to a subgroup of O(5).

This corollary gives a topological solution to Problem 2. Now our goal is to

transform the topological action in the corollary into a locally linear one.

We shall first describe a strategy for proving this, and we shall give a detailed

argument afterwards.
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Let (p, q) be the pair of primes such that Q(8p, q) acts freely on a homology

3-sphere Σ. Write G = Q(8p, q) and τ = Q(4p, q) where τ ⊂ G is a subgroup of

index two.

Let h : Σ3/G→ X3/G be a Z[G] homology equivalence, where X3/G is a finite

Poincaré complex with X̃3 ∼= S3.

Consider the exact homology surgery sequence in dimension 3 (e.g., see [16],

[18]):

Lh
0(G)

γ
// SH(X3/G)

η
// [X3/G,G/Top]

Θh

3 // Lh
3(G)

The transfer to the 2-fold cover X/τ → X/G gives a commutative diagram

Lh
0(τ)

γ
// SH(X3/τ)

η
// [X3/τ, G/Top]

Θh

3 // Lh
3(τ)

Lh
0(G)

γ
//

tr∗

OO

SH(X3/G)
η

//

tr∗

OO

[X3/G,G/Top]
Θh

3 //

tr∗

OO

Lh
3(G)

tr∗

OO

Since X3/τ ∼= S3/τ and S3/τ is a manifold we have a base point in SH(X3/τ).

Let tr∗(h) = h̃ : Σ3/τ → S3/τ be a Z[π]-homology equivalence and let [h̃] ∈

SH(X3/τ). We claim that η[h̃] = 0 in [X3/τ, G/Top]. Indeed, [X3/τ, G/Top] ∼=
H1(τ,Z2) ∼= Z2 and since Θh

3 is a monomorphism (see [14]), our claim follows.

This means that there is an element x̃ ∈ Lh
0(τ) with [h̃] = γx̃.

Hypothesis 1. Suppose that there is an element x ∈ Lh
0(G) such that tr∗(x) = x̃.

If this is true and we act on [h] ∈ SH(X3/G) by (−x), then we get a new

Z[G]-homology equivalence:

h̄ : Σ′/G→ X3/G

with the lifting h̃ : Σ′/τ → S3/τ such that h̃ is H-cobordant to the idS3/τ .

Let W 4 be such an H-cobordism

(W 4; Σ′/τ ;S3/τ) = (W 4, ∂0, ∂1).

Now in our construction of one ended manifold M 4 we simply take

M4 = W 4 ∪∂0
W 4 ∪∂1

(S3/τ) × [0,∞).

Obviously, M̃4 ≈top S
3 × R and the action of G on two point compactification is

locally linear.
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Consequently, with the notation introduced above, our main effort goes into

proving the following:

Theorem 4. For some choice of (p, q) there is an element x ∈ Lh
0(G) such that

tr∗(x) = x̃.

Proof of Theorem. In order to prove the above theorem we will need quite detailed

knowledge of methods and techniques involved in computation of both Lh
0(G) and

Lh
0(τ).

We start with a brief review of Wall’s approach to computing surgery obstruction

groups for finite fundamental groups [41] and further results due to Madsen [25].

First we consider the case of G = Q(8p, q). Since the SK1(G) = 0 (see [32])

the relevant part of the Rothenberg exact sequence connecting Lh
∗

and Ls
∗

groups

reduces to the following (cf. [41], [25]):

0 // L′

0(G)
j

// Lh
0(G)

δ // Wh′(G) ⊗ Z2
// . . .

Here L′

∗
(G) ∼= Ls

∗
(G) and L′

∗
are the intermediate L∗-groups from [41].

Using [41] and [25], we can compute the group L′

0(G) as follows: Let Fp,q =

Q[ξp + ξ−1
p , ξq + ξ−1

q ] be the algebraic number field and Op,q = Z[ξp + ξ−1
p , ξq + ξ−1

q ]

be its ring of integers. Similarly, let Op and Oq denote the algebraic integers in

the fields Fp = Q[ξp + ξ−1
p ] and Fq = Q[ξq + ξ−1

q ] respectively. Let Âc be the c-adic

completion of Op,q at a prime ideal c in Op,q. As usual Â×

c are the units of Âc. Let

F (2) ⊂ F×

p,q consist of all elements with even valuation at all finite primes. Let Γ

be the ideal class group of Fp,q(i.e., the ideal class group of Op,q).

One part of the torsion group TG(pq) of L′

0(G) (denoted by coker ψ1 in [41],

[25]) is determined by the exact sequence of [41], p.74:

F (2)/(F×)2 Φ′

// ⊕
(
Â×

p
/(Â×

p
)2

)
// TG(pq) // Γ/Γ2 // 0 .

Here the summation runs through all primes p over n = pq.

There is a corresponding exact sequence for the part of the torsion of L′

0(τ),

where the algebraic number field is Fpq = Q[ξpq, ξ
−1
pq ] with Zpq = Z[ξpq, ξ

−1
pq ] as its

ring of integers. In fact, for both groups L′

0(G) and L′

0(τ) the crucial information

is contained in the following exact sequence (cf. [25], [41])

(2) 0 → cokerFψ1 → L′

0(H)(pq) → kerF
0 ψ0 → 0

where H is either G or τ , and F is the corresponding field introduced earlier.
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The groups cokerFψ1 and kerF
0 ψ0 are defined in [41] and [25]; in the preceding

sequence, (pq) stands for the last component of L′

0(H) in the decompositions

L′

0(G) ∼= L′

0(Q(8)) ⊕ L̃′

0(Q(8p)) ⊕ L̃′

0(Q(8q)) ⊕ L̃′

0(G)(pq)

L′

0(τ)
∼= L′

0(Z4) ⊕ L̃′

0(Q(4p)) ⊕ L̃′

0(Q(4q)) ⊕ L̃′

0(τ)(pq).

The transfer map induces a homomorphism of corresponding sequences (2) for G

and τ . In fact, the transfer homomorphism is essentially given by the inclusion

of centers (i.e., inclusion of corresponding fields; see [25] p. 215, discussion after

Theorem 4.18.

Claim. The transfer homomorphism tr∗ is onto Tτ (pq) if the class numbers of

Opq, Op and Oq are odd.

Proof of Claim. In this case we have a diagram

F (2)/(F×)2 Φ′

// ⊕
(
Â×

p /(Â
×

p )2
)

τ

// Tτ (pq) // 0

F (2)/(F×)2 Φ′

//

tr∗

OO

⊕
(
Â×

p
/(Â×

p
)2

)
G

//

tr∗

OO

TG(pq) //

tr∗

OO

. . .

Since the numbers gpq(Fpq) and gpq(Fp,q) are equal (see [25], p. 216) (these are

numbers of primes over pq in the corresponding fields) and since Â×

p /(Â
×

p )2 has

2-rank 1 (compare [41], pp. 51–52), it follows that tr∗ is an isomorphism

tr∗ : ⊕
(
Â×

p /(Â
×

p )2
)

G
→ ⊕

(
Â×

p /(Â
×

p )2
)

τ

and the claim follows. �

The torsion free part ΣG of L′

0(G)(pq) and Στ of L̃′

0(τ)(pq) are determined by

the multisignature (cf. [41], [25]). The transfer homomorphism tr∗ : ΣG → Στ

turns out to be an isomorphism. This follows from computations in [22]; more

specifically, see Example 5.15 for ΣG and Example 5.19 for Στ .

This shows that tr∗ : L̃′

0(G)(pq) → L̃′

0(τ)(pq) is onto in the case of odd class

number for Opq.

Now consider the transfer map tr∗ : L̃′

0(Q(8p)) → L̃′

0(Q(4p)). In this case, we

claim the following hold:

(a) The torsion group of L̃′

0(Q(4p)) is trivial.

(b) The transfer tr∗ restricted to the torsion free parts tr∗ : ΣG → Στ is onto.
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To see (a) note that for each prime p and q the class numbers of Op and Oq are

odd by our assumption, and since the map Φ′ : F (2)/(F×)2 → ⊕
(
Â×

p
/(Â×

p
)2

)
τ

is onto (see [41], p. 74, discussion after the corresponding exact sequence in the

middle of the page), the 2-rank of the group Γ is the rank of the torsion group,

and hence the torsion group is trivial.

To see (b) one appeals to the computations in [22]. Specifically, take Example

5.16 for ΣG and Example 5.15 for Στ .

The case of tr∗ : L̃′

0(Q(8q)) → L̃′

0(Q(4q)) follows by the same considerations.

Now consider the transfer map tr∗ : L′

0(Q(8p)) → L′

0(Z4). It is NOT onto, and

in fact its image has index two on one single copy of Z, i.e. one of 8Z goes to

4Z, where L′

0(Z4) ∼= 8Z ⊕ 8Z ⊕ 4Z (cf. [41]). The transfer however is onto the

remaining 8Z ⊕ 8Z. Fortunately in the exact surgery sequence

Θ4 // Lh
0(τ)

// SH(X3/τ) // [X3/τ, G/Top] // Lh
3(τ)

the copy of 4Z in Lh
0(τ)

∼= L′

0(τ) is in the image of Θ4.

Subject to our condition on the parity of the class number of Op,q we proved

the following:

Fact. If Ooze ⊂ L′

0(π) denotes the “oozing subgroup” of surgery obstructions

realized by normal maps of closed manifolds with fundamental group π, then the

transfer map tr∗ : L′

0(G)/Ooze→ L′

0(τ)/Ooze is onto.

(See [36], p. 25, and [14] for background information on the oozing subgroup.)

Back to Theorem 4

Let h : Σ3/G → X3/G be a Z[G]-homology equivalence and let h̃ : Σ3/τ →

X3/τ be the lifting.

Let ρ = ρ(h) be the Whitehead torsion of h, and similarly let ρ̃ = ρ(h̃), where

ρ ∈ Wh(G) and ρ̃ ∈ Wh(τ). Obviously the transfer map tr∗ : Wh(G) → Wh(τ)

sends ρ to ρ̃:

tr∗(ρ) = ρ̃.

Now let [h] ∈ SH(X3/G). Then the exact sequence

. . . // Lh
0(τ)

γ
// SH(X3/G)

η
// [X3/G,G/Top]

Θh

3 // Lh
3(G)
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together with [X3/G,G/Top] ∼= H1(G; Z2) ∼= Z2 ⊕ Z2 and the computation of Θh
3

implies that there is an element r ∈ Lh
0(G) such that γ(r) = [h].

Consider now the commutative diagram

0 // L
′

0(G)
i //

tr∗
��

L
h

0(G)
j

//

tr∗
��

Wh′(G) ⊗ Z2
//

tr∗

��

. . .

0 // L
′

0(τ)
i // L

h

0(τ)
j

// Wh′(τ) ⊗ Z2
// . . .

where L are the quotients L/Ooze. Let [h̃] ∈ SH(X3/τ) so that [h̃] = γ(x̃) for

some x̃ ∈ L
h

0(τ).

Suppose j(x̃) is nontrivial; i.e., j(x̃) = ρ̃ ⊗ Z2. Obviously there is an element

ρ⊗ Z2 in Wh′(G) ⊗ Z2 with tr∗(ρ ⊗ Z2) = ρ̃⊗ Z2. Let r ∈ L
h

0(G) be an element

with j(r) = ρ⊗ Z2.

Consider (x̃− tr∗(r)) ∈ L
h

0(τ).

Then j(x̃ − tr∗(r)) = 0 and hence there is an element l̃ ∈ L
′

0(τ) with i(l̃) =

(x̃ − tr∗(r)) and since tr∗ : L
′

0(G) → L
′

0(τ) is onto then there is an element

l ∈ L
′

0(G) with tr∗(l) = l̃. Consider the element

(i(l) + r) ∈ L
h

0(G).

Then
tr∗(i(l) + r) = tr∗(i(l)) + tr∗(r) = i(tr∗(l)) + tr∗(r)

= i(l̃) + tr∗(r) = x̃− tr∗(r) + tr∗(r) = x̃

This completes the proof of Theorem 4 modulo the claim about the parity of the

corresponding class number. The next step involves examples where the hypothesis

on class numbers is satisfied.

Claim. The groups Q(8p, q) for (p, q) = (17, 103), (3, 313), (3, 433) act locally lin-

early on S4.

It turns out that for each pair (p, q) the class number h+
pq of Z[ξpq, ξ

−1
pq ] is odd.

We give an argument for (3, 313) which works for the remaining pairs (p, q).

Let hpq be the class number of Q(ξpq) (i.e., of Zpq) and let h−pq be the relative class

number; i.e., hpq = h+
pq ·h

−

pq. Put (p, q) = (3, 313). The extension Q(ξpq)/Q(ξq) has

a cylic Galois group whose order is a power of 2, and hence by Iwasawa’s Theorem



FINITE SYMMETRIES OF R4
AND S

4
13

II in [17] (compare also Theorem 10.4 in [43], p.186) we know that

2|hpq ⇒ 2|hq .

However the parity of hq is the same as that of h−q (cf. [43]) and h−q is odd for

q = 313 (cf. [24]). Consequently hpq is odd and hence h+
pq must be odd as well.

Using [24], one can check that h−q is odd for q = 433 as well.

For p = 3, we have hp = 1 (cf. [43]). �

3. Final Remarks.

A. Automorphism groups of S4. It would be interesting to see if the ”exotic”

actions of finite groups G 6⊂

{
SO(5)

O(5)
on S4 can be used to show that

Top+(S4) 6∼= SO(5) and Top(S4) 6∼= O(5).

Note that for S3 we have Top(S3) ∼= O(4) (e.g., see [15]).

The existence of ”exotic” free actions of certain finite groups on S5 was used

in [40] to assert that Top+(S5) 6∼= SO(6) and Diff+(S5) 6∼= SO(6). However, it

seems (cf. [31] pp. 74–75) that there are serious problems with arguments used

in [40], so further study of the the following still seems worthwhile:

Problem 3. Find the lowest value of n for which

Top±(Sn) 6'

{
SO(n + 1)

O(n+ 1)
and/or Diff

±
(Sn) 6'

{
SO(n+ 1)

O(n + 1)
.

THIS NEEDS TO BE REWORKED IN VIEW OF OUR DISCUSSIONS.

B. Smoothability questions. It is a natural to ask whether the locally linear

action in Theorem 3 is equivariantly smoothable or whether its product with some

Rk (with trivial group action) is smoothable. One possible approach to study the

smoothability question could involve a use of gauge theory; we hope to return to

such problems in a future paper. The methods of [23] may be useful for studying

the stable smoothability question.

C. Smooth actions of exotic finite groups on Z-homology 3-spheres. Integral

homology spheres play important roles in several areas of geometric topology,

frequently as close approximations to standard spheres; for example, consider the

role of Seifert homology 3-spheres in the theory of S1-actions on 3-manifolds [35],
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the work of E. Brieskorn on isolated singularities of complex hypersurfaces (cf.

[30]), or the view of Z-homology spheres as Doppelgänger in Chapter 2 of [44].

In particular, the main results of this paper rely heavily on the existence of free

Q(8p, q)-actions on homology 3-spheres, and one can ask more general existence

and classification questions about smooth finite group actions on homology 3-

spheres which do not have linear models (i.e., orthogonal actions on S3). A few

special cases involving exotic actions of A5 (e.g., examples with a single fixed

point) were considered in [20] and the second section of [38]. Here are specific

questions involving exotic groups which act freely on Z-homology 3-spheres:

Problem 4. Let G be a finite group which acts freely (and smoothly) on a closed

Z-homology 3-sphere, and let C ⊂ G denote the unique central subgroup of order 2

(which exists by [29]). Is there an effective smooth (possibly nonfree) action of the

quotient group G/C on a closed Z-homology 3-sphere? If so, can they be realized

as invariant submanifolds of locally linear group actions on S4?

The standard group isomorphism S3/Z2
∼= SO(3) implies the answers are yes if

the finite group G supports a free linear action on S3.

D. Pseudofree smooth actions of exotic finite groups on higher dimensional

spheres. More generally, if we are given a free smooth action of some finite

group G on a sphere Sn and a nontrivial homomorphism ω : G → Z2, one can

ask whether the action extends to a pseudofree action (smooth or locally linear)

on Sn+1 which is free on the complement of a two point set {P,Q}, looks like the

product action

g · (v, t) = (g · v, ω(g) t)

on Sn+1 − {P,Q} ∼= Sn × (−1, 1), and permutes P and Q via the homomorphism

ω, where the codomain is identified with the symmetric group on two letters. Note

that the conditions imply that the kernel of ω admits a free orthogonal action on

Sn.

The periodic groups studied in this paper are particularly difficult to work with,

and one might ask if strong positive results on this problem can be obtained for

other, more tractable classes of examples.
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