I I I :
   Basic Euclidean concepts and theorems
The purpose of this unit is to develop the main results of Euclidean geometry using the approach presented in the previous units.

The choice of topics reflects the current subject requirements and recommendations for mathematics in the following State of California documents: 

http://www.ctc.ca.gov/educator–prep/standards/SSMP–Handbook–Math.pdf
http://www.cde.ca.gov/ci/ma/cf/
We shall start by discussing perpendicularity and parallels, and we shall proceed to discuss standard material on triangles, quadrilaterals and regular polygons, the classical results on concurrence and similarity for triangles, some basic facts regarding intersections of a circle with a line or another circle, ending with a brief discussion of areas and volumes.  References for further reading are also included.
I I I.1 : Perpendicular lines and planes
We shall follow the recommendation on page 36 (= online page 42) of the document http://www.ctc.ca.gov/educator–prep/standards/SSMP–Handbook–Math.pdf , which states,   “An introductory college geometry course should start from the beginning.”   Much if not most of the material will be review, but one important new feature is that it discusses familiar elementary topics from the more advanced viewpoint of this course.

Perpendicular lines

We have already defined perpendicularity from the analytic approach in Section I.1; specifically, two intersecting lines AB and AC are perpendicular (written AB ( AC) if and only if their inner product satisfies (B – A) · (C – A)  =  0.   This is obviously equivalent to the synthetic criterion | (CAB |   =  90,  and by the Supplement Postulate for angle measure we also have the following:
Proposition 1.  Let A, B, C be noncollinear points, and suppose that E is a point such that E ( A ( C holds.  Then AB ( AC if and only if | (EAB |   =   | (CAB |.
Proof.    By the Supplement Postulate we have

| (EAB |   +   | (CAB |     =   180

and hence by elementary algebra we conclude that  | (EAB |   =   | (CAB |  if and only if 2 | (CAB |     =   180, which of course is equivalent to | (CAB |   =  90.( 

Corollary 2.  Let A, B, C be noncollinear points, and suppose that D and E are points such that both E(A(C and  B(A(D hold.  Then AB  (  AC if and only if
 | (CAB | =   | (EAB |   =   | (EAD |   =   | (DAC |   =   90.
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The corollary follows from multiple applications of the proposition.(
The Protractor Postulate and the preceding observations immediately yield the following result:
Proposition 3.    Let L be a line, let A be a point of L, and let P be a plane containing L.  Then there is a unique line M in P such that A  ( M and L ( M.
Note that the uniqueness only applies to lines in the given plane.  There are as many lines perpendicular to L at A as there are planes containing L.  For example, if L is the usual  x – axis in R3, then a line 0C through the origin is perpendicular to L if and only if the first coordinate of C is zero (and at least one of the other two coordinates is nonzero).

Proof.    Let B be a second point on L, and X be a point of the plane P which is not on L.  Then there is a unique ray [AC such that |( CAB|  =  90 and (AC lies on the same side of L as X.  It follows that AC ( AB  =  L.
To prove uniqueness, suppose that AD is an arbitrary line in P such that AD ( AB  =  L.  There are two cases, depending upon whether or not C and D lie on the same side of L.  If they do, then by the uniqueness part of the Protractor Postulate we know that [AD  = [AC and hence we also have that the lines AD and AC are identical.  On the other hand, if D and C lie on opposite sides of L, take E to be a point such that E ( A ( C,  Then D and E lie on the same side of L,  so the uniqueness part of the Protractor Postulate now implies that [AD = [AE, which in turn implies AD = AE.  Since A, C and E are distinct collinear points, the latter implies AD  =  AC.(
Of course, there is analogous result about perpendiculars if we are given a point A which does not lie on L.
Proposition 4.    Let L be a line, and let A be a point not on  L.  Then there is a unique line M such that A  ( M and L ( M. 
Proof.    With the tools currently at our disposal, it is much easier and faster to do this analytically.  Let B and C be distinct points of L.  Express the vector A – B as a sum of the form v + w, where v is a scalar multiple of C – B and w is perpendicular to C – B.  Set D equal to v + B.
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We claim that AD is perpendicular to L and there is no other line M in the same plane such that A  ( M and M ( L.  To see the first part, note that we have

A – D  =  (A  –  B)  – (D  –  B)   =  (v + w) – v  =  w
and there is a (possibly zero) constant k such that v  =  (D – B)  =  k(C – B).  Therefore we have  

(D – A) · (D – B)  =  w · k(C – B)   =   k w · (C – B)  =  k0  =  0
so that AD is perpendicular to L.  

It remains to show that there is only one perpendicular.  Suppose that E  ( L is such that L is perpendicular to AE, and write E – B  =  x(C – B) for a suitable scalar x.  We then have 

A – E   =   (A – D) –  (E – D)    =    w  +  (k – x) · (C – B)

so that 

(A – E) · (C – B)  =  ( w  +  (k – x) · (C – B) ) · (C – B)  =  (k – x) || C – B || 2.
The lines AE and L are perpendicular if and only if this dot product vanishes, and since the length of B – C is positive, this can happen if and only if k – x  =  0, which is equivalent to saying that E  =  D.(
Corollary 5.    Suppose that L, M and N are three lines in a plane P such that L ( M and M ( N.  Then L || N.

Proof.    Take B and C to be the points where M meets L and N respectively.  If B  =  C, then by uniqueness of perpendiculars at a point we would have L  =  N; since L and N are distinct, it follows that B and C are also distinct.  If L and N were not parallel, then they would have a point A in common.  This point could not lie on M, for if it did then it would be equal to both B and C. It would then follow that L and N would be distinct perpendiculars to M through the external point A, contradicting an earlier result.  Therefore L and N cannot have any points in common, so that L || N.(
There is also a converse to the preceding corollary.  We shall prove a more general result in the next section, but this special case is important enough to be noted on its own.

Proposition 6.   Suppose that L, M and N are three lines in a plane P such that L || N and M ( N.  Then L ( M.

Proof.    We shall do this algebraically; express the plane P as q + S, where S is a 2 – dimensional vector subspace of R3.  Similarly, write L = x0 + V for some 1 – dimensional vector subspace V, and let N = z0 + V where z0 does not lie on L.  Let v be a nonzero vector in V, so that { v } forms a basis for V.  Write M = w0 + U for some 1 – dimensional subspace U, and let u be a nonzero vector in U, so that { u } forms a basis for U.   Since all of the vectors x0 , z0 , w0  belong to S, it follows that 

P    =    x0 + S   =    z0 + S   =    w0 + S
and since L, M and N are all contained in P these imply that U and V are vector subspaces of S.  

Since M and N are perpendicular, it follows that there is a point q which lies on both; it follows that q + u and q + v are second points of M and N respectively, and thus the perpendicularity condition on the lines means that u · v  =  0.  Since these vectors belong to S and are nonzero, they are linearly independent and hence form a basis for S.
We next claim that L and M have a point in common; in other words, there are scalars a and b such that x0 + av    =    w0 + bu.   This follows because x0 – w0 lies in S and thus is a linear combination of u and v.  Once again, if p is this common point, then p + u and p + v are second points of M and L respectively, and since u · v  =  0 it follows that M and L are perpendicular.(
Perpendicular bisectors

We can now prove a result that is used very often in elementary geometry.

Proposition 7.  Let A and  B, be distinct points, let P be a plane containing them, suppose that D is the midpoint of  [AB],   and let M be the unique perpendicular to AB at D in the plane P.  Then a point X  ( P lies on M if and only if d(X, A)  =  d(X, B).
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In classical language this is often stated as something like, “The locus of points that are equidistant from two distinct points A and B is the perpendicular bisector of [AB].”  This is a good time to mention that the classical word locus in older geometry texts really has the same meaning as the modern word set.
Proof.      There are two cases depending upon whether or not X lies on AB.  Suppose first that this is the case.  Then X  =  A + k(B – A) for some scalar k, and we claim that k must be equal to ½ so that X  =  D.   We may rewrite the expression for X equivalently as 

X  =  B + (1 – k) ·  (A – B), and thus we have that the equation d(X, A)  =  d(X, B), which is equivalent to the squared equation d(X, A) 2  =  d(X, B) 2, is also equivalent to the following string of equations: 
(1 – k) 2 · || A – B || 2   =   || (1 – k) · (A – B) || 2   =     || X – B || 2   =

|| X – A || 2   =    || k· (B – A) || 2   =    k 2 · || B – A || 2   =   k 2 · || A – B || 2
Since the length of A – B is positive, we may cancel it from the left and right sides to obtain the scalar equation (1 – k) 2  =  k 2, and the later reduces to 1 – 2k  =  0, so that k   =   ½ as claimed.

Suppose now that X does not lie on AB .   If we have XD ( AB then by SAS we also have (XDA   (   (XDB, so that d(X, A)  =  d(X, B).  Conversely, if the latter is true then we have (XDA   (   (XDB by SSS, so that | (XDA |   =   | (XDB |.  By previous results this means that XD ( AB .(
Perpendicularity and parallelism in space
The ludicrous state of solid geometry … made me pass over this branch. 

Plato (428 B.C.E – 347 B.C.E.), 
The Republic, Book VII
Three – dimensional geometry is considerably more complicated than its two – dimensional counterpart for many reasons, and accordingly it is not surprising that most accounts of elementary geometry only discuss solid geometry to a limited extent.  Many of the complications are already evident when one considers questions about parallel and perpendicular lines and planes in space, as we shall do in the final part of this section of the notes.  Systematic use of linear algebra will simplify and clarify the discussion considerably.

The most basic notion involves perpendicularity of a line and plane in space.  

Definition.  Suppose that the line L and the plane P have a point X in common (but L is not contained in P, so there is only one such point).  We shall say that the line L is perpendicular to the plane P and write L ( P if L is perpendicular to every line in P which passes through X.
It is easy to construct examples of lines which do not lie on the plane and are perpendicular to only one line in the plane.  For examples, suppose we take P to be the xy – plane in R3 and let X be the origin.  The L has the form 0v where v is some nonzero vector.  Suppose that we take v to have coordinates (1, 1, 1).  A typical line through the origin in P consists of all points having the form (tp, tq, 0), where p and q are not both zero.  The only line of this form that is perpendicular to 0v is the line defined by the equation y  =  x.

The algebraic interpretation of a perpendicular line and plane is simple.  If the plane is given by the equation a · z  =  b and the line and plane meet at the point x, then L is the unique line containing x and x + a.  Conversely, if L has the form x + V where V is a 1 – dimensional vector subspace and x lies in both L and P, then P is defined by the equation a · z  =  a · x, where a is an arbitrary nonzero vector in V. Furthermore, if we write P  =  x + W for some 2 – dimensional subspace W, then W is the vector subspace of all vectors perpendicular to the vectors in V, and V is the set of vectors which are perpendicular to all vectors in W.
In contrast to the preceding example, we have the following.

Theorem 8.    Suppose we are given a plane P and a line L not contained in P such that L and P meet at the point x.  Suppose further that there are two distinct lines M and N in P such that x lies on both and L is perpendicular to both M and N.  Then L is perpendicular to P.
Proof.    Write L  =  x + V where V is spanned by the nonzero vector v.  Let y and z be points in P such that xy and xz are distinct lines with xy ( L and xz ( L.  It follows that z – x and y – x form a basis for W.  Suppose now that w is an arbitrary vector in P not equal to x.  Then we have w – x  ( W and hence 

w – x   =   a(y – x) + b(z – x)

for suitable scalars a and b.  In order to prove the theorem we must show that the original line L  =  x(x + v) is perpendicular to xw, or equivalently that v · (w – x)  =  0.  The hypotheses imply that v · (y – x)  =  v · (z – x)  =  0,  and therefore we have

v · (w – x)  =  v · ( a(y – x) + b(z – x) )  =  av · (y – x)  + b · (z – x)  =

a0  +  b0   =   0
which means that L is perpendicular to xw; since w was an arbitrary point of P not equal to x, it follows that L ( P .(
There are some direct analogs to results in plane geometry.

Theorem 9.    If P is a plane and x is a point in space, then there is a unique line through x which is perpendicular to P.
Note that we make no assumption whether or not x lies in P, and in fact the proof splits into two cases, one for points on P and the other for points not on P.
Proof.   Start with a basis {u1, u2} for W and extend it to a basis for R3 by adding a single vector.   Apply the Gram – Schmidt process to obtain an orthonormal basis {v1, v2, v3} such that the first two vectors form an orthonormal basis for W.   

Suppose first that x ( P.   Consider the line L  =  xv3 ;  if V is the vector subspace spanned by v3 ,  then V consists of all vectors perpendicular to W and vice versa, so by the by the algebraic description of perpendicular lines and planes we see that L is perpendicular to P at x.  The preceding argument proves existence.  To prove uniqueness, suppose that xy is an arbitrary line that is perpendicular to P.  Then xy is perpendicular to xv1 and xv2 in particular, so we conclude that y – x is perpendicular to both v1 and v2.  The only way a linear combination y – x  =  c1v1 + c2v2 + c3v3   can satisfy such this is if the coefficients of v1 and v2 are zero, which means that y – x is a multiple of v3 .  The latter means that y must lie in x + V  =  L.
Suppose now that x does not lie in P.   Let z be an arbitrary point of P, and expand x – z using the orthonormal basis in the first paragraph of the proof:

x – z  =  a1v1 + a2v2 + a3v3
Let u be the sum of the first two terms of the displayed expression and let w be the third term.  Since x does not lie in P we know that a3 must be nonzero, and therefore it follows that w is nonzero.  Set x0  =  z + a1v1 + a2v2, so that x0 ( P, and consider the line L  =  x0y.   Once again, the algebraic characterization of perpendicular lines and planes shows that L and P are perpendicular to each other, thus completing the proof of existence.  Conversely, suppose now that we are given an arbitrary line M through x which is perpendicular to P, and let w0 be the point where this line M meets P, and let w1 =  x – w0 .   The perpendicularity condition implies that w1 is perpendicular to W.   We then have 

x – z   =   w0  +  w1
where w0 lies in W and w1 is perpendicular to W.  We then have 

x – z  =  w0  +  w1  =   (b1v1 + b2v2) + b3v3
for suitably chosen scalars.   By the uniqueness of expressions of a given vector in terms of a basis, the coefficients of v1, v2, and v3 in both these expressions must be equal.  But this means that w0  =  x0 and hence w1  =  w.  Thus an arbitrary line through x which is perpendicular to P is equal to the line L constructed above, proving uniqueness. .(
Following standard usage, we shall say that two planes P and Q in R3 are parallel if they have no points in common.  We shall frequently write this as P || Q.   Once again, the algebraic characterization of this is important.
Lemma 10.  Let P and Q be distinct planes, and write P  =  x + W and Q  =  z + U for suitable 2 – dimensional vector subspaces V and U respectively. Then P || Q if and only if W  =  U.
Proof.     Suppose first that P || Q.  If we translate this into a statement about linear equations, it means that we have a pair of nontrivial equations of the form a  ·  x  =  b and c · x  =  d which have no simultaneous solution.  By the basic results on solutions to systems of linear equations, this happens only if a and c are linearly dependent.  In general, the solution spaces for the reduced equation a  · x  =  0 and c · x  =  0 are merely the subspaces W and U; if a and c are linearly dependent, then since they are both nonzero we know that each must be a nonzero scalar multiple of the other.  But this means that W  =  U.
Conversely, suppose we are given distinct planes of the form x + W and y + W.  If they had some point z in common, then by the Coset Property from Section I.3 we would have x + W  =  z + W  =  y + W, contradicting the fact that these planes are supposed to be distinct.  Therefore we must have x + W || y + W.(
Theorem 11.   Let P and Q be distinct planes in space, and let L and M be distinct lines in space.  Then the following hold.

(1) If both L and M are perpendicular to P, then L || M.
(2) If L  (  P and L || M, then M (  P.
(3) If P  ( L and Q  (  L, then P || Q.
(4) If L ( P and P || Q, then L ( Q.
Proofs.    Let V1 and V2 be the 1 – dimensional vector subspaces corresponding to L and M respectively, and let W1 and W2 be the 2 – dimensional vector subspaces corresponding to P and Q respectively.  
Proof of  (1).       In this case both V1 and V2 are the vector susbspaces of all vectors perpendicular to W1; this implies that V1  =  V2, and hence that L || M.

Proof of  (2).       In this case V1  =  V2 and V1 is the vector subspace of all vectors perpendicular to W1.  If the line M and the plane P have a point in common, this will imply that the line and plane are perpendicular, so we need only show that M and P have a point in common.  Write M  =  x + V1 and P  =  y + W1. As in the preceding result, construct an orthonormal basis {v1, v2, v3} such that the first two vectors form an orthonormal basis for W1.  It will follow that the third vector gives a basis for V1.  We then have 

x – y   =   a1v1 + a2v2 + a3v3
for appropriately chosen scalars a1, a2, a3.   It follows that 

x  –  a3v3   =   y  + a1v1 + a2v2
and since the left hand side lies in V1 and the right hand side lies in W1, we have found a vector belonging to both subsets.   As noted before, this finishes the proof that M ( P.
Proof of  (3).       Since L is perpendicular to both planes, it follows that V1 is the vector subspace of all vectors perpendicular to W1,  and also V1  =  V2 is the vector subspace of all vectors perpendicular to W2.  In particular, this means that W1 and W2 are both describable as the sets of vectors perpendicular to V1, which implies that W1  =  W2.  Since P and Q are distinct, by the preceding lemma they must be parallel.
Proof of  (4).       In this case both V1 is the vector subspace of all vectors perpendicular to W1, and the latter is equal to W2.  Thus V1 is also vector subspace of all vectors perpendicular to W2, and since this perpendicular subspace is equal to V2 we must have V1  =  V2.   As before we shall have L ( Q if we can show L and Q have a point in common.  Write L  =  x + V2 and P  =  y + W2.   Once again we have an orthonormal basis {v1, v2, v3} such that the first two vectors form an orthonormal basis for W2.  It will follow that the third vector gives a basis for V2.  We then have 

x – y   =   a1v1 + a2v2 + a3v3
for appropriately chosen scalars a1, a2, a3.   Therefore x  –  a3v3   =   y  + a1v1 + a2v2
and since the left hand side lies in V2 and the right hand side lies in W2, we have found a vector belonging to both subsets.   As noted before, this finishes the proof that L  (  Q.(
The preceding result has a curious duality property:  If we interchange the roles of lines and planes in the statements, we get the same conclusions in some rearranged order.  Our next result is dual to the earlier one about dropping perpendiculars to a plane through a line.

 Theorem 12.    If L is a line and x is a point in space, then there is a unique plane through x which is perpendicular to L.
Note that we again make no assumption whether or not x lies in L, and in fact the proof again splits into two cases, one for points on L and the other for points not on L.
Proof.   Start by writing L  =  z + V for some 1 – dimensional vector subspace V.  Once again we can extend { v } to a basis for R3, and in fact we can find an orthonormal basis  {w1, w2, w3} such that w1 is a positive multiple of v.  Let W be the vector subspace spanned by the second and third vectors in the orthonormal basis.
Suppose first that x ( L.  Then the line may be rewritten as x + V, and the plane x + W will be perpendicular to L, proving existence.   To verify uniqueness, let x + U be an arbitrary plane through x such that x is perpendicular to L.  Then both U and W are the sets of all vectors perpendicular to V, and hence W  =  U; thus the perpendicular plane is unique in this case.

Suppose now that x does not lie on L.   Then we have z – x   =   a1w1 + a2w2 + a3w3
for suitable scalars a1, a2, a3.   We now have z – a1w1   =   x + a2w2 + a3w3 and if y is the point with these two equal descriptions, we see that y lies on L, it also lies on the plane x + W, and L is perpendicular to x + W, proving existence.  To prove uniqueness, suppose that Q is a plane containing x such that L  (  Q.   If Q is given by x + U, then both W and U consist of the vectors perpendicular to the span of w3, and therefore we must have W  =  U.  This completes the argument when x does not lie on L.(
We could go much further in this direction, but we shall stop after the next result.

Theorem 13.  Let a and b be distinct points in space.  Then the set of all points that are equidistant from a and b is the plane which is perpendicular to the line ab and contains thei midpoint ½(a + b).
In analogy with the planar case, the plane described in the theorem is called the perpendicular bisector (plane) of a and b.
Proof.  We first write the equidistance equation in vector form || x – a ||2   =   || x – b ||2.  Expanding this in the usual way we obtain

|| a ||2  –  2(a · x)  + || x ||2  =    || b ||2  –  2(b · x)  + || x ||2
and if we subtract || x ||2 from both sides and rearrange terms this becomes 

|| a ||2  –  2(a · x)   =    || b ||2  –  2(b · x).

We may rewrite this further as 2 (b – a) · x   =   || b ||2 – || a ||2.  It is a simple exercise to compute that the midpoint ½(a + b) satisfies this equation.  

By the preceding paragraph, we know that the set of points equidistant from a and b is a plane containing ½(a + b).  Furthermore, the specific equation for P implies that if L is the line which is perpendicular to P at ½(a + b), then L  =  ½(a + b)  +  V, where V is the 1 – dimensional vector subspace spanned by b – a.   
To conclude the proof, we need to verify that L  =  ab.  In fact, direct computation yields

a    =    ½(a + b)  –  ½( b – a) ( ½(a + b)  +  V
b    =    ½(a + b)  +  ½( b – a) ( ½(a + b)  +  V
so that a, b (L and hence L  =  ab.(
We shall conclude this section with a brief discussion of perpendicular planes, starting with a quick definition:  Suppose P and Q are nonparallel planes in space defined by the nontrivial linear equations a · x  =  b and c · x  =  d respectively.  The P and Q are said to be perpendicular, written P  (  Q, if and only if a and c are perpendicular.

Before proceeding, we need to check that this definition does not depend upon the choices of equations defining the planes; in other words, if we are given (possibly) different equations  a( · x  =  b( and c( · x  =  d(,  then  a · c  =  0 if and only if a( · c(  =  0.  To see this, observe that the only way two nontrivial linear equations can define the same plane is if one is obtained from the other by multiplying both sides by a nonzero scalar, so that we must have  a(  =   pa  and  b(=  pb  for some nonzero constant p, and c(  =   qa  and  d(=  qb  for some nonzero constant q.   Under these conditions it follows immediately that a · c  =  0 if and only if a( · c(  =  0.

The synthetic interpretation of perpendicular planes is given by the following result:
Theorem 14.  Suppose that P and Q are perpendicular planes in space, suppose that L is their line of intersection, and let x be a point on L.  Then there are lines M and N through x such that (1)  L  (  M and M is contained in P, (2)  L  (  N and N is contained in Q,  (3) we also have M  (  N. 
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Corollary 15.  In the setting of the theorem we also havet M  (  Q and N  (  P; 

Proof of Corollary.    By the theorem we know that M is perpendicular to two lines in Q through x and N is perpendicular to two lines in P through x.(
Proof of Theorem.    Express the line L as x + U, where U is a 1 – dimensional vector subspace spanned by the nonzero vector u.  Since x + u lies on both P and Q we have
a · (x + u)  =  b  =  a · x      and      c · (x + u)  =  d  =  c · x
and hence a · u  =  c · u  =  0,  so that the vectors a, c and u are nonzero and mutually perpendicular.  Let M be the line passing through x and x + c, and let N be the line passing through x and x + a.  We then have

a · (x + c)  =  a · x  =  b      and      c · (x + a)  =  c · x  =  d
so that two points of M are contained in P (hence all of M is contained in P) and likewise two points of N are contained in Q (hence all of N is contained in Q).   By construction we know that L, M and N are three lines which pass through x and any two of them are perpendicular to each other.( 

I I I.2 : Basic results on triangles
One of the most important and best know results on a Euclidean triangle (ABC is that the sum of the angle measurements  

| (ABC |   +   | (BCA |   +   | (CAB |
is equal to 180 degrees.  The goal of this section is to develop enough of the theory of triangles that we can prove this result.
The Exterior Angle Theorem
The first result is often presented as a consequence of the result on the angle sum of a triangle, but for many reasons it is important in its own right.  For example, it can be proven for geometrical systems that do not necessarily satisfy Playfair’s Postulate P – 0.
Theorem 1.  (Exterior Angle Theorem)    Suppose we are given triangle (ABC, and let D be a point such that  B(C(D.  Then | (ACD | is greater than | (ABC | and | (BAC | . 
[image: image5.png]



(Source: http://www.cut-the-knot.org/fta/Eat/EAT.shtml )

Proof.    Suppose we can show that | (ACD |   >   | (BAC | .  Let G be a point such that A(C(G.   Then by switching the roles of A and B and of D and G, we can also conclude that | (BCG |   >   | (ABC | .   Since | (ACD |   =   | (BCG | by the Vertical Angle Theorem, it follows that | (ACD |   >   | (ABC | .  Therefore it will suffice to prove the inequality | (ACD |   >   | (BAC | .  
Let E be the midpoint of [AC], and let F ( [EBOP be the unique point such that d(E, F)  =  d(E, B).   Then the midpoint condition implies d(E, C)  =  d(E, A), and the Vertical Angle Theorem implies | (AEB |   =   | (CEF |, so that (AEB   (   (CEF by SAS.  It follows that | (BAE |   =   | (ECF |.  Note that (BAE   =   (BAC and (CFE   =   (ACF by construction.

Since | (BAE |   =   | (ACF |, it will suffice to prove that  | (ACF |  <  | (ACD |,  and we shall have the latter if we can show that F lies in the interior of  (ACD .   The order relations A ( E ( C and F ( E ( B show that A, E and F all lie on the same side of the line CD  =  BC.  Similarly, the order relations B ( E ( F and B ( C ( D show that D and F all lie on the same side of the line EC  =  AC.   The preceding two sentences combine to show that F lies in the interior of  (ACD , which by the previous observations implies the desired inequalities |(ACF |  <  | (ACD |  and | (BAC |  <  | (ACD | .(
The preceding result has a large number of important consequences.  We limit ourselves here to some that will be needed repeatedly.

Corollary 2.    Given triangle (ABC, the sum of any two of the angle measures | (ABC |, | (BCA | and  | (CAB | is less than 180.   Furthermore, at least two of these angle measures must be less than 90.  

Proof.    We use the notation of the preceding theorem.  The argument for the latter and the Additivity and Supplement Postulates for angle measures show that 

| (BCA |  + | (CAB |   =    | (BCA |  + | (ACF |   =    |(BCF |   =

180 – | (DCF |  <  180.

The other two inequalities | (CAB|  + | (ABC |  <  180 and | (ABC|  + | (BCA |  <  180 follow from the same argument by interchanging the roles of A, B and C.  

To prove the second statement, suppose that the measure of at least one of the vertex angles is at least 90.  Without loss of generality, we may assume that | (ABC |   (   90; the other two cases can be shown similarly by permuting the roles of A, B and C.  By the already proven first sentence in this corollary, we know that | (CAB| + | (ABC |  <  180 and | (ABC|  + | (BCA |  <  180, so standard algebra implies that both of the angle measurements | (CAB| and | (BCA |  must be less than  180.(
Corollary 3.    Suppose we are given triangle (ABC, and assume that the two angle measures | (BCA | and | (CAB | are less than 90. Let D ( AC be such that BD is perpendicular to AC.  Then D lies on the open segment (AC).  
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Proof.    We know that D cannot be equal to either A or C,  because this would imply that either | (BCA | or  | (CAB | would be equal to 90.  Thus one of the three points A, C, D must be between the other two.  If we have  A(C(D,  then the Exterior Angle Theorem would imply that | (ACB |  >  | (CDB |  =  90, contradicting our assumption that | (ACB |  =  | (BCA |  <  90.   Similarly, if we have  D(A(C,  then the Exterior Angle Theorem would imply that | (BAC |  >  | (BDA |  =  90, contradicting our assumption that | (CAB |  =  | (BAC |  <  90.  The only remaining possibility for the collinear points A, B, D is the betweenness relation A(D(C.  
Corollary.    Suppose we are given triangle (ABC. Then at least one of the following is true:

(1) The perpendicular from A to BC meets the latter in (BC).
(2) The perpendicular from B to CA meets the latter in (CA).
(3) The perpendicular from C to AB meets the latter in (AB).
This follows because the measures of at least two vertex angles are less than 90.(
One can also use the Exterior Angle Theorem to prove the following complement to the Isosceles Triangle Theorem.

Theorem 4.  Given (ABC, we have d(A, C)  >  d(A, B) if and only if we have | (ABC |  >  | (ACB | .
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(Despite the appearance of the picture, AB is not necessarily perpendicular to AC.)
Proof.    Suppose that  d(A, C)  >  d(A, B),  and let D (  (AC be such that d(A, D)  =  d(A, B).  Then d(A, D)  =  d(A, B)  <  d(A, C) implies that D lies on (AC), so that we have A(D(C.    In particular, it also follows that D lies in the interior of (ABC, so that we have | (ABC |  >  | (ABD | .  The Isosceles Triangle Theorem then implies | (ABD |  =  | (ADB | ,  and the Exterior Angle Theorem implies | (ADB |  >  | (DCB |  =  | (ACB | ; the final equation holds because the two angles are identical.  If we string all these inequalities and equations together, we conclude that   | (ABC |  >  | (ACB | .
Similarly, if we have  d(A, C)  <  d(A, B),  then by interchanging the roles of B and C in the preceding argument we can conclude that that   | (ABC |  <  | (ACB | .

Suppose now that we have the converse situation with that   | (ABC |  >  | (ACB | .  If d(A, C)  =  d(A, B),  then by the Isosceles Triangle Theorem we obtain the contradictory conclusion  | (ABC |  =  | (ACB | .  Likewise, if d(A, C)  <  d(A, B),  then by the preceding paragraph we have  | (ABC |  <  | (ACB | , which again contradicts our assumption.  Therefore d(A, C)  >  d(A, B) is the only alternative consistent with the condition   | (ABC |  >  | (ACB | .(
Some algebraic proofs

Up to this point we have used synthetic methods to prove our results.  However, there are also some results which a more easily proved using algebraic methods, and before proceeding to the goal of this section we shall present them.   

Theorem 5.  (Classical Triangle Inequality)    Given (ABC, we have the following inequality:
d(A, C)     <     d(A, B)  +  d(B, C)
Proof.     By the version of the Triangle Inequality in Section I.1, we know that the left hand side is less than or equal to the right hand side, and equality holds only if A, B and C are collinear.  Since they are not, we must have strict inequality in this situation.(
The next result is generally regarded as one of the most important in all of Euclidean geometry.

Theorem 6.  (Pythagorean Theorem)    If (ABC has a right angle at B, so that AB ( BC, then 

d(A, C)2     =     d(A, B)2  +  d(B, C)2.
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Proof.   We know that d(A, C)2  =  || C – A ||2, and since 

(C – A)   =   (C – B) + (B – A)

the expression || C – A ||2 is equal to 

|| C – B ||2  +  2(C – B) · (B – A)   +  || B – A ||2.
Since AB ( BC,  we know that (C – B) · (B – A)   =  0,  and therefore the right hand side reduces to  || C – B ||2  +  || B – A ||2   =   d(A, B)2  +  d(B, C)2, as required.(
In fact, the argument above yields the following stronger conclusion:

Theorem 7.  (Law of Cosines)    Given (ABC, we have 

d(A, C)2   =   d(A, B)2  +  d(B, C)2  –  2 d(A, B) d(B, C) cos | (ABC|.

Proof.   In the preceding argument, observe that in general (C – B) · (B – A) is equal to d(A, B) d(B, C) cos | (ABC| by the definition of angle measurement.(
This may also be a good place to include a proof for the Law of Sines.  The argument we shall give is purely algebraic, and unfortunately as such it is not well motivated.  More geometrical proofs (which also relate the common ratio to other properties of a triangle) appear in the following online sites:
http://www.cut-the-knot.org/proofs/sine_cosine.shtml#law
http://mcraefamily.com/MathHelp/GeometryLawOfSinesProof.htm
[Note:    The arguments cited above use concepts that have not been introduced thus far and might not be discussed in these notes.]
Theorem 8.  (Law of Sines)    Given (ABC, let the lengths of its sides be given by

d(B, C)  =  a,  d(C, A)  =  b,  and   d(A, B)  =  c,
and similarly let the measures of its angles be given by given by

| (CAB |   =  ,  | (ABC |   =  ,  and  | (ACB |  =  .

Then we have the following:
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The only property of the sine function that we shall need is that, for the values of interest to us, sin   is equal to the nonnegative square root of 1 – cos2.  The notation of the theorem is completely illustrated in the diagram below.
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Proof of theorem.     If we can prove the first equation, then the second will follow by interchanging the roles of A and C (and hence also the roles of a and c, as well as the roles of  and ).  Note that all the lengths a, b, c are positive.
The first equation in the Law of Sines is equivalent to b sin     =    a sin  and if we multiply both sides of the latter equation by c we obtain another equivalent form:
cb sin     =    ca sin 

Squaring both sides of the equation above, we see that it is equivalent to c2 b2 sin2     =    c2 a2 sin2 , and using the standard identity relating the sine and cosine functions we get the following equivalent statement:
c2 b2 ( 1  –  cos2 )    =    c2 a2 ( 1  –  cos2 )
The latter may be written in terms of A, B and C as 

|| A – B ||2 || A – C ||2  –  [(B – A) · (C – A)] 2    =
|| A – B ||2 || B – C ||2  –  [(C – B) · (A – B)] 2
and if we make the substitutions x  =  C – B ,  y  =  A – C ,   x + y  =  A – B ,  then we can further rewrite the equation above in the following form:
|| x + y ||2 || y ||2  –  [(x + y) · y] 2    =    || x + y ||2 || x ||2  –  [x · (x + y)] 2
If we expand the left and right hand sides of this equation, we see that the preceding equation is equivalent to the following one:
|| x ||4 + 2(x · y) || x ||2  + || x ||2 || y ||2  –  [ || x ||2 + (x · y) ] 2    =

|| y ||4 + 2(x · y) || y ||2  + || x ||2 || y ||2  –  [ || y ||2 + (x · y) ] 2
If we now simplify both sides, we find that each is equal to || x ||2 || y ||2  –  (x · y)2 , and therefore we know that the equation above (and all the preceding ones) are true.  In particular, this yields b sin     =    a sin  which is equivalent to the Law of Sines.(
Transversals, parallel lines and angle sums of triangles

We shall conclude this section with a return to synthetic methods.  As stated earlier, the goal is to prove the standard result about the sums of the measures of the vertex angles in a triangle.

Definition.  Given two coplanar lines L and M, a third line in the same plane is called a transversal to L and M if it has a point in common with both of them; since the lines are supposed to be distinct, it follows that N has exactly one point in common with each of L and M.
The picture below describes a typical example.
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In elementary geometry one has several notions of angles associated to a pair of lines cut by a transversal.

Definitions.  Let L and M be distinct lines, and let N be a transversal meeting them in the points B and A respectively.  Let C and F be points of M and L respectively which lie on the same side of N, and let D and E be points of L and M respectively which lie on the opposite side of N.
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The pairs of angles { (CAB, (ABD } and { (EAB, (ABF } are said to be pairs of alternate interior angles.   Furthermore, if we have X ( A ( B and  Y ( B ( A , then the  pairs of angles { (YBF, (XAE } and { (XAC, (YBD } are said to be pairs of alternate exterior angles.   Finally, the four pairs of angles { (XAE, (ABD = (XBD } ,  { (XAC, (ABF  = (XBF } , { (YBF, (BAC = (YAC } , and { (YBD, (YAE  = (BAE } are said to be pairs of corresponding angles.   

The next two results characterize Euclidean parallel lines in terms of the measures of their alternate interior angle pairs.  The reasons for stating the two parts separately will become apparent in Unit V of these notes.

Proposition 9.    Suppose we are given the setting and notation above.  If the measures of one pair of alternate interior angles are equal, then the lines L and M are parallel.
Proof.    We first claim that the measures of the other pair of alternate interior angles are also equal.  For if, say, we have | (CAB |  =  | (ABD | , then the Supplement Postulate implies that 

| (ABF |  =  180  –  | (ABD |  =  180  –  | (CAB |  =  | (EAB | .

Suppose now that the lines L and M are not parallel, and let G be the point where they meet.  The point G cannot lie on the line N, for this would imply that G lies on all three lines, and we have already assumed that L and M meet N in different points.  Suppose that G lies on the same side of N as C and F.  Then we have (ABF  =  (ABG and also G ( A ( E  (because E and G lie on opposite sides of N), so that | (EAB |  >  | (ABF |  by the Exterior Angle Theorem applied to (ABG; but this contradicts our assumptions and observations about alternate interior angles, so it follows that G cannot lie on the same side of N as C and F.   Suppose now that there is a common point G on the same side of N as D and E.   Then we have (ABD  =  (ABG and also G ( A ( C  (because C and G lie on opposite sides of N), so that | (CAB |  >  | (ABD |  by the Exterior Angle Theorem applied to (ABG; but this contradicts our assumptions and observations about alternate interior angles, so it follows that G also cannot lie on the same side of N as D and E.  Since N and its two sides combine to form the entire plane containing all the points and lines under consideration, it follows that there is no place in the plane that can contain a common point of L and M, and therefore these lines must be parallel.( 
Proposition 10.    Suppose we are again given the setting and notation above (in particular, let A and B be the points where N meets M and L respectively), but this time assume the lines L and M are parallel.  If C and D are points of M and L respectively which lie on opposite sides of N , then | (CAB |  =  | (ABD |.
Proof.    By the Protractor Postulate we know there is a unique ray [AG such that the corresponding open ray (AG lies on the same side of N as C and | (GAB |  =  | (ABD |.  By the previous proposition it follows that GA || L.  

By our hypotheses we also know that M is a line through A which is parallel to L.  Since there is only one such line by Playfair’s Postulate, it follows that M  =  AG.  But this means that [AG and [AC are identical and hence that | (CAB |  =  | (ABD |.(  
We can summarize the preceding two results by saying that if two lines meet a transversal in separate points, then the lines are parallel if and only if the alternate interior angles are equal.(
Corollary 11.    Suppose in the setting above we have L || M.  Then for each pair of alternate interior angles, alternate exterior angles, and corresponding angles, the angles in the pair have the same angular measure.
Proof.    We have already established the result for the two pairs of alternating interior angles, and we shall consider the other types of pairs according to their types.  

Alternate exterior angles.  Three applications of the Vertical Angle Theorem yield the following chain of equations:    

|(YBF|  =  |(ABD|  =  |(CAB|  =  |(XAE|
Similar considerations also yield the following chain of equations:
|(XAC|  =  |(EAB|  =  |(ABF|  =  |(YBD|
Corresponding angles.  Successive applications of the Vertical Angle Theorem, the second result on alternate interior angles, and the fact that (SUV = (TUV if T (  (US, combine to yield the following chain of equations:

|(XAE|  =  |(CAB|  =  |(ABD|  =  |(XBD|
Similar considerations also yield the following three chains of equations:
|(XAC|  =  |(EAB|  =  |(ABF|  =  |(YBF|
|(YBF|  =  |(ABD|  =  |(BAC|  =  |(XAC|
|(YBD|  =  |(ABF|  =  |(BAE|   =  |(YAE|

These equations cover all the pairs of alternate interior and corresponding angles listed in the definition.(
We are finally ready to state and prove the original objective of this section.

Theorem 12.    Given (ABC, we have | (ABC |   +   | (BCA |   +   | (CAB |   =   180.   
Proof.    We shall follow the standard argument, but we shall also verify crucial facts that are often not justified explicitly at the high school level.
Let L be the unique line through A such that L || BC.  Then L contains points on both sides of AC, so let D (  L lies on same side of AC as B.  By the Crossbar Theorem we know that (CD meets (AB) at some point X.  
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Since A(X(B holds, it follows that X lies on the same side of AD = L as C and also lies on the same side of BC as A.  Also, since AD = L || BC, it follows that B and C also lie on the same side of AD = L.   Since B, C and X lie on the same side of L = AD we must have C(X(D.  It follows that C and D must lie on opposite sides of AB.  Likewise, C(X(D and A(X(B imply that B, X and D must lie on the same side of AC.  Finally, 
since D(A(E holds, we know that E must lie on the opposite side of AC as B, X and D.
By the second proposition on alternate interior angles, we have | (DAB|  =  | (ABC| and | (EAC|  =  | (ACB|.  Now we know that B and D lie on the same side of AC, and since AD = L || BC we also know that B and C lie on the same side of AD.  Therefore B lies in the interior of (DAC, so that we have 

| (DAC|   =   | (DAB| + | (BAC|   =   | (ABC| + | (BAC|.
On the other hand, we also have

| (DAC|   =   180  –  | (EAC|   =   180  –  | (ACB|.
If we combine the two displayed equations we obtain

| (ABC| + | (BAC|   =   | (DAC|   =   180  –  | (ACB|
and if we rearrange terms we obtain the desired formula 

| (ABC| + | (BAC| + | (ACB|    =   180.(
Corollary 13.  (Strengthened Exterior Angle Theorem)   Given (ABC, and let D be a point such that  B(C(D.  Then we have | (ACD |  =  | (ABC |  +  | (BAC | .
Proof.    By the Supplement Postulate we have   | (BCA |   +   | (ACD |   =   180, and hence we have | (ABC |   +   | (BCA |   +   | (CAB |   =   | (BCA |   +   | (ACD |.   If we subtract | (BCA | from both sides, we obtain the desired equation.( 
Corollary 14.    Suppose we have two ordered triples of noncollinear points (A, B, C) and (D, E, F) satisfying | (ABC |  =  | (DEF |  and  | (CAB |  =  | (FDE | .  Then we also have  | (ACB |  =  | (DFE | .
Proof.    By the theorem we have  | (ACB |   =   180 –  | (ABC | –  | (CAB | and likewise  | (DFE |   =   180 –  | (DEF | –  | (FDE | ,  Since we are assuming | (ABC |  =  | (DEF |  and | (CAB |  =  | (FDE | , it follows that | (DFE |   =   180  –  | (ABC | –  | (CAB |   =
180  –  | (DEF |  –  | (FDE |   =   | (ACB | , which is what we wanted to prove.(
Corollary 15.  (AAS triangle congruence)    Suppose we have two ordered triples of noncollinear points (A, B, C) and (D, E, F) satisfying the conditions  d(B, C)  =  d(E, F) ,  | (ABC |  =  | (DEF | , and  | (CAB |  =  | (FDE | .  Then (ABC   (   (DEF.
Proof.    By the preceding corollary we know that | (ACB |  =  | (DFE | .  Therefore we can apply ASA to conclude that (ABC   (   (DEF.(
I I I.3 : Convex polygons
Triangles are the simplest examples of plane figures known as polygons.  One way of defining the latter is to describe them as finite unions of closed segments Sk  =  [AkBk] (where n  (  3 and k  = 1, … , n) satisfying the following three conditions:
1. If k  (   j then the intersection of Sj and Sk is either empty or a common endpoint.

2. If 2  (   k  (   n then Ak  = Bk – 1 , and also Bn  =  Ak.
3. For all k the sets { Ak, Bk  = Ak + 1, Bk + 1 } and { Ak – 1, Bk – 1  = Ak, Bk } are noncollinear, where we take An + 1   to be A 1 and B 0 to be Bn.
The endpoints of the segments are called vertices.
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Three examples with n  =  4, 5, 6 and 7 are illustrated below.  The labels for the vertices are omitted.
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We often describe this configuration as polygon A 1 … An or B 1 … Bn or something similar.   Occasionally it is useful to define Ck  =   Ak and Bk for arbitrary integers k by Ck  =   Cs where  C0  =   Cn and otherwise s is given by the long division equation k  =  qn + s,  where 0  (   s  (   n – 1.   In other words, the sequences Ck are periodic and their periods are equal to n.  If there are n vertices we usually say that the polygon is an n – gon, and for small values of n there are often special names for these objects:
	n
	NAME OF POLYGON

	3
	triangle

	4
	quadrilateral

	5
	pentagon

	6
	hexagon

	7
	heptagon

	8
	octagon

	9
	nonagon

	10
	decagon

	12
	dodecagon

	15
	pentadecagon


In elementary Euclidean geometry, one special type of polygon is particularly important.

Definition.    Let  A 1 … An be an n – gon.   We shall say that  A 1 … An is a convex polygon if the following hold:
1. No three vertices are collinear.
2. For each k  = 1, … , n all of the vertices except  Ak and Ak + 1 lie on the same side of the line  Ak Ak + 1 .

In the picture above, the quadrilateral and hexagon are convex but the others are not.  Here are some additional examples:
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(Source:  http://mathworld.wolfram.com/RegularPolygon.html )
Note that if n  = 3 then the second condition in the definition is vacuously true and hence every triangle is a convex polygon.  However, for all larger values of n there are polygons that are not convex polygons; an example for n  = 4 is depicted below.
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The terminology “convex polygon” is unfortunately at odds with our earlier definition of “convex set,” but the usage is too well established to change.  However, there is an important connection between the two concepts.

Definition(s).  If X, Y and Z are noncollinear points and lie in the plane P, then H(XY,Z) is the half plane of all points in P which lie on the same side of XY as Z.  Given a convex polygon  A 1 … An  its interior, written Int A 1 … An , is the intersection of all half planes H(Ak Ak + 1, Ak + 2), where Ak + m is defined for all integers k + m by the previously stated conventions.  Note that H(Ak Ak + 1, Ak + 2)   =   H(Ak Ak + 1, A j )  for all j such that A j  is not equal to Ak or Ak + 1 .  In the picture below, the interior of A 1A 2A 3A 4 is the shaded region.
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Since each half plane is a convex set and the intersection of convex sets is convex, it follows that Int A 1 … An is also a convex set.   If n  =  3 then this definition of interior reduces to the previous definition for the interior of a triangle.

Convex quadrilaterals

Not surprisingly, convex quadrilaterals are probably the most important class of polygons aside from triangles, and two types receive considerable attention in elementary geometry:

1. Parallelograms of the form ABCD, where AB||CD and AD || BC; in fact if the parallelism conditions hold for the vertices of a polygon ABCD then it is automatically convex because the parallelism properties imply that the points C and D are on the same side of AB, the points A and D are on the same side of BC, the points A and B are on the same side of CD, and the points B and C are on the same side of AD.
2. Trapezoids of the form ABCD, where (say) AB || CD but AD is not parallel to BC.  In these examples the condition for a convex quadrilateral reduces to having B and C on the same side of AD, and A and D on the same side of BC (by parallelism the other two conditions are automatically true).

The following property of convex quadrilaterals is frequently used in elementary geometry without noting the need for a logical proof:
Proposition 1.    Suppose that A, B, C and D form the vertices of a convex quadrilateral.  Then the open diagonal segments (AC) and (BD) have a point in common.
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Proof.    First observe that the lines AC and BD are distinct, for otherwise the four vertices would be collinear.  By definition, C and B lie on the same side of AD and C and D lie on the same side of AB, so that C lies in the interior of (DAB.  Therefore the Crossbar Theorem implies that the open ray (AC has a point X in common with the open segment (BD).   

Similarly, A and D lie on the same side of BC and A and B lie on the same side of CD, so that A lies in the interior of (BCD.  Therefore the Crossbar Theorem implies that the open ray (AC has a point Y in common with the open segment (BD).   

Since the two lines AC and BD have at most one point in common, it follows that X and Y must be identical and this point must lie on both (BD) and (AC) .(
With this result at our disposal, we can derive the basic properties of parallelograms.

Proposition 2.    Suppose that A, B, C and D form the vertices of a parallelogram.  Then we have | (ADC |  =  | (CDA | , d(A, B)  =  d(C, D) ,  d(A, D)  =  d(B, C) , and | (BCD |  =  | (DAB | .
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Proof.    Let X be the point where the diagonal segments (BD) and (AC) meet.  It follows that B and D lie on opposite sides of AC, and similarly A and C lie on opposite sides of BD.  Therefore {(DCA, (CAB} and {(DAC, (ACB} are pairs of alternate interior angles.   By ASA we then have (BAC   (   (DCA.  In particular, this implies | (ADC |  =  | (CDA | , d(A, B)  =  d(C, D) ,  and  d(A, D)  =  d(B, C) .  The other assertion of the theorem, namely | (BCD |  =  | (CAB | , can be proven by cyclically interchanging the roles of the vertices in the proofs; specifically, we let B, C, D, A take the roles of A, B, C, D respectively.(
Corollary 3.  In the setting of the preceding result we have 

| (ADC |   =   | (ABC |   =   180  –  | (DAB |   =  180  –  | (DCB | .
Proof.   Let E be a point such that A(D(E.  Then by the results on corresponding angles and the Supplement Postulate we know that

| (DAB |  =   | (EDC |  =   180  –  | (ADC |
and the remaining conclusions follow from this equation and the results of the preceding theorem.(
Proposition 4.    Suppose that A, B, C and D form the vertices of a convex quadrilateral, and assume further that AB || CD and d(A, B)  =  d(C, D) .  Then the convex quadrilateral ABCD is a parallelogram.
Proof.    Once again, let X be the point where the diagonal segments (BD) and (AC) meet.   It again follows that B and D lie on opposite sides of AC, so that {(DAC, (ACB} is a pair of alternate interior angles.   Since d(A, B)  =  d(C, D) , by SAS we have (BAC   (   (DCA.  Therefore we also have | (DAC |  =  | (ACB| .   Since we already know that B and D lie on opposite sides of AC, it follows that we must have AD || BC.(
Definition.   A rectangle is a convex quadrilateral ABCD such that AB ( BC, BC ( CD, CD ( AD and AB ( AD.  It follows that a rectangle is automatically a parallelogram; furthermore, one can show that the fourth perpendicularity condition is redundant (this is left as an exercise to the reader).  In particular, it follows immediately that the opposite sides of a rectangle have equal lengths.
The following consequence of the preceding sentence is very important geometrically.

Proposition 5.    Let L and M be parallel lines.  Let X be a point on one of these lines, let Y be a point of the other line such that XY is perpendicular to L and M, let Z be another point on one of these lines, and let W be a point of the other line such that ZW is perpendicular to L and M.  Then we have d(X, Y)  =  d(Z, W). 
In everyday language, two parallel lines are everywhere equidistant.   The common value of the numbers d(X, Y), d(Z, W), etc. is frequently called the distance between L and M.
Proof.   Without loss of generality, we may as well assume that X lies on L; the proof in the case X ( M follows by reversing the roles of L and M in the argument which follows.  

Since X ( L we also must have Y ( M.  There are now a few separate cases.  Let us dispose of the case where Z  =  Y first.  In this situation we also have W  =  X and hence the distance equation is a triviality.  

Suppose next that Z lies on L and is not equal to X; we claim that W is also not equal to Y, for if W  =  Y then by uniqueness of perpendiculars to a line at a point we would have that X, Y and Z would be collinear.  This is impossible because the collinearity relationship would mean that the line XZ is perpendicular to M, while the hypothesis implies that L  =  XZ is parallel to M.   Since two lines perpendicular to a third line are parallel, it follows that XY || ZW, and hence X, Y, W and Z form the vertices of a parallelogram (in that order).  Therefore the basic result on parallelograms implies that d(X, Y)  =  d(Z, W).
Suppose now that Z lies on M; by an earlier part of the argument we know the result holds if z  =  y, so suppose now that they are distinct.  We shall apply the reasoning of the previous paragraph systematically.  First of all, if W is the point on L such that ZW is perpendicular to L and M, then this reasoning implies that W is not equal to X.  It follows now that XZ || YW, and hence X, Z, W and Y form the vertices of a parallelogram (in that order).  Therefore the basic result on parallelograms implies that d(X, Y)  =  d(Z, W).(
Of course, there are also other standard definitions of special types of parallelograms:  A rhombus is a parallelogram in which the lengths of all four sides are equal, and one can define a square to be a quadrilateral that is both a rectangle and a rhombus.

We shall only mention one property of trapezoids in these notes; additional facts about them are presented in the exercises.

Proposition 6.  Suppose that A, B, C and D form the vertices of a convex quadrilateral such that AB || CD.  Then   | (DAB |  + | (ADC |   =   180.  
Proof.   The argument is exactly the same as the one presented in the previous corollary.(
Regular polygons.  Perhaps the most important class of convex polygons aside from triangles and quadrilaterals is the class of regular n – gons; for n  =  3 or 4 these are given by equilateral triangles and squares respectively.   However, before we discuss these in general it will be helpful to have some auxiliary results of independent interest. 

Digression on lines and circles
If Q is a point in the plane P and a is a positive real number, then the circle (in the plane P) with center Q and radius a is the set of all points X in P such that d(X, Q)  =  a.  The first observation is extremely basic.

Proposition 7.  Let L be a line containing Q, let P be a plane containing L, and let a be a positive real number.  Then there are exactly two points B and C on L that lie on the circle with center Q and radius a, and the center Q lies between them.
Proof.  We know there are points X and Y on Q such that X(Q(Y, and there are unique points B  (  (QX and C  (  (QY such that d(B, Q)   =   d(C, Q)   =   a.  Since every point on L is either equal to Q or lies on one of the rays (QX or (QY, this proves that the line contains exactly two points on the circle.  Furthermore, since C does not lie in the ray [QX  =  [QB, it follows that C(Q(B must hold.(
Here is a more substantial result.

Theorem 8.    Let  be the circle in the plane P with center Q and radius a, and let A and B be points on  such that A, B and Q are not collinear.   Then the following are equivalent for a point X  (  AB:


(1) X  (  (AB) .

(2) X  (  Int (AQB.
(3) X satisfies d(X, Q)  <  a (in everyday language, X lies inside the circle ).
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In keeping with the third statement in the theorem, we may generally define the interior of the circle  to be the set of all points X in the plane of the circle such that d(X, Q)  <  a, and similarly we may define the exterior of the circle  to be the set of all points X in the plane of the circle such that d(X, Q)  >  a.  Phrases like “inside ” and “outside ” are then defined correspondingly, and likewise for the symbolic forms Int  and Ext 
Proof.   We shall prove that (1) and (2) are logically equivalent (each implies the other) and likewise for (1) and (3).
Verification that (1) implies (2).  If X ( (AB), then A(X(B implies that X and B lie on the same side of QA, and similarly that X and A lie on the same side of QB, so that X  (  Int (AQB.

Verification that (2) implies (1).  If X  (  Int (AQB, then by the Crossbar Theorem there is a point Y which lies on (AB) and (QX.  Since we already know that X lies on the line AB, it follows that Y must be X, and hence A(X(B is true, so that X ( (AB). 

Verification that (1) implies (3).  If X ( (AB), then A(X(B and the Exterior Angle Theorem imply that | (AXQ |  > | (ABQ |;  the Isosceles Triangle Theorem now implies that | (ABQ |  = | (BAQ |  = | (XBQ |.  Since the larger angle in (XQB is opposite the longer side, it follows that  d(X, Q)  <  d(B, Q)  =  a.   

Verification that (3) implies (1).  We shall prove the contrapositive.  Suppose that Y is a point of L that does not lie on (AB).  We claim that d(Y, Q)  (  a.   There are four possibilities; namely, Y could be either A or B, we could have A(B(Y, or we could have Y(A(B.  The first two cases are obvious because then we have d(Y, Q)  =  a.   For the remaining two cases, we claim it suffices to prove the conclusion in the first case, for the other will then follow by interchanging the roles of A and B in the argument.  We can not apply the Exterior Angle Theorem to conclude that | (QBA |  > | (QYB |  = | (QYA |;  the Isosceles Triangle Theorem then implies | (QBA |  = | (QAB |  = | (QAY |.   Since the larger angle in (AQY is opposite the longer side, it follows that d(Y, Q)  <  d(A, Q)  =  a.   This completes the proof that the statements in the theorem are logically equivalent to each other.(
Regular polygons and plane rotations
We shall concentrate on analyzing standard models for regular n – gons; any definition of an arbitrary such object should be formulated so that one can prove that an arbitrary regular n – gon will be congruent to one of the standard models.  Regular polygons are very symmetric objects, and we shall use this fact to simplify and clarify the discussion at numerous points.  In order to do this we shall need to work with basic isometries of R2 known as plane rotations.
The idea of a rotation of a given angle about a given point is intuitively clear and is illustrated by the picture below.



(Source:  http://en.wikipedia.org/wiki/Rotation )

There is a moving model of a plane rotation at the following online site: 
http://mathworld.wolfram.com/Rotation.html
One way of making the idea of a rotation mathematically precise is to use polar coordinates.  Specifically, if a point is given by the polar coordinates ( r, )POLAR, then counterclockwise rotation through an angle of  should take the original point to the rotated one with coordinates given by (r,  )POLAR.   If we translate this into rectangular coordinates, we can obtain an explicit formula for the rectangular coordinates of the rotated point in terms of  the rectangular coordinates of the old one and trigonometric functions of .  Specifically, such a rotation is linear in the rectangular coordinates, and the matrix which represents rotation of a 2 × 1 column vector about the origin by a counterclockwise angle of θ is given as follows:
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To see that this is an orthogonal matrix and hence defines an isometry of R2, it suffices to check that the matrix is invertible (in fact, its determinant is equal to 1) and its inverse is given by its transpose; this is easily checked and left to the reader.

We shall be particularly interested in rotations where θ =  2/n for some integer n > 2.  In this case the matrix B  =  M(2/n)  satisfies Bn = I, but no smaller positive power of B is equal to I.  Furthermore, in these cases we have Bk  =  M(2k/n).  

Let e1 be the usual unit vector (1, 0), and let c be a positive real number.   We want our standard models of regular n – gons to have the form p1 … pn , where for every integer k  = 1, … , n  we have

pk    =    Bk – 1 (d e1).
Alternatively, in coordinates we have pk   =   (dcos 2(k – 1)/n, dsin 2(k – 1)/n).
In order to justify this definition of standard regular n – gons, we need to verify that the constructed points pk are actually the vertices of a convex polygon.  The use of rotations will simplify this proof substantially.  In the course of the proof we shall need the following simple property of affine transformations.

Lemma 9.  Let T be an affine transformation of R2, and let x, y, z be noncollinear points in R2.   Then T maps the side of xy containing z to the side of T(x)T(y) containing T(z).
Proof.    Using barycentric coordinates, express an arbitrary point p as a linear combination ax + by + cz, where a + b + c  =  1.  If p and z lie on the same side of xy, then c is positive.  By the properties of affine transformations derived in Section II.4 we have 

T(p)  =  aT(x) + bT(y) + cT(z)

so that the barycentric coordinate of T(p) with respect to T(z) is also positive, and hence the two points lie on the same side of T(x)T(y) as required.(
Theorem 10.  If p1, … , pn are given as in the construction above, then they form the vertices of a convex polygon (when taken in the given order).
Proof.    We adopt the previous conventions about defining pk for k an arbitrary integer; it follows that pk  =  Bk – 1 (c e1) holds for all such k.   

CLAIM:  By the preceding lemma and the defining identities for the points pk it will suffice to prove that the points  p j  for  j  =  3, … , n all lie on the same side of p1p2.  To see this, it is enough to note that the line pk pk + 1 is the image of p1p2 under  Bk – 1  and likewise the side of pk pk + 1 containing pk + 2 is the image under  Bk – 1 of the side of p1p2 containing p3.  
By construction, all the points pk lie on the circle  centered at the origin 0 with radius equal to d, so we need to show that all of the points p j  for  j  =  3, … , n lie on the same side of p1p2.  Our first observation is that 0 does not lie on the line p1p2, for if it did then 0, p1 and p2 would be collinear, and since p1  =  d e1 this would yield the false conclusion that  p2  =  – d e1.  Thus it is meaningful to talk about the side of p1p2 which contains 0; we shall prove the theorem by showing that the points p j for  j  =  3, … , n all lie on the same side of p1p2 as 0.  Actually, we shall prove the less direct statement that none of these points can lie on opposite side of p1p2 as 0.  

Suppose that z is a point of  which lies on this opposite side.   Then there is a point x which lies on (0z) and p1p2.   It follows that d(0, x)  <  d(0, z)  =  d.  By the previous result on lines and circles, this means that z and x lie in the interior of (p20p1.  Therefore we also have | (z0p1 |  <  | (p20p1 |; furthermore, since z and p2 lie on the same side of  0p1, which is just the x – axis, and the first coordinate of p2 is positive, it follows that the same holds for z.   Combining these observations, we see that z has the form ( dcos dcos ), where 0  <   <  2/n.   None of the points p j for  j  =  3, … , n can be written in this manner, so it follows that they cannot lie on the opposite side of the line p1p2 as 0 and hence they must all lie on the same side as 0.  This completes the proof that the specified points (in the given order) are the vertices of a convex polygon.(
If p1 … pn is a standard regular polygon as above, then by its rotational symmetry we know that  | (p1 p2 p3 |   =   | ( pk pk + 1 pk + 2|  for all k.  We shall conclude this section by evaluating this angle measurement.  

Proposition 11.  Given p1 … pn as above, the angle measurements | ( pk pk + 1 pk + 2| are all equal to
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Proof.    As noted above, by rotational symmetry it suffices to show this when k = 1.  
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To conform with the picture above, we shall denote the vertices by A1, … , An and the origin by Q .  By construction we know that  d(A1, Q)  =  d(A2, Q)  =  d(A3, Q)  =  d.  Also, we have | (A1QA2 |  =  | (A2QA3 |  =  360 / n.   Applying the Isosceles Triangle Theorem and the result on the sum of vertex angle measurements for a triangle, we have

| (QA1A2 |  =  | (QA2A1 |  =  | (QA2A3 |  =  | (QA3A2 |  =  ½( 180 – (360/n) ).
In the course or proving that regular polygons are convex, we showed that Q lies on the same side of A1A2 as A3 and also lies on the same side of A2A3 as A1.  Thus Q lies in the interior of (A1A2A3 , so by the Additivity Postulate for angle measures we have 

| (A1A2A3 |    =   | (QA2A1 |  +  | (QA2A3 |    =   2 × ½( 180 – (360/n) ).
It is a straightforward algebraic exercise to rewrite the expression on the right hand side in the form displayed in the proposition.(
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