
SOLUTIONS TO EXERCISES FOR

MATHEMATICS 205A — Part 1

Fall 2008

I . Foundational material

I.1 : Basic set theory

Problems from Munkres, § 9, p. 64

2(a)–(c). Find if possible a choice function for each of the collections V as given in the
problem, where V is a nonempty family of nonempty subsets of the integers or the rational numbers.

SOLUTION.

For each of the first three parts, choose a 1–1 correspondence between the integers or the
rationals and the positive integers, and consider the well-orderings that the latter inherit from
these maps. For each nonempty subset, define the choice function to be the first element of that
subset with respect to the given ordering.

TECHNICAL FOOTNOTE.

(This uses material from a graduate level measure theory course.) In Part (d) of the pre-
ceding problem, one cannot find a choice function without assuming something like the Axiom of
Choice. The following explanation goes beyond the content of this course but is hopefully illumi-
nating. The first step involves the results from Section I.3 which show that the set of all functions
from {0, 1} to the nonnegative integers is in 1–1 correspondence with the real numbers. If one could
construct a choice function over all nonempty subsets of the real numbers, then among other things
one can prove that that there is a subset of the reals which is not Lebesgue measurable without
using the Axiom of Choice (see any graduate level book on Lebesgue integration; for example,
Section 3.4 of Royden). On the other hand, there are models for set theory in which every subset
of the real numbers is Lebesgue measurable (see R. Solovay, A model of set theory in which every

set of reals is Lebesgue measurable, Annals of Math. (2) 92 (1970), pp. 1–56). — It follows that
one cannot expect to have a choice function for arbitrary families of nonempty subsets of the reals
unless one makes some extra assumption related to the Axiom of Choice.

5. (a) Use the Axiom of Choice to show that if f : A → B is surjective, then f has a right
inverse h : B → A.

SOLUTION.

For each b ∈ B pick h(b) ∈ A such that f(a) = b; we can find these elements by applying the
Axiom of Choice to the family of subsets f−1[{b}] because surjectivity implies each of these subsets
is nonempty. It follows immediately that b = f(h(b) ).

(b) Show that if f : A→ B is injective and A is nonempty then f has a left inverse. Is the Axiom
of Choice needed?
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SOLUTION.

For each x ∈ A define a function gx : B → A whose graph consists of all points of the form

(
f(a), a

)
∈ B ×A

togther with all points of the form (b, x) if b does not lie in the image of A. The injectivity of f
implies that this subset is the graph of some function gx, and by construction we have gx

of(a) = a
for all a ∈ A. This does NOT require the Axiom of Choice; for each x ∈ A we have constructed an
EXPLICIT left inverse to f . — On the other hand, if we had simply said that one should pick some
element of A for each element of B−f [A], then we WOULD have been using the Axiom of Choice.

Additional exercise

1. Let X be a set and let A, B ⊂ X. The symmetric difference A ⊕ B is defined by the
formula

A⊕B = (A−B) ∪ (B −A)

so that A ⊕ B consists of all objects in A or B but not both. Prove that ⊕ is commutative and
associative on the set of all subsets of X, that A⊕∅ = A for all A, that A⊕A = ∅ for all A, and that
one has the following distributivity relation for A, B, C ⊂ X:

A ∩ (B ⊕ C) = (A ∩B) ⊕ (A ∩ C)

SOLUTION.

The commutativity law for ⊕ holds because

B ⊕A = (B −A) ∪ (A−B)

by definition and the commutativity of the set-theoretic union operation. The identity A⊕A = ∅
follows because

A⊕A = (A−A) ∪ (A−A) = ∅

and A⊕ ∅ = A because

A⊕ ∅ = (A− ∅) ∪ (∅ −A) = A ∪ ∅ = A .

In order to handle the remaining associative and distributive identities it is necessary to write
things out explicitly, using the fact that every Boolean expression involving a finite list of subsets
can be written as a union of intersections of subsets from the list. It will be useful to introduce
some algebraic notation in order to make the necessary manipulations more transparent. Let
X ⊃ A ∪ B ∪ C denote the complement of Y ⊂ X by Ŷ (or by Y ̂ if Y is some compound
algebraic expression), and write P ∩ Q simply as PQ. Then the symmetric difference can be

rewritten in the form (AB̂) ∪ (BÂ). It then follows that

(A⊕B)⊕ C =
(
AB̂ ∪BÂ

)
Ĉ ∪ C

(
AB̂ ∪BÂ

)
̂=

AB̂Ĉ ∪BÂĈ ∪ C
(
(Â ∪B)(B̂ ∪A)

)
= AB̂Ĉ ∪BÂĈ ∪ C

(
ÂB̂ ∪AB

)
=
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AB̂Ĉ ∪ ÂBĈ ∪ ÂB̂C ∪ABC .

Similarly, we have

A⊕ (B ⊕C) = A
(
BĈ ∪ CB̂

)
̂∪

(
BĈ ∪ CB̂

)
Â =

A
(
(B̂ ∪ C)(Ĉ ∪B)

)
∪BĈÂ ∪ CB̂Â = A(B̂Ĉ ∪BC) ∪BĈÂ ∪CB̂Â =

AB̂Ĉ ∪ ÂBĈ ∪ ÂB̂C ∪ABC .

This proves the associativity of ⊕ because both expressions are equal to the last expression displayed
above. The proof for distributivity is similar but shorter (the left side of the desired equation has
only one ⊕ rather than two, and we only need to deal with monomials of degree 2 rather than 3):

A (B ⊕ C) = A(BĈ ∪ CB̂) = ABĈ ∪AB̂C

AB ⊕AC = (AB)(AC )̂ ∪ (AC)(AB)̂ =

(
AB(Â ∪ Ĉ)

)
∪

(
AC(Â ∪ B̂)

)
= ABĈ ∪AB̂C

Thus we have shown that both of the terms in the distributive law are equal to the same set.

I.2 : Products, relations and functions

Problem from Munkres, § 6, p. 44

4(a). This is outlined in the course notes.

Additional exercises

1. Let X and Y be sets, suppose that A and C are subsets of X, and suppose that B and D
are subsets of Y . Verify the following identities:

(i) A× (B ∩D) = (A×B) ∩ (A×D)

SOLUTION.

Suppose that (x, y) lies in the left hand side. Then x ∈ A and y ∈ B ∩ D. Since the latter
means y ∈ B and y ∈ D, this means that

(x, y) ∈ (A×B) ∩ (A×D) .

Now suppose that (x, y) lies in the set displayed on the previous line. Since (x, y) ∈ A×B we have
x ∈ A and y ∈ B, and similarly since (x, y) ∈ A×D we have x ∈ A and y ∈ D. Therefore we have
x ∈ A and y ∈ B ∩D, so that (x, y) ∈ A × (B ∩D). Thus every member of the the first set is a
member of the second set and vice versa, and therefore the two sets are equal.

(ii) A× (B ∪D) = (A×B) ∪ (A×D)
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SOLUTION.

Suppose that (x, y) lies in the left hand side. Then x ∈ A and y ∈ B ∪ D. If y ∈ B then
(x, y) ∈ A×B, and if y ∈ D then (x, y) ∈ A×D; in either case we have

(x, y) ∈ (A×B) ∪ (A×D) .

Now suppose that (x, y) lies in the set displayed on the previous line. If (x, y) ∈ A×B then x ∈ A
and y ∈ B, while if (x, y) ∈ A × D then x ∈ A and y ∈ D. In either case we have x ∈ A and
y ∈ B ∪D, so that (x, y) ∈ A × (B ∩D). Thus every member of the the first set is a member of
the second set and vice versa, and therefore the two sets are equal.

(iii) A× (Y −D) = (A× Y )− (A×D)

SOLUTION.

Suppose that (x, y) lies in the left hand side. Then x ∈ A and y ∈ Y −D. Since y ∈ Y we
have (x, y) ∈ A× Y , and since y 6∈ D we have (x, y) 6∈ A×D. Therefore we have

A× (Y −D) ⊂ (A× Y )− (A×D) .

Suppose now that (x, y) ∈ (A× Y )−(A×D). These imply that x ∈ A and y ∈ Y but (x, y) 6∈ A×D;
since x ∈ A the latter can only be true if y 6∈ D. Therefore we have that x ∈ A and y ∈ Y −D, so
that

A× (Y −D) ⊃ (A× Y )− (A×D) .

This proves that the two sets are equal.

(iv) (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D)

SOLUTION.

Suppose that (x, y) lies in the left hand side. Then we have x ∈ A and y ∈ B, and we also
have x ∈ C and y ∈ D. The first and third of these imply x ∈ A ∩ C, while the second and fourth
imply y ∈ B ∩D. Therefore (x, y) ∈ (A ∩ C)× (B ∩D) so that

(A×B) ∩ (C ×D) ⊂ (A ∩ C)× (B ∩D) .

Suppose now that (x, y) lies in the set on the right hand side of the displayed equation. Then
x ∈ A∩C and y ∈ B ∩D. Since x ∈ A and y ∈ B we have (x, y) ∈ A×B, and likewise since x ∈ C
and y ∈ D we have (x, y) ∈ C ×D, so that

(A×B) ∩ (C ×D) ⊃ (A ∩ C)× (B ∩D) .

Therefore the two sets under consideration are equal.

(v) (A×B) ∪ (C ×D) ⊂ (A ∪ C)× (B ∪D)

SOLUTION.

Suppose that (x, y) lies in the left hand side. Then either we have x ∈ A and y ∈ B, or else we
have x ∈ C and y ∈ D. The first and third of these imply x ∈ A ∪ C, while the second and fourth
imply y ∈ B ∪D. Therefore (x, y) is a member of (A ∪ C)× (B ∪D) so that

(A×B) ∪ (C ×D) ⊂ (A ∪ C)× (B ∪D) .
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Supplementary note: To see that the sets are not necessarily equal, consider what happens if
A∩C = B ∩D = ∅ but all of the four sets A, B, C, D are nonempty. Try drawing a picture in the
plane to visualize this.

(vi) (X × Y )− (A×B) = (X × (Y −B) ) ∪ ( (X −A)× Y )

SOLUTION.

Suppose that (x, y) lies in the left hand side. Then x ∈ X and y ∈ Y but (x, y) 6∈ A×B. The
latter means that the statement

x ∈ A and y ∈ B

is false, which is logically equivalent to the statement

either x 6∈ A or y 6∈ B .

If x 6∈ A, then it follows that (x, y) ∈
(
(X − A) × Y

)
, while if y 6∈ B then it follows that

(x, y) ∈
(
X × (Y −B)

)
. Therefore we have

(
X × Y

)
−

(
A×B

)
⊂

(
X × (Y −B)

)
∪

(
(X −A)× Y

)
.

Suppose now that (x, y) lies in the set on the right hand side of the containment relation on the
displayed line. Then we have (x, y) ∈ X × Y and also

either x 6∈ A or y 6∈ B .

The latter is logically equivalent to

x ∈ A and y ∈ B

and this in turn means that (x, y) 6∈ A×B and hence proves the reverse inclusion of sets.

I.3 : Cardinal numbers

Problem from Munkres, § 7, p. 51

4. (a) A real number is said to be algebraic if it satisfies some polynomial equation of positive
degree with rational (equivalently, integer) coefficients. Prove that the set of all algebraic numbers is
countable; you may use the fact that a polynomial of degree n has at most n distinct roots.

SOLUTION.

Let Q[t] denote the ring of polynomials with rational coefficients, and for each integer d > 0
let Q[t]d denote the set of polynomials with degree equal to d. There is a natural identification of
Q[t]d with the subset of Qd+1 consisting of n-tuples whose last coordinate is nonzero, and therefore
Q[t]d is countable. Since a countable union of countable sets is countable (Munkres, Theorem 7.5,
pp. 48–49), it follows that Q[t] is also countable.

Given an algebraic number α, there is a unique monic rational polynomial p(t) of least (pos-
itive) degree such that p(α) = 0 (the existence of a polynomial of least degree follows from the
well-ordering of the positive integers, and one can find a monic polynomial using division by a
positive constant; uniqueness follows because if p1 and p2 both satisfy the condition then p1 − p2

is either zero or a polynomial of lower degree which has α as a root). Let pα be the polynomial
associated to α in this fashion. Then p may be viewed as a function from the set A of algebraic
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numbers into Q[t]; if f is an arbitrary element of degree d ≥ 0, then we know that there are at
most d elements of A that can map to p (and if f = 0 the inverse image of {f} is empty). Letting
Af be the inverse image of f , we see that A = ∪f Af , so that the left hand side is a countable
union of finite sets and therefore is countable.

(b) A real number is said to be transcendental if it is not algebraic. Prove that the set of
transcendental numbers is uncountable. [As Munkres notes, it is surprisingly hard to determine whether
a given number is transcendental.]

SOLUTION.

Since every real number is either algebraic or transcendental but not both, we clearly have

2ℵ0 = |R| = |algebraic|+ |transcendental| .

We know that the algebraic numbers are countable, so if the transcendental numbers are also count-
able the right hand side of this equation reduces to ℵ0 + ℵ0, which is equal to ℵ0, a contradiction.
Therefore the set of transcendental numbers is uncountable (in fact, its cardinality is 2ℵ0 but the
problem did not ask for us to go any further).

Problem from Munkres, § 9, p. 62

5. (a) Use the Axiom of Choice to show that if f : A → B is surjective then it has a right
inverse.

SOLUTION.

For each b ∈ B let Lb ⊂ A be the inverse image f−1({b}). Using the axiom of choice we
can find a function g that assigns to each set Lb a point g∗(Lb) ∈ Lb. Define g(b) = g∗(Lb); by
construction we have that g(b) ∈ f−1({b}) so that f(g(b)) = b. This means that f og = idB and
that g is a right inverse to f .

(b) Show that if A 6= ∅ and f : A → B is injective, then f has a left inverse. Is the Axiom of
Choice needed here?

SOLUTION.

Given an element z ∈ A define a map gz : B → A as follows: If b = f(a) for some a let
gz(b) = a. This definition is unambiguous because there is at most one a ∈ A such that f(a) = b.
If b does not lie in the image of f , set gz(b) = z. By definition we then have gz(f(a)) = a for all
a ∈ A, so that gz

of = idA and gz is a left inverse to f . Did this use the Axiom of Choice? No.
What we actually showed was that for each point of A there is an associated left inverse. However,
if we had simply said, “pick some point z0 ∈ A and define g using z0,” then we would have used
the Axiom of Choice.

Problem from Munkres, § 11, p. 72

8. As noted in Munkres and the course notes, one standard application of Zorn’s Lemma is to
show that every vector space has a basis. A possibly infinite set A of vectors in the vector space V is
said to be linearly independent if each finite subset is in the sense of elementary linear algebra, and such
a set is a basis if every vector in V is a finite linear combination of vectors in A.

(a) If A is linearly independent and β ∈ V does not belong to the subspace of linear combinations
of elements of A, prove that A ∪ {β} is linearly independent.
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SOLUTION.

Note first that β 6∈ A for otherwise it would be a linear combination of elements in A for trivial
reasons.

Suppose the set in question is not linearly independent; then some finite subset C is not linearly
independent, and we may as well add β to that subset. It follows that there is a relation

xββ +
∑

γ∈A∩C

xγγ = 0

where not all of the coefficients xβ or xγ are equal to zero. In fact, we must have xβ 6= 0 for
otherwise there would be some nontrivial linear dependence relationship in A ∩ C, contradicting
our original assumption on A. However, if xβ 6= 0 then we can solve for β to express it as a linear
combination of the vectors in A ∩ C, and this contradicts our assumption on β. Therefore the set
in question must be linearly independent.

(b) Show that the collection of all linearly independent subsets of V has a maximal element.

SOLUTION.

Let X be the partially ordered set of linearly independent subsets of V , with inclusion as
the partial ordering. In order to apply Zorn’s Lemma we need to know that an arbitrary linearly
ordered subset L ⊂ X has an upper bound in in X. Suppose that L consists of the subsets At; it
will suffice to show that the union A = ∪t At is linearly independent, for then A will be the desired
upper bound.

We need to show that if C is a finite subset of A then C is linearly independent. Since each
At is linearly independent, it suffices to show that there is some r such that C ⊂ Ar, and we do
this by induction on |C|. If |C| = 1 this is clear because α ∈ A implies α ∈ At for some t. Suppose
we know the result when |C| = k, and let D ⊂ A satisfy |D| = k + 1. Write D = D0 ∪ γ where
γ 6∈ D0. Then there is some u such that D0 ⊂ Au and some v such that γ ∈ Av. Since L is linearly
ordered we know that either Au ⊂ Av or vice versa; in either case we know that D is contained
in one of the sets Au or Av . This completes the inductive step, which in turn implies that A is
linearly independent and we can apply Zorn’s Lemma.

(c) Show that V has a basis.

SOLUTION.

Let A be a maximal element of X whose existence was guaranteed by the preceding step in
this exercise. We claim that every vector in V is a linear combination of vectors in A. If this were
not the case and β was a vector that could not be expressed in this fashion, then by the first step
of the exercise the set A ∪ {β} would be linearly independent, contradicting the maximality of A.

Additional exercises

1. Show that the set of countable subsets of R has the same cardinality as R.

SOLUTION.

Let X be the set in question, and let Y ⊂ X be the subset of all one point subsets. Since there
is a 1–1 correspondence between R and Y it follows that 2ℵ0 = |R| = |Y | ≤ |X|. Now write X as
a union of subfamilies Xn where 0 ≤ n ≤ ∞ such that the cardinality of every set in Xn is n if
n <∞ and the cardinality of every set in X∞ is ℵ0.
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Suppose now that n < ∞. Then Xn is in 1–1 correspondence with the set of all points
(x1, · · · , xn) in Rn such that x1 < · · · < xn (we are simply putting the points of the subset
in order). Therefore |X0| = 1 and |Xn| ≤ 2ℵ0 for 1 ≤ n < ∞, and it follows that ∪n<∞ Xn has
cardinality at most

ℵ0 · 2
ℵ0 ≤ 2ℵ0 · 2ℵ0 = 2ℵ0 .

So what can we say about the cardinality of X∞? Let S be the set of all infinite sequences in R

indexed by the positive integers. For each choice of a 1–1 correspondence between an element of
X∞ and N+ we obtain an element of S, and if we choose one correspondence for each element we

obtain a 1–1 map from X∞ into S. By definition |S| is equal to
(
2ℵ0

)ℵ0

, which in turn is equal to
2ℵ0×ℵ0 = 2ℵ0 ; therefore we have |X∞| ≤ 2ℵ0 . Putting everything together we have

|X| = | ∪n<∞ Xn|+ |X∞| ≤ 2ℵ0 + 2ℵ0 = 2ℵ0

and since we have already established the reverse inequality it follows that |X| = 2ℵ0 as claimed.

IMPORTANT FOOTNOTE.

The preceding exercise relies on the generalization of the law of exponents for cardinal numbers

γαβ =
(
γα

)β

that was stated at the end of Section I.3 of the course notes without proof. For the sake of
completeness we shall include a proof.

Choose sets A, B, C so that |A| = β, |B| = α (note the switch!!) and |C| = γ, and let F(S, T )
be the set of all (set-theoretic) functions from one set S to another set T . Wiht this terminology
the proof of the cardinal number equation reduces to finding a 1–1 correspondence

F(A×B,C)←→ F
(
A, F(B,C)

)
.

In other words, we need to construct a 1–1 correspondence between functions A × B → C and
functions A→ F(B,C). In the language of category theory this is an example of an adjoint functor

relationship.
Given f : A × B → C, construct f ∗ : A → F(B,C) by defining f ∗(a) : B → C using the

formula
[f∗(a)] (b) = f(a, b) .

This construction is onto, for if we are given h∗ : A → F(B,C) and we define f : A × B → C by
the formula

f(a, b) = [h(a)] (b)

then f∗ = h by construction; in detail, one needs to check that f ∗(a) = h(a) for all a ∈ A, which
amounts to checking that [f ∗(a)](b) = [h(a)](b) for all a and b — but both sides of this equation
are equal to f(a, b). To see that the construction is 1–1, note that f ∗ = g∗ ⇐⇒ f∗(a) = g ∗( a)
for all a, which is equivalent to [f ∗(a)](b) = [g∗(a)](b) for all a and b, which in turn is equivalent to
f(a, b) = g(a, b) for all a and b, which is equivalent to f = g. Therefore the construction sending f
to f∗ is 1–1 onto as required.

For the record, the other exponential law

(
β · γ

)α
= βα · γα
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may be verified by first noting that it reduces to finding a 1–1 correspondence between F(A,B×C)
and

F(A,B)× F(A,C) .

This simply reflects the fact that a function f : A→ B×C is completely determined by the ordered
pair of functions pB

of and pC
of where pB and pC are the coordinate projections from B × C to

B and C respectively.

2. Let α and β be cardinal numbers such that α < β, and let X be a set such that |X| = β.
Prove that there is a subset A of X such that |A| = α.

SOLUTION.

The inequality means that there is a 1–1 mapping j from some set A0 with cardinality α
to a set B with cardinality β. Since the cardinality of X equals β it follows that there is a 1–1
correspondence f : B → X. If we take A = j(f(A))), then A ⊂ X and |A| = α.

I.4 : The real number system

Problem from Munkres, § 6, p. 44

9(c). If x and y are real numbers such that x − y > 1, show that there is an integer n such
that y < n < x.

SOLUTION.

We shall use the Archimedean Property of the real numbers: If a and b are positive real

numbers, then there is some positive ingeter N such that N a > b.

To prove this, it will suffice to consider the case where a ≤ b for if a > b we can obviously take
N = 1. If a = b then we can take N = 2, so henceforth we assume that a < b. By property (3) in
the notes, there is a positive integer n such that

1

n
<

a

b

and if we clear this of fractions we obtain b < n · a.

Next, we reduce the verification of the exercise conclusion to the case where y ≥ 0. If y < 0 ≤ x,
then we can take n = 0. Suppose now that we have y < x < 0. Let x′ = −y and y′ = −x, so that
0 < x′ < y′ and

x′ − y′ = x− y > 1 .

By the cases we assume as known, it follows that there is an integer n′ such that y′ < n′ < x′, and
if n = −n′ then we have x < n < y.

Finally, we shall prove the result when 0 < y < x. By property (2) in the notes there is
a rational number r such that y < r < x. Write r = p/q, where p and q are both positivei;
replacing p and q by Mp and Mq for some suitably large positive integer M , we can assume that
the denominator of r satisfies 1/q < y. By the Archimedean Property there are integers a0 and
b0 such that a0/q > y and b0/q > x. Since the set of positive integers is well-ordered, there are
positive integers a and b1 such that a is the first positive integer such that a/q > y and b1 is the
first positive integer such that b1/q ≤ x. Since 1/q < y < y + 1 < x it follows that a ≥ 2 and
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b1 > q + 1 (the latter holds since x > y + 1 > (1/q) + 1 = (q + 1)/q ). It follows that a− 1 > 0 and
b = b1 − 1 > q satisfy

a− 1

q
≤ y and

b

q
< x .

Furthermore, if k is an arbitrary positive integer such that k/q < x, then we must have k ≤ b. If
we apply these to the chain of inequalities

a− 1

q
+ 1 +

a + q − 1

q
≤ y + 1 < x

we see that a + q − 1 ≤ b. Equivalently, this means that b− a ≥ q − 1.
Using the standard long division properties for integers, write a = sq+a′ and b = tq+b′ where

a and t are nonnegative integers and 0 ≤ a′, b′ < q. The final inequality of the preceding paragraph
implies that either t > s or else t = s, a′ = 0 and b′ = q − 1. If the second possibility holds, then
we have

y <
a

q
= s < x

so assume henceforth that s < t, so that (s + 1) ≤ t. We then have

y <
a

q
=

sq + a′

q
< s + 1 ≤ t ≤

tq + b′

q
=

b

q
< x

so that either t or s + 1 (or an arbitrary integer between them, if such objects exists) will satisfy
y < n < x.

Additional exercise

1. Suppose that : R→ R is a set-theoretic function such that f(x + y) = f(x) + f(y) for all
x, y ∈ R; some obvious examples of this type are the functions f(x) = c · x for some fixed real number
c. Does it follow that every such function f has this form? [Hint: Why is R a vector space over Q?
Recall that every vector space over a field has a (possibly infinite) basis by Zorn’s Lemma.]

SOLUTION.

The answer is emphatically NO, and there are many counterexamples. Let {xα } be a basis
for R as a vector space over Q. If f : R→ R is a Q-linear map, then f satisfies the condition in the
problem. Thus it is only necessary to find examples of such maps that are not multiplication by a
constant. Since R is uncountable, a basis for it over the rationals contains infinitely many elements.
Pick one element x0 in the basis, and consider the unique Q-linear transformation f which sends
x0 to itself and all other basis vectors to zero. Then f is nonzero but is neither 1–1 nor onto. In
contrast, a mapping of the form Tc(x) = c · x for some fixed real number c is 1–1 and onto if c 6= 0
and zero if c = 0. Therefore there is no c such that f = Tc.

Generalization. In fact, the cardinality of the set of all mappings f with the given properties is
2c, where as usual c = 2ℵ0 (the same as the cardinality of all maps from R to itself). To see this,
first note that the statement in parentheses follows because the cardinality of the set of all such
mappings is

cc =
(
2ℵ0

)c
= 2ℵ0·c = 2c .

To prove the converse, we first claim that a basis for R over Q must contain c elements. Note
that the definition of vector space basis implies that R is in 1–1 correspondence with the set of
finitely supported functions from B to Q, where B is a basis for R over Q and finite support means
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that the coordinate functions are nonzero for all but finitely many basis elements. Thus if β is the
cardinality of B, then the means that the cardinality of R is β (the details of checking this are left
to the reader). For each subset A of B we may define a Q-linear map from R to itself which sends
elements of B to themselves and elements of the difference set B − A to zero. Different subsets
determine different mappings, so this shows that the set of all f satisfying the given condition has
cardinality at least 2c. Since the first part of the proof shows that the cardinality is at most 2c,
this completes the argument.

Remark. By the results of Unit II, if one also assumes that the function f is continuous,
then the answer becomes YES. One can use the material from Unit II to prove this quickly as
follows: If r = f(1), then Q-linearity implies that f(a) = r · a for all a ∈ Q. By the results of
Section II.4, if f and g are two continuous functions such that f(a) = g(a) for all rational numbers
a, then f = g. Taking g to be multiplication by r, we conclude that f must also be multiplication
by c.

2. Let (X,≤) be a well-ordered set, and let A ⊂ X be a nonempty subset which has an upper
bound in X. Prove that A has a least upper bound in X. [Hint: If A has an upper bound, set of
upper bounds for A has a least element β.]

SOLUTION.

Follow the hint. If A has an upper bound and β is given as in the hint, then by construction
β is an upper bound for A, and it is the least such upper bound.

II . Metric and topological spaces

II.1 : Metrics and topologies

Problem from Munkres, § 13, p. 83

3. Given a set X, show that the family Tc of all subsets A such that X − A is countable or
X −A = X defines a topology on X. Determine whether the family T∞ of all A such that X −A is
infinite or empty or X forms a topology on X.

SOLUTION.

X lies in the family because X − X = ∅ and the latter is finite, while ∅ lies in the family
because X−∅ = X. Suppose Uα lies in the family for all α ∈ A. To determine whether their union
lies in the family we need to consider the complement of that union, which is

X −
⋃

α

Uα =
⋂

α

X − Uα .

Each of the sets in the intersection on the right hand side is either countable or all of X. If at least
one of the sets is countable then the whole intersection is countable, and the only other alternative
is if each set is all of X, in which case the intersection is X. In either case the complement satisfies
the condition needed for the union to belong to Tc. Suppose now that we have two sets U1 and U2

in the family. To decide whether their intersection lies in the family we must again consider the
complement of U1 ∩ U2, which is

(X − U1) ∪ (X − U2) .
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If one of the two complements in the union is equal to X, then the union itself is equal to X, while
if neither is equal to X then both are countable and hence their union is countable. In either case
the complement of U1 ∩ U2 satisfies one of the conditions under which U1 ∩ U2 belongs to Tc.

What about the other family? Certainly ∅ and X belong to it. What about unions? Suppose
that X is an infinite set and that U and V lie in this family. Write E = X −U and F = X −V ; by
assumption each of these subsets is either infinite or empty. Is the same true for their intersection?
Of course not! Take X to be the positive integers, let E be all the even numbers and let F be all
the prime numbers. Then E and F are infinite but the only number they have in common is 2. —
Therefore the family T∞ is not necessarily closed under unions and hence it does not necessarily
define a topology for X.

Additional exercises

1. In the integers Z let p be a fixed prime. For each integer a > 0 let Ua(n) = {n +
kpa, some k ∈ Z}. Prove that the sets Ua(n) form a basis for some topology on Z. [Hint: Let νp(n)
denote the largest nonnegative integer k such that pk divides n and show that

dp(a, b) =
1

pνp(a−b)

defines a metric on Z].

SOLUTION.

In the definition of dp we tacitly assume that a 6= b and set dp(a, a) = 0 for all a. The
nonnegativity of the function and its vanishing if and only if both variables are equal follow from
the construction, as does the symmetry property dp(a, b) = dp(b, a). The Triangle Inequality takes
more insight. There is a special class of metric spaces known as ultrametric spaces, for which

d(x, y) ≤ max
{
d(x, z),d(y, z)

}

for all x, y, z ∈ X; the Triangle Inequality is an immediate consequence of this ultrametric inequal-
ity.

To establish this for the metric dp, we may as well assume that x 6= y because if x = y the
ultrametric inequality is trivial (the left side is zero and the right is nonnegative). Likewise, we
may as well assume that all three of x, y, z are distinct, for otherwise the ultrametric inequality
is again a triviality. But suppose that dp(x, y) = p−r for some nonnegative integer r. This means
that x − y = prq where q is not divisible by p. If the ultrametric inequality is false, then p−r is
greater than either of either dp(x, z) and d(y, z), which in turn implies that both x− z and y − z
are divisible by pr+1. But these two conditions imply that x− y is also divisible by pr+1, which is
a contradiction. Therefore the ultrametric inequality holds for dp.

One curious property of this metric is that it takes only a highly restricted set of values; namely
0 and all fractions of the form p−r where r is a nonnegative integer.

2. Let A ⊂ X be closed and let U ⊂ A be open in A. Let V be any open subset of X with
U ⊂ V . Prove that U ∪ (V −A) is open in X.

SOLUTION.

Since U is open in A there is an open subset W in X such that U = W ∩A, and since U ⊂ V
we even have U = V ∩ U = V ∩W ∩A. But V ∩W is contained in the union of U = V ∩W ∩ A
and V −A, and thus we have

U ∪ (V −A) ⊂ (V ∩W ) ∪ (V −A) ⊂ (U ∪ (V −A) ) ∪ (V −A) ⊂ U ∪ (V −A)
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so that U ∪ (V −A) = (V ∩W ) ∪ (V −A). Since A is closed the set V −A is open, and therefore
the set on the right hand side of the preceding equation is also open; of course, this means that the
set on the left hand side of the equation is open as well.

3. Let E be a subset of the topological space X. Prove that every open subset A ⊂ E is also
open in X if and only if E itself is open in X.

SOLUTION.

( =⇒ ) If A = E then E is open in itself, and therefore the first condition implies that E is
open in X. ( ⇐= ) If E is any subset of X and A is open in E then A = U ∩ E where U is
open in X. But we also know that E is open in X, and therefore A = U ∩E is also open in X.
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