
SOLUTIONS TO EXERCISES FOR

MATHEMATICS 133 — Part 3

Fall 2006

NOTE ON ILLUSTRATIONS. Drawings for several of the solutions in this file are available
in the file (s)

http://math.ucr.edu/∼res/math133/math133solutions3figures.∗

where the extension ∗ is one of doc, ps, or pdf.

II . Linear algebra and Euclidean geometry

II.1 : Measurement axioms

1. First of all, f is 1–1. Define kX so that X = A + kX(B − A). Then f(X) = f(Y )
implies kXd(A,B) = kY d(A,B), and since d(A,B) is positive this means kX = kY . Also, if r is
an arbitrary real number and k = r/d(A,B), then it follows that f maps X = A + k(B − A) to r.
Therefore f is onto. Finally, to verify the statement on distances, note that the distance from X
to Y is equal to

|X − Y | =
∣

∣

∣
[A + kX(B − A)] − [A + kY (B − A)]

∣

∣

∣
=

∣

∣

∣
[kX(B − A)] − [kY (B − A)]

∣

∣

∣
=

∣

∣ (kX − kY )(B − A)
∣

∣ = | (kX − kY ) | · | (B − A) | = | (kX − kY ) | · d(A,B) =

| (kXd(A,B) − kY )d(A,B) | = | f(X) − f(Y ) |

which is the identity to be shown.

2. Follow the hint, and let h = g of−1. By construction, h is a 1–1 onto map from the real
numbers to themselves such that |u− v| = |h(u) − h(v)| for all u and v. If k(t) = h(t) − h(0), then
elementary algebra shows that we also have |u − v| = |k(u) − k(v)| but also k(0) = 0. Therefore
we have |k(t)| = |k(t) − k(0)| = |t − 0| = |t| for all t. In particular, this means that for each t we
have k(t) = εt · t, where εt = ±1. We claim that εt is the same for all t 6= 0; for t = 0 the value of
ε does not matter. But suppose that we had k(u) = u and k(v) = −v, where u, v 6= 0. Then we
could not have |u − v| = |k(u) − k(v)|; If u and v have the same sign, then the right hand side is
greater than the left, and if they have opposite signs, then the right hand side is less than the left
(why?). Therefore k(t) = ε · t where ε = ±1, and hence also h(t) = k(t) + h(0) = ±t + h(0), which
is the form required in the exercise.

3. Write things out using barycentric coordinates. We have X − A = (2,−6), while
B − A = (−5,−9) and C − A = (4,−9). Thus we need to solve

(2,−6) = y(−5,−9) + z(4,−9) = (−5y + 4z,−9y − 9z)

and if we do so we obtain z = 12

81
and y = 6

81
; using x + y + z = 1 we also obtain x = 7

9
. Thus all

three barycentric coordinates are positive and the point lie in the interior.
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To work the second part, we have X − A = (10, k − 10), and we need to consider the system

(10, k − 10) = y(−5,−9) + z(4,−9) = (−5y + 4z,−9y − 9z)

and determine those values of k for which z > 0 and x = 1− y − z > 0. Solving for the barycentric
coordinates, we find

z =
150 − 5k

81
, y =

50 − 4k

81
, x =

9k − 109

81
.

The point will lie in the interior if and only if x and z are positive, which is the same as saying
that the numerators 150 − 5k and 9k − 109 should both be positive. This happens if and only if
12 1

9
< k < 30.

4. In this case we need to work the first part of the problem when X is either (30, 200) or
(75, 135), so that X −A is either (23, 190) or (68, 125). The barycentric coordinate z in both cases
are negative and thererore neither point lies in the interior of the angle.

5. We now have X − A = (−1, 0), while B − A = (3,−6) and C − A = (−1, 20). Thus we
need to solve

(−1, 0) = y(3,−6) + z(−1,−20) = (3y − z,−6y − 20z)

and if we do so we obtain z = − 1

9
so that the point cannot lie in the interior of the angle.

To work the second part, we have X − A = (21, k − 8), and we need to consider the system

(21, k − 8) = (3y − z,−6y − 20z)

and determine those values of k for which z > 0 and x = 1− y − z > 0. Solving for the barycentric
coordinates, we find

z =
3k + 118

54
, y =

k + 412

54
, x =

50k − 476

54
.

The point will lie in the interior if and only if x and z are positive, which is the same as saying that
the numerators for x and z should both be positive. The inequality 50k − 476 > 0 implies k > 0
and hence we see that z is positive whenever x is positive, so that the condition for the point to lie
in the interior of the angle is simply k > 238/25.

6. The original file had a misprint; the open segment should be (AC). Suppose that
X ∈ (AC), so that A ∗ X ∗ C is true. By theorems on plane separation, this implies that A and X
lie on the same side of BC, and C and X lie on the same side of AB. But these are the two criteria
for a point to lie in the interior of 6 ABC, and therefore we know that X lies in the interior of this
angle.

7. It looks as if the open ray (DE meets the triangle in exactly one point. See the
illustration in the file of figures.

8. The segment (AC) should be corrected to (AX). With this correction, proceed as
follows: If Y lies on (AX), then A ∗ Y ∗ X is true, so that X and Y lie on the same sides of AB
and AC. However, B ∗ X ∗ C implies that X and B lie on the same side of AC and X and C lie
on the same side of AB. Therefore we also know that Y and B lie on the same side of AC and Y
and C lie on the same side of AB. All that remains is to show that Y and A lie on the same side
of BC. But this follows because A ∗ Y ∗ X and X ∈ BC.
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9. By the Protractor Postulat there is a point E on the side of BC opposite A such that
| 6 EBC| = | 6 ABC|, and by a consequence of the Ruler Postulate there is a point D ∈ (AE such
that d(D,B) = d(A,B). By construction the distance equation holds, and the angle measurement
equation holds because [AD = [AE. Finally D is on the side of BC opposite A because D ∈ (BE,
while E and A lie on opposite sides and all points of (BE lie on a single side of BC.

10. The interior of the triangle is contained in the interior of 6 BAC, so by the Crossbar
Theorem we know that (AD meets (BC) in some point E. It will suffice to show that we have the
order relationship A∗D∗E (take A = X and E = Y ). But this follows because A and D are on the
same side of BC, which implies either A ∗D ∗E or D ∗A ∗E. The second of these is incompatible
with the known condition E ∈ (AD, so therefore the first must be true and we have shown what
we needed.

II.4 : Synthetic axioms of order and separation

1. Follow the hint. By SSS we have ∆BDC ∼= ∆BDE, so that | 6 EDB| = | 6 CDB|. Since
D lies on the segment (CE) it is in the interior of 6 EBA = 6 ABC, and therefore by additivity we
have

| 6 ABC| = | 6 EDB| + | 6 CDB| = 2 · | 6 DBC| = 2 · | 6 DBA| .

This shows that the ray (BD bisects 6 ABC and proves existence.

To prove uniqueness, suppose that (BG is an arbitrary bisector ray. Since (BG lies in the
interior of 6 BAC, it follows that it lies on the same side of AB as C. By hypothesis its measure is
1

2
| 6 ABC|, which is the same as | 6 ABD|. Therefore the uniqueness part of the Protractor Postulate

implies that [BG = [BD.

2. Take a 3–4–5 right triangle with a right angle at B and d(A,B) = 3. Then ∆ABC ∼=
∆BCA is false because 3 = d(A,B) 6= 4 = d(B,C).

3. By the Isosceles Triangle Theorem and the identities 6 DAB = 6 CAB and 6 EBA =
6 CBA we have

| 6 DAB| = | 6 CAB| = | 6 CBA| = | 6 EBA|

and the midpoint conditions together with the isosceles triangle assumption imply d(A,D) =
1

2
d(A,C) = 1

2
d(A,C) = d(B,E). Since d(A,B) = d(B,A), by SAS we have ∆DAB ∼= ∆EBA,

4. An affine transformation T has the property

T
(

sa + (1 − s)b
)

= sT (a) + (1 − s)T (b

so a point c is between two points a and b of K if and only if its image T (c) is between the
two image points T (a) and (b). Therefore c is between two points of K if and only if its image
is between two points of the image of K under the affine transformation. Therefore, if c is not
between two points of K, then its image cannot be between two points in the image of K.

5. (a) This is just a simple partial derivative calculation involving polynomials.

(b) We have T1(x) = A1x+b1 and T2(x) = A2x+b2 where A1 and A2 are invertible matrices
and b1 and b2 are vectors. The composite T1

oT2 sends x to A1A2x + A1b2 + b1. Therefore A1A2

gives the matrix part of T1
oT2.
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(c) D(T ) is the identity if and only if for each i the partial derivatives of the ith coordinate
function is equal to the partial derivative of the standard function xi. But the latter holds if and
only if the ith coordinate function has the form xi + bi for some constant bi, and this is precisely
the condition for T to be a translation.

(d) This can be done directly, but we shall do it using the ideas described above. We have

D
(

S−1 oT oS
)

= D(S−1)D(T )D(S)

and te relation S−1 oS = identity implies D(S−1)D(S) = I, so that D(S−1) = D(S)−1. If we now
assume T above is a translation, this gives us

D
(

S−1 oT oS
)

= D(S−1)D(T )D(S) = D(S−1) I D(S) = I

which shows that S−1TS must be a translation.

6. Follow the hints. By construction every DS(t) is equal to the diagonal matrix whose
entries in order are 1 and −1. The product of this matrix with itself is the identity, and therefore
D applied to S(a)S(b) is the identity. By the preceding exercise, S(a)S(b) must be a translation.
We can find the translation vector fairly directly by evaluating at (0, 0), and if we do so we fine
that the twofold composite sends (0, 0) to (0, 2a − 2b).

Applying this to the threefold composite, we obtain

S(a)S(b)S(c)(x1 , x2) = S(a)(x1, x2 + 2b − 2c) = (x1, 2a + 2c − 2b − x2)

which means that the threefold composite is S(d) where d = a + c − b.

7. The most direct way to do this is to prove that there are nonzero vectors a and b such
that A sends a to itself, A sends b to −b, and the vectors a and b are perpendicular. We can then
get the desired orthonormal vectors by letting u and v be a and b multiplied by the reciprocals of
their repsective lengths.

We can find nonzero vectors a and b as above if and only if the equations (A + I)x = 0 and
if and only if the equations (A − I)x = 0 have nontrivial solutions, which is the same as showing
that the determinants of A ± I are equal to zero. Direct computation shows that

0 = det(A − kI) = k2 − cos2 θ − sin2 θ = k2 − 1

and hence the determinant is zero if k = ±1. This yields the vectors a and b.

It is possible to solve directly for these vectors and show they are perpendicular by direct
computation, but we shall give a conceptual proof which does not require finding the vectors
explicitly. Since A is orthogonal we have

〈u, v〉 = 〈Au, Av〉 = 〈u, −v〉 = −〈u, v〉 .

The right hand side is the negative of the left hand side, and this can only happen if both sides are
zero. Therefore the two vectors we want are perpendicular to each other.

8. Follow the hint. To show that A − I is invertible, compute its determinant; this turns
out to be 1 + 2 cos θ, which is zero if and only if θ is an integral multiple of 2π. We have excluded
these choices for θ, and hence the matrix will always be invertible in our situation.

Applying this to the question in the exercise, we need to show there is a unique z such that
T (z) = Az + b, or equivalently there is a unique solution to the equation (A − I)z = −b. Since
A− I is invertible, there is indeed a unique solution to this equation, and this suffices to prove the
exercise.
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