SOLUTIONS TO EXERCISES FOR
 MATHEMATICS 133 - Part 5

Fall 2007

NOTE ON ILLUSTRATIONS. Drawings for several of the solutions in this file are available in the following files:

```
http://math.ucr.edu/~res/math133/math133solutions4figures.pdf
http://math.ucr.edu/~res/math133/math133solutions5figures.pdf
```


III. Basic Euclidean concepts and theorems

III. 2 : Basic theorems on triangles

(Solutions not posted previously)
6. Since the angle sum of a triangle is 180 degrees, by the Isosceles Triangle Theorem and $\angle B A C=\angle D A E$ we have

$$
|\angle A B C|=\frac{1}{2}(180-|\angle B A C|)=\frac{1}{2}(180-|\angle D A E|)=|\angle A D E| .
$$

Therefore the Corresponding Angles criterion implies that $B C \| D E$. .
9. If Y is an arbitrary point on L then $d(B, Y)=d(C, Y)$ because L is the perpendicular bisector of $[B C]$. It follows that $d(A, Y)+d(Y, B)=d(A, Y)+d(Y, C)$. The right hand side is minimized when Y is between A and C, and this happens precisely when Y is the point X where $A C$ meets L; note that this point is between A and C because A and C lie on opposite sides of L. There is only one point $X \in L$ with these properties, so we know that $d(A, Y)+d(Y, B)=$ $d(A, Y)+d(Y, C)>d(A, C)$ for all other points Y on the line $L . \quad$
10. The points X, Y, Z are not collinear because a line cannot intersect all three open sides of a triangle. Also, the betweenness hypotheses imply

$$
\begin{aligned}
& d(A, B)=d(A, X)+d(X, B), \\
& d(B, C)=d(B, Y)+d(Y, C), \text { and } \\
& d(A, C)=d(A, Z)+d(Z, C) .
\end{aligned}
$$

Finally, the strong form of the Triangle Inequality (for noncollinear triples) implies that
$d(X, Y)<d(B, X)+d(B, Y)$,
$d(Y, Z)<d(C, Y)+d(C, Z)$, and
$d(X, Z)<d(A, X)+d(A, Z)$.
If we add these we obtain

$$
d(X, Y)+d(Y, Z)+d(X, Z)<d(B, X)+d(B, Y)+d(C, Y)+d(C, Z)+d(A, X)+d(A, Z)
$$

and using the betweennes identities we see that the right hand side is equal to $d(A, B)+d(B, C)+$ $d(A<C)$; thus we have shown the inequality stated in the exercise.
12. Let E be the midpoint of $[A B]$. Then by the final result in Section I. 4 we know that $D-E=\frac{1}{2}(C-B)$. Since $E \in(A B)$ and $A D \neq A B$ we know that A, D, E are noncollinear, and thus by the Triangle Inequality for noncollinear points we have

$$
d(A, D)<d(D, E)+d(A, E)=\frac{1}{2}(d(A, C)+d(A, B))
$$

which is the inequality stated in the exercise.
13. Apply the theorem on angle sums of a triangle to the four triangles described in the hint to obtain the following equations:

$$
\begin{aligned}
|\angle C A B|+|\angle A B C|+|\angle B C A| & =180 \\
|\angle X A B|+|\angle A B X|+|\angle B X A| & =180 \\
|\angle C A X|+|\angle A X C|+|\angle X C A| & =180 \\
|\angle C X B|+|\angle X B C|+|\angle B C X| & =180
\end{aligned}
$$

Adding the last three equations, we obtain

$$
\begin{gathered}
|\angle X A B|+|\angle A B X|+|\angle B X A|+|\angle C A X|+|\angle A X C|+ \\
|\angle X C A|+|\angle C X B|+|\angle X B C|+|\angle B C X|=540 .
\end{gathered}
$$

Since X lies in the interior of $\triangle A B C$ it lies in the interiors of all the angles $|\angle C A B|,|\angle A B C|$, $|\angle B C A|$ and therefore we have

$$
\begin{aligned}
|\angle C A B| & =|\angle C A X|+|\angle X A B| \\
|\angle A B C| & =|\angle A B X|+|\angle X B C| \\
|\angle B C A| & =|\angle B C X|+|\angle X C A|
\end{aligned}
$$

If we substitute this into the previous equation we obtain

$$
|\angle C A B|+|\angle A B C|+|\angle B C A|+|\angle A X B|+|\angle A X C|+|\angle X B C|=540
$$

and if we now use $|\angle C A B|+|\angle A B C|+|\angle B C A|=180$ and subtract 180 from both sides we obtain

$$
|\angle A X B|+|\angle A X C|+|\angle X B C|=360
$$

which is the equation stated in the exercise.
14. Let $x=d(A, B)=d(D, E)$. Then by the Pythagorean Theorem we have $d(E, F)=$ $\sqrt{x^{2}-d(D, F)^{2}}$ and $d(B, C)=\sqrt{x^{2}-d(A, C)^{2}}$. If $d(E, F)<d(B, C)$, then the formulas in the preceding sentence imply $d(A, C)<d(D, F)$.
15. By Exercise 12, we know that $d(A, C)<d(E, C)<d(B, C)$; since the larger angle is opposite the longer side, it follows that $|\angle C E A|<|\angle C A E|$. On the other hand, the Exterior Angle Theorem implies that $|\angle C E B|>|\angle C A E|$, so that $|\angle C E B|>|\angle C E A|$. Since we also have
$|\angle C E B|+|\angle C E A|=180$, it follows that $|\angle C E B|>90>|\angle C E A|$. Therefore $\angle C E A$ is an ACUTE angle..
16. Suppose we are given numbers $a \leq b \leq c$; then these numbers are consistent with the strong Triangle Inequality if and only if $c<a+b$. So if this fails, then there is no triangle whose sides have the given lengths. In Section III. 6 we show that, conversely, if the conditions in the first sentence hold, then one can realize the numbers as lengths of the sides of some triangle.
(a) Since $1+2=3$, these numbers do not satisfy the strong Triangle Inequality and hence cannot be the lengths of the sides of a triangle.
(b) Since $4<5<6$ and $4+5=0>6$, these numbers are consistent with the Triangle Inequality.
(c) Since $1 \leq 15=15$ and $1+15>15$, it follows that these numbers are consistent with the Triangle Inequality.
(d) Since $1+5<8$, these numbers do not satisfy the strong Triangle Inequality and hence cannot be the lengths of the sides of a triangle.
17. The strong Triangle Inequality implies that if there is a number x such that $10,15, x$ are the lengths of the sides of a triangle, then $x+10>15$ and $x<10+15$. There is also the inequality $x+15>10$, but it is weaker than the first one. Therefore the conditions on x are that $5<x<25$.
18. We know that $(n+1)^{2}=n^{2}+(2 n+1)$, so if we can write $(2 n+1)=m^{2}$, it follows that $n^{2}+m^{2}=(n+1)^{2}$. Thus there is a right triangle whose sides have lengths n, m and $n+1$ by the Pythagorean Theorem.

Since there are infinitely many odd positive integers who are perfect squares, it follows that there are infinitely many choices of n and m such that the preceding holds.

To find all $n<100$ which satisfy this condition, it is necessary to find all $n<100$ such that $2 n+1$ is a perfect square. In other words, we need to find all odd positive integers $m \geq 3$ such that $m^{2}<200$, and this is the set of all odd positive integers ≤ 13. We can retrieve n because it is equal to $\frac{1}{2}\left(m^{2}-1\right)$. The first few cases are then given as follows:

$$
\begin{aligned}
& 3^{2}+4^{2}=5^{2} \\
& 5^{2}+12^{2}=13^{2} \\
& 7^{2}+24^{2}=25^{2} \\
& 9^{2}+40^{2}=41^{2} \\
& 11^{2}+60^{2}=61^{2} \\
& 13^{2}+84^{2}=85^{2}
\end{aligned}
$$

Of course, this could be continued indefinitely.■
19. Apply the Law of Cosines to each triangle. Let $y=d(A, C)=d(A, D)$ and $z=d(A, B)$. Then we have

$$
\begin{aligned}
& d(B, C)^{2}=y^{2}+z^{2}-2 y z \cos |\angle C A B| \\
& d(B, D)^{2}=y^{2}+z^{2}-2 y z \cos |\angle D A B|
\end{aligned}
$$

It follows that $d(B, C)<d(B, D)$ if and only if $\cos |\angle D A B|>\cos |\angle C A B|$, and since the cosine function is strictly increasing between 0 and 180 , the latter holds if and only if $|\angle D A B|>|\angle C A B|$, Therefore we have $d(B, C)<d(B, D)$ if and only if $|\angle D A B|>|\angle C A B|$, which is the conclusion of the Hinge Theorem.

III. 3 : Convex polygons

1. We shall use the theorem stating that the line joining the midpoints of two sides of a triangle is parallel to the third side (see Section I.4). Applying this to $\Delta A B D$ and $\Delta C B D$, we conclude that $P S \| B D$ and $Q R \| B D$. Therefore it follows that either $P S \| Q R$ or else $P S=Q R$. Suppose that the latter is true; we know that $P S$ and A lie on the same side of $B D$, while $Q R$ and C lie on the same side of $B D$. Thus $P S=Q R$ implies that A and C lie on the same side of $B D$. However, this is impossible because we know that A and C lie on opposite sides of $B D$ (the diagonal segments of a convex quadrilateral have a point in common). Therefore we have $P S \| Q R$.

A similar argument holds for $P Q$ and $R S$. Both of these lines are parallel to $A C$ by applying the triangle theorem to $\triangle A B C$ and $\triangle A D C$, showing that $P Q \| A C$ and $R S \| A C$. We can now argue as in the previous paragraph that $P Q \neq R S$, so that the lines $P Q$ and $R S$ are parallel. It follows that P, Q, R, S form the vertices of a parallelogram.
2. By the preceding result we know that P, Q, R, S form the vertices of a parallelogram, and it follows that $(P R)$ and $(Q S)$ meet at their common midpoint.
3. Following the hint, we shall use vector methods. The parallelogram condition implies that $C=B+D-A$ (see the exercises for Unit I), and the midpoint conditions imply that $E=\frac{1}{2}(A+B)$ and $F=\frac{1}{2}(C+D)$. To show that E, B, F, D form the vertices of a parallelogram, it will suffice to show that $F=B+D-E$.

If we substitute the expression $C=B+D-A$ in the midpoint equation for F, we find that $F=D+\frac{1}{2}(B-A)$, and if we substitute the expression for E in terms of A and B into $B+D-E$, we find that the latter is also equal to $D+\frac{1}{2}(B-A)$. Combining these equations, we find that $F=B+D-E$ as desired, so that the four points in the given order form the vertices of a parallelogram.
4. First of all, we know that C lies in the interior of $\angle D A B$. Next, by the Isosceles Triangle Theorem we know that $|\angle D A C|=|\angle D C A|$. Now $A B \| C D$ and the Alternate Interior Angle Theorem imply that $|\angle D C A|=|\angle C A B|$, and thus we have $|\angle D A C|=|\angle C A B|$, which means that $[A C$ bisects $\angle D A B$.■
5. We know that $\angle A D E=\angle A D B$ and $\angle C B F=\angle C B D$. Since $A D \| B C$, the Alternate Interior Angle Theorem implies that $|\angle A D E|=|\angle C B F|$. Since A, B, C, D form the vertices of a parallelogram, it follows that $d(A, D)=d(B, C)$; combining these observations with the assumption that $d(B, F)=d(D, E)$, we conclude that $\triangle A D E \cong \triangle C B F$. Therefore we have that $|\angle A E D|=$ $|\angle C F B|$, and by the Supplement Postulate for angle measurement we then also have

$$
|\angle A E F|=180-|\angle A E D|=180-|\angle C F B|=|\angle C F D|
$$

Now A and C lie on opposite sides of $E F=B D$, and if we combine this with the displayed equation and the Alternate Interior Angle Theorem we conclude that $A E$ must be parallel to $C F$.
6. Before proving this result, for the sake of completeness we include a verification that the diagonals $(A C)$ and $(B D)$ of a parallelogram $A B C D$ meet in their common midpoint, which we shall call E. The fastest say to do this is algebraically, using the fact that $C=B+D-A$ and then checking directly that $\frac{1}{2}(A+C)=\frac{1}{2}(B+D)$.

Suppose now that we have a parallelogram $A B C D$ which is a rhombus. Then $d(A, B)=$ $d(C, B)$ and $d(A, D)=d(C, D)$ imply that $B D$ is the perpendicular bisector of $[A C]$ and hence $A C \perp B D$.

Conversely, suppose that $A C \perp B D$. Since E is the midpoint of both $[A C]$ and $[B D]$, it follows that $A C$ is the perpendicular bisector of $[B D]$ and $B D$ is the perpendicular bisector of $[A C]$. The first conclusion implies that $d(B, A)=d(D, A)$, and since we have $d(A, B)=d(C, D)$ and $d(B, C)=d(A, D)$ for every parallelogram it follows that all four sides of $A B C D$ have the same length.
7. Since $\triangle E A B$ is an equilateral triangle, we have $|\angle E A B|=|\angle E B A|=|\angle A E B|=60$. The point E is assumed to lie in the interior of the square, so we then have

$$
\begin{aligned}
& 90=|\angle D A B|=|\angle E A B|+|\angle E A D|=60+|\angle E A D| \\
& 90=|\angle C B A|=|\angle E B A|+|\angle E B C|=60+|\angle E B C|
\end{aligned}
$$

and therefore we have $|\angle E A D|=|\angle E B C|=30$. Since the sides of a square have equal length, it follows that $\triangle E A D \cong \triangle E B C$ by SAS. This means that $|\angle A E B|=|\angle C E B|$ and $d(D, E)=$ $d(C, E)$. The latter in turn implies $\angle E D C|=|\angle E C D|$.

In order to compute the measures of the angles in the preceding sentence, we need one more property of the figure. Since $\triangle A B E$ is equilateral and $A B C D$ is a square, it follows that $d(A, D)=$ $d(A, B)=d(A, E)$ and $d(B, C)=d(A, B)=d(B, E)$, so that $\triangle A E D$ and $\triangle B E C$ are isosceles and hence $|\angle A E D|=-\angle \mathrm{ADE}-$ and $-\angle \mathrm{BEC}-=|\angle B C E|$.

To simplify the algebra, let $x=|\angle E D C|$ and $y=|\angle E D A|$. The preceding observations then imply that $x+y=90$ and $30+2 y=180$. If we solve these equations for x and y we obtain $y=75$ and $x=15$, and therefore it follows that $|\angle E D C|=|\angle E C D|=15 . ■$
8. By the assumption in the exercise we know that $(A C)$ and $(B D)$ meet at some point E. Since we have $A * E * C$ and $B * E * D$, it follows from the theorems on order and separation that
C and D lie on the same side of $A B$,
A and B lie on the same side of $C D$,
B and C lie on the same side of $A D$, and
A and D lie on the same side of $B C$.
Therefore the four points A, B, C and D (taken in the alphabetical ordering) form the vertices of a convex quadrilateral.
9. Follow the hint and use the conclusion of the preceding exercise. If the four points form the vertices of a convex quadrilateral (taken in the alphabetical ordering), then ($A C$) and (BD) have a point E in common by the proposition in the notes. The point E then lies in the interior of $\angle A B C$, and since we have $B * E * D$ it follows that the open ray $(B E=(B D$ also lies in the interior of $\angle A B C$. Furthermore, since $B * E * D$ holds and $E \in A C$, it follows that B and D lie on opposite sides of $A C$.

Conversely, suppose now that D lies in the interior of $\angle A B C$ and D and B lie on opposite sides of $A C$. The first of these implies that the open ray ($B D$ meets $(A C)$ in some point E, and the second implies that $(B D)$ meets $A C$ in some point F. Since both E and F lie on the intersection of the (distinct!) lines $A C$ and $B D$ and these lines have at most one point in common, it follows that $E=F$. Finally, since $E \in(A C)$ and $F \in(B D)$, it follows that $(A C)$ and $(B D)$ have a point in common, which must be $E-F$.
10. By the preceding exercise the points form the vertices of a convex quadrilateral (taken in the alphabetical ordering) if and only if D lies in the interior of $\angle A B C$ and B and D lie on opposite sides of $A C$. The first of these implies x and z are positive, and the second implies that y is negative.

Conversely, suppose we have the conditions on the barycentric coordinates in the preceding sentence. Since y is negative, it follows that B and D lie on opposite sides of $A C$, and since the other two barycentric coordinates are positive it follows that D lies in the interior of $\angle A B C$. -
11. The assumptions are equivalent to saying that $C-D$ is a nonzero multiple of $B-A$, so write $C-D=k(B-A)$, where $k \neq 0$. We then have

$$
D=k A-k B+C
$$

and since the coefficients on the right hand side add up to 1 they give the barycentric coordinates of D with respect to A, B and C. By the preceding exercise, we know that the four points form the vertices of a convex quadrilateral (taken in the alphabetical ordering) if and only if k is positive.
12. By the preceding exercise we know that $C-D=k(B-A)$, where $k>0$. As before we have $D=k A-k B+C$, and the conditions $y=d(A, B)$ and $x=d(C, D)$ also imply $x=k y$. The midpoints G and H of $[A D]$ and $[B C]$ are then given by $H=\frac{1}{2}(B+C)$ and $G=\frac{(1+k)}{2} A-\frac{k}{2} B+\frac{1}{2} C$. It follows that

$$
H-G=\frac{(1+k)}{2}(B-A)
$$

so that $G H$ is parallel to $A B$ and $C D$, and furthermore we have

$$
d(G, H)=\frac{(1+k)}{2} \cdot d(A, B)=\frac{(1+k)}{2} \cdot y=\frac{(y+k y)}{2}=\frac{(x+y)}{2}
$$

as stated in the exercise.
To prove the remaining parts of the exercises, it suffices to show that the midpoints of [$A C$] and $[B D]$ lie on the line $G H$. Let S and T denote these respective midpoints. Then we know that $G S$ is parallel to $A B$ since it joins the midpoints of two sides of $\triangle A B D$, and by Playfair's Postulate it follows that $G S$ must be the same as $G H$, which is also a line through G which is parallel to $A B$. Similarly, the lines $H G$ and $H T$ are parallel to $A B$, and therefore $G H=H G=H T$. Thus we have shown that both S and T lie on $G H$. Note that $S \neq T$ unless the quadrilateral is a parallelogram (a standard result in plane geometry states that if the diagonals bisect each other, then the quadrilateral is a parallelogram)..
13. First of all, we have $A * E * B$ because $E \in(A B$ and $d(A, E)=x<y=d(A, B)$. Choose $k>0$ so that $C-D=k(B-A)$ and hence $x=k y$. If $m>0$ is chosen such that $E-A=m(B-A)$, then we have

$$
m \cdot d(A, B)=d(A, E)=d(C, D)=k \cdot d(A, B
$$

so that $m=k$. Therefore we also have $E-A=k(B-A)=C-D$. Since A, C, D are noncollinear, this means that A, E, C, D (in that order) form the vertices of a parallelogram. In particular, we know that $A D$ is parallel to $C E$.
14. By the preceding exercise we know that A, E, C, D (in that order) form the vertices of a parallelogram. Since consecutive angles of a parallelogram are supplementary, it follows that $|\angle D A B|+|\angle A E C|=180$. However, by the preceding exercise we also know that $A * E * C$ and thus by the Supplement Postulate we also know that $|\angle A E C|+|\angle C E B|=180$. Combining these, we see that $|\angle D A B|=|\angle C E B|$ in all cases. Furthermore, since the opposite sides of a parallelogram have equal length, we also know that $d(A, D)=d(E, C)$. We shall use this fact repeatedly in proving the equivalence of the three conditions in the exercise.

Proof that $(1) \Longrightarrow(2)$. In this case we are given $d(A, D)=d(B, C)$. By the discussion above we have $d(B, C)=d(A, D)=d(E, C)$. Therefore the Isosceles Triangle Theorem implies
that $|\angle C E B|=|\angle C B E|$, and since $\angle C B E=\angle C B A$ it follows that $|\angle C E B|=|\angle C B A|$. On the other hand, by the general discussion we have $|\angle D A B|=|\angle C E B|$, and therefore it follows that $|\angle D A B|=|\angle C B A|$ as required.■

Proof that $(2) \Longrightarrow(3)$. Since consecutive angles in a parallelogram are supplementary, it follows that $|\angle A D C|=180-|\angle D A B|$. Since $|\angle D A B|=|\angle C B A|$, it will suffice to show that $|\angle B C D|=180-|\angle C B A|$. There are several ways to do this, but the fastest might be to switches the roles of A and C with those of B and D in the preceding discussion; this can be done because the hypothesis does not change if one switches symbols in this fashion. - An alternative approach (which we shall only sketch) is to check that E lies in the interior of $\angle B C D$ and that $|\angle E C D|=$ $|\angle D A B|$ (opposite angles of a parallelogram have equal measure), so that $|\angle B C D|=|\angle E C D|+$ $|\angle E C B|=|\angle E C D|+|\angle D A B|=|\angle E C D|+|\angle C E B|$. Since $|\angle E C D|+|\angle C E B|+|\angle A B C|=180$ it follows that $|\angle B C D|=180-|\angle C B A|$ as required.

Proof that $(3) \Longrightarrow(1)$. One way of doing this is to show that $(3) \Longrightarrow(2)$ and $(2) \Longrightarrow(1)$. Each of these can be done by reversing the steps in the preceding parts of the exercise.
15. Let X and Y be the midpoints of $[A B]$ and $[C D]$ respectively. By construction we then have $d(A, X)=d(X, B)$ and $d(C, Y)-d(Y, C)$

By the preceding exercise we know that $d(A, D)=d(B, C)$ and also that $|\angle D A X|=|\angle C B X|$ as well as $|\angle A D Y|=|\angle B C Y|$. It follows that $\triangle D A X \cong \triangle C B X$ and $\triangle A D Y \cong \triangle B C Y$. These congruences imply $d(X, D)=d(X, C)$ and $d(Y, A)=d(Y, B)$. The first of these implies that $X Y$ is the perpendicular bisector of $[C D]$, and the second implies that $X Y$ is the perpendicular bisector of $[A B]$. Therefore the line $X Y$ is perpendicular to both $A B$ and $C D$.■
16. We need to find s and t such that $0<s, t<1$ and $s C+(1-s) A=t D+(1-t) B$. If we substitute the coordinate expressions for the four points A, B, C, D we obtain the following equations for the coordinates:

$$
\begin{aligned}
\frac{1}{2} s y+(1-s)\left(-\frac{1}{2} x\right) & =-\frac{1}{2} t y+(1-t)\left(\frac{1}{2} x\right) \\
s h & =t h
\end{aligned}
$$

The second equation implies $s=t$, and if we substitute this into the first equation we obtain

$$
\frac{1}{2} s y+(1-s)\left(-\frac{1}{2} x\right)=-\frac{1}{2} s y+(1-s)\left(\frac{1}{2} x\right)
$$

which means that the right hand side is the negative of the left hand side and hence both are equal to zero. Therefore the equations imply $s y=(1-s) x$ and $k=s h$.

We can solve this for s to obtain $s=x /(x+y)$, and if we substitute this and $k=s h$ into $k /(h-k)$, it follows that the latter is equal to $x / y . \square$
17. (a) Following the hint, one first notes that

$$
d(A, B)=d(B, C)=d(C, D)=d(D, A)=\sqrt{p^{2}+q^{2}}
$$

and then one notes that $A-B=(p,-q)=D-C$. Therefore one has

$$
A B=A+\mathbf{R} \cdot(p,-q), \quad C D=C+\mathbf{R} \cdot(p,-q)
$$

so that the lines $A B$ and $C D$ are either parallel or identical. The latter is impossible because it would imply that A, B, C would be collinear. Since the defining equation for $A B$ is $f(x, y)=q x+$
$p y-p q=0$ and $f(C)=q(-p)+p \cdot 0-p q=-2 p q<0$, we know that A, B, C cannot be collinear, and hence $A B \| C D$.

If we interchange the roles of B and D in the preceding argument, we obtain the analogous conclusion that $A D \| B C$. Combining these with the observations in the first paragraph, we conclude that A, B, C, D form the vertices of a parallelogram, and (by the first sentence of that paragraph) this parallelogram is a rhombus.
(b) As suggested in the hint, let T be the orthogonal linear transformation on \mathbf{R}^{2} defined by $T(x, y)=(x,-y)$; geometrically and physically, the mapping T corresponds to reflection about the x-axis. By definition the map T sends A and C to themselves, and it interchanges B and D. Since a set of points in \mathbf{R}^{2} is collinear if and only if its image is collinear, it follows that T must interchange the lines $A B$ and $A D$, and it must also interchange the lines $B C$ and $B D$.

Suppose now that $F \in A B$ and $G \in C D$ are such that $F G \perp A B$ and $F G \perp C D$. Since T preserves angle measurements, it follows that the line $T(F) T(G)$ is perpendicular to both $A D$ and $C B=B C$. Furthermore, since T is distance-preserving, it follows that

$$
d(F, G)=d(T(F), T(G)) .
$$

By construction, the left hand side is equal to the distance between the parallel lines $A B$ and $C D$, whild the right hand side of the equation is equal to the distance between the parallel lines $A D$ and $B C$.
18. As suggested by the drawing, we have $b+2 c=a$ and $b=c \sqrt{2}$. Therefore we have

$$
b=a-2 c+a-\frac{2 b}{\sqrt{2}}=a-b \sqrt{2}
$$

, which means that $a=(1+\sqrt{2}) b$; if we solve for b and put the result into simplified radical form, we find that $b=(\sqrt{2}-1)$

