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I . Topics from linear algebra

I.4 : Barycentric coordinates

1. The general method is to take a typical point x and write x−a as a linear combination

x − a = ub− a − vc − a

from which one obtains the barycentric coordinate expression

x = (1 − u − v)a + ub + vc .

For all the problems below we have b− a = (2, 0) and c − a = (1, 1).

(a) In this case x− a = (1, 0) = 1
2
· (2, 0) + 0 · (1, 1). Hence u = 1

2
, v = 0, and t must be equal

to 1
2 .

(b) In this case x− a = (2, 1) = 1
2
· (2, 0) + 1 · (1, 1). Hence u = 1

2
, 1 = 0, and t must be equal

to − 1
2
.

(c) In this case x − a = (
√

2 + 1,
√

2) = 1
2 · (2, 0) +

√
2 · (1, 1). Hence u = 1

2 , v =
√

2, and t

must be equal to 1
2 −

√
2.

(d) In this case x − a = (1, 5) = −2 · (2, 0) + 5 · (1, 1). Hence u = −2, v = 5, and t must be
equal to −2.

(e) In this case x − a = (3,−1) = 2 · (2, 0) − 1 · (1, 1). Hence u = 2, v = −1, and t must be
equal to 0.

(f) In this case x− a = ( 1
2 ,− 1

2 ) = 1
2 · (2, 0) − 1

2 · (1, 1). Hence u = 1
2 , v = − 1

2 , and t must be
equal to 1.

2. We shall first show that if {v0, · · · ,vn } is affinely independent then the associated set
{v1 − v0, · · · ,vn − v0 } is linearly independent. — Suppose we have

n
∑

j=1

cj(vj − v0) = 0 .

1



If we add v0 to both sides and rearrange terms, we obtain

v0 = v0 +

n
∑

j=1

cj(vj − v0) =



1 −
n
∑

j=1

cj



v0 +

n
∑

j=1

cjvj .

Now the left hand side is an expression of v0 as a linear combination of {v0, · · · ,vn } such
that the coeeficients add up to 1, and therefore by the affine independence assumption we know
that the corresponding coefficients on the left and right hand sides of the displayed equation(s)
are equal. In particular, this means that cj = 0 for all j; the latter in turn implies that the set
{v1 − v0, · · · ,vn − v0 } is linearly independent.

Conversely, suppose {v1 − v0, · · · ,vn − v0 } is linearly independent, and suppose that x is
an affine combination

∑

j tjvj , where
∑

j tj = 1. We then have

x − v0 =





n
∑

j=0

tjvj



 − v0 =





n
∑

j=0

tjvj



 −





n
∑

j=0

tj v0



 =

n
∑

j=1

tj(vj − v0).

If we now take an arbitrary expression of x as an affine combination
∑

j ujvj , where
∑

j uj = 1,
then the same sort of argument implies that

x − v0 =
n
∑

j=1

uj(vj − v0)

and by the linear independence of {v1 − v0, · · · ,vn − v0 } we therefore know that uj = tj for all
j ≥ 1. But then we also have

t0 = 1 −
n
∑

j=1

tj = 1 −
n
∑

j=1

uj = u0

so that all the corresponding coefficients tj and uj are equal and hence the set {v0, · · · ,vn } is
affinely independent.

3. We shall follow the hint. The lines ab and cd are given by a+V and c+V respectively
since b − a and d − c are nonzero scalar multiples of each other, and similarly the lines ad and
bc are given by a + W and b + W respectively. By the Coset Property, if either of these pairs of
lines has a point in common, then the two lines in the pair must be the same. However, this is
impossible in both cases. Since a, d and b are noncollinear, it follows that the lines ab and cd

cannot be equal, and likewise the lines ad and bc cannot be equal. Hence it follows that ab is
parallel to cd and ad is parallel to bc.

4. By the results of the previous problem we know that C = B + D − A. Since E is a
midpoint we know that E = 1

2 (A + B). Since F lies on DE and AC we may write

tA + (1 − t)C = F = uE + (1 − u)D

and if we substitute for C and E in the left and right sides we obtain the following equation:

(2t − 1)A + (1 − t)B + (1 − t)D = tA + (1 − t)C =
u

2
A +

u

2
B + (1 − u)D
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Since A, B and D are noncollinear and the coefficients on both sides of the equation add up to 1,
we may set the corresponding coefficients equal and conclude that 2t − 1 = 1

2u, 1 − t = 1
2u, and

1 − t = 1 − u. Solving these equations, we see that t = u = 2
3 , so that F − C = 2

3 (A − C) and
F −D = 2

3
(E−D). Further algebraic manipulation shows that A−F = (A−C)−(F−C) is equal to

1
3
(A−C) and likewise E−F = (E−D)− (F −D) is equal to 1

3
(E−D). The distance relationships

follow by taking the lengths of the vectors on both sides of the resulting two equations.

5. By assumption we know that the barycentric coordinate expression for each point pj is
given by the formula

pj = tja + ujb + vjc .

Suppose that the three points are collinear, so that p3 lies on the line p1p2. Then we have

p3 = wp2 + (1 − w)p1

for some scalar w. Combining this with the previous expansions for p1 and p2, we obtain the
following expression for p3:

t3a + u3b + v3c = p3 = w
(

t1a + u1b + v1c
)

+ (1 − w)
(

t2a + u2b + v2c
)

=

[wt2 + (1 − w)t1]a + [wu2 + (1 − w)u1]b + [wv2 + (1 − w)v1]c

The coefficients of a, b and c in the last expression add up to 1, and thus we may equate the
barycentric coordinates in the first and last expressions in the chain of equations displayed above.
We may rewrite these equations for barycentric coordinates in vector form as follows:

(

t3, u3, v3

)

= w ·
(

t2, u2, v2

)

+ (1 − w) ·
(

t3, u3, v3

)

Therefore the row of the matrix

A =





t1 u1 v1

t2 u2 v2

t3 u3 v3





are linearly dependent, and hence the determinant of this matrix is equal to zero.

Conversely, suppose that the determinant of the matrix A is zero. Then the rows are linearly
independent, so there are scalars x, y, z not all zero such that

x ·
(

t3, u3, v3

)

+ y ·
(

t2, u2, v2

)

+ z ·
(

t3, u3, v3

)

= 0 .

Since the three coordinates of the expression on the left hand side are all equal to zero, we have
the following equations:

xt1 + yt2 + zt3 = 0

xu1 + yu2 + zu3 = 0

xv1 + yv2 + zv3 = 0

These equations in turn imply the vector equation

xp1 + yp2 + zp3 = 0 .

If we add the three scalar equations we obtain

0 = (xt1 + yt2 + zt3) + (xu1 + yu2 + zu3) + (xv1 + yv2 + zv3) =
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x(t1 + u1 + v1) + y(t2 + u2 + v2) + z(t3 + u3 + v3)

and since t1 + u1 + v1 = t2 + u2 + v2 = t3 + u3 + v3 = 1 the preceding equations
imply that x + y + z = 0.

We know that at least one of x, y, z is nonzero. Suppose that x 6= 0; then it follows that
−x−1y − x−1z = 1 and p1 = −x−1yp2 − x−1zp3, so that p1 lies on the line containing p2 and p3.
Similarly, if y 6= 0 then it follows that p2 lies on the line containing p1 and p3, and finally if z 6= 0
then it follows that p3 lies on the line containing p1 and p2. In all three cases the points p1, p2,
and p3 are collinear.

6. Following the hint, we shall use the criterion of the previous exercise. With the
hypotheses in Menelaus’ Theorem, we obtain the following criterion for D, E and F to be collinear:

0 =

∣

∣

∣

∣

∣

∣

t (1 − t) 0
0 u (1 − u)

(1 − v) 0 v

∣

∣

∣

∣

∣

∣

= tuv + (1 − t)(1 − u)(1 − v)

Since the vanishing of the right hand side is equivalent to the condition in the Theorem of Menelaus,
this proves the latter.

7. In this problem the hypothesis on D is equivalent to the equation t = −1, while the
hypothesis on E is equivalent to the equation u = 1

2 . Therefore the equation in the Theorem of
Menelaus becomes

u = −(−1)(1 − u) 1
2v

(−1) 1
2
v = −2 1

2
(1 − v) = v − 1

which simplifies to v = 2
3 . Substituting this into the equation for F in Exercise 6, we get

F = 1
3A + 2

3C.

8. The hypotheses guarantee that none of the numbers t, u, v is equal to 0 and 1.
Furthermore, if we write the intersection point G in the forms

xB + (1 − x)E = yC + (1 − y)F

then the condition G 6= B,C implies that neither x nor y is equal to 1.

The hypotheses and elementary algebra also yield expressions for G as an affine combination
of A, B, C by the following chain of equations:

G = xB + (1 − x)E = xB + (1 − x)uC + (1 − x)(1 − u)A

G = yC + (1 − y)F = yC + v(1 − y)A + (1 − x)(1 − y)B

It follows that the corresponding barycentric coordinates in the right hand expressions equal, so
that we have the following relationships among the various coefficients:

y = (1 − x)u x = (1 − v)(1 − y) v(1 − y) = (1 − x)(1 − u)

As noted in the hint, the lines AD, BE and CF are concurrent if and only if G lies on AD, or
equivalently the points A, G and D are collinear. By the formula of Exercise 5, this happens if and
only if we have

∣

∣

∣

∣

∣

∣

1 0 0
0 t (1 − t)

(1 − x)(1 − u) x (1 − x)u

∣

∣

∣

∣

∣

∣

= 0 .

4



Evaluating the determinant, we see that concurrence is equivalent to the equation tu(1 − x) =
(1− v)(1− y)(1− t). We have already seen that v(1− y) = (1−x)(1−u), and we know that all the
factors are nonzero (hence both sides are nonzero); therefore the equation in the previous sentence
is equivalent to

tuv(1 − x)(1 − y) = (1 − t)(1 − u)(1 − v)(1 − x)(1 − y)

and since (1− x) and (1− y) are nonzero it follows that the equation displayed above is equivalent
to tuv = (1 − t)(1 − u)(1 − v), which is the criterion stated in the theorem.

9. In this problem we have D = 1
2 (B + C) and E = uC + (1 − u)A, F = uB + (1 − u)A.

Since G lies on the lines AD, BE, and CF , we have an equation of the form

G = sA +
1 − s

2
B +

1 − s

2
C = rB + u(1 − r)C + (1 − u)(1 − r)A

for suitably chosed real numbers r and s. Both the second and the third expression are affine
combinations of G in terms of A, B and C, and therefore the corresponding coefficients must be
equal. Thus we have

1 − s

2
= r and u(1 − r)

1 − s

2
= r .

The second string of equations yields
r = u

1 + u

while the first yields

s =
1 − u

1 + u
.

If we substitute these quantities into the expression for G and also use the equation for D in the
first sentence of this solution, we conclude that

G =
1 − u

1 + u
A +

u

1 + u
D .

10. By hypothesis, for each i = 0, · · · ,m we have wi =
∑

j ci,jvj where the sum runs
from j = 0 to j = k and

∑

j ci,j = 1 for each i. Suppose now that we may write y as an affine
combination

∑

i tiwi, where the sum runs from i = 0 to m and
∑

ti = 1. Then we have

y =

m
∑

i=0





k
∑

j=0

ci,jvj



 =

(m,k)
∑

i,j=(0,0)

tici,jvj =

k
∑

j=0

(

m
∑

i−0

tici,j

)

vj

and to show this linear combination of the vj ’s is an affine combination we need to show that

k
∑

j=0

(

m
∑

i=0

tici,j

)

= 1 .

But the left hand side is equal to

(m,k)
∑

i,j=(0,0)

tici,j =
m
∑

i=0





k
∑

j=0

ci,j
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and since each sum
∑

j ci,j = 1 the right hand side reduces to
∑

i ti, which we know is equal to 1.

II . Linear algebra and Euclidean geometry

II.1 : Approaches to Euclidean geometry

1. Two planes are needed. We have noncoplanar lines AB, AC and AD, and they lie in
the union of planes ABC and ACD. They cannot lie in one plane because we are assuming the
lines are not coplanar.

2. Again two planes are needed. If the points are A, B, C, D, E then the planes ABC
and CDE contain all three points.

It is natural to ask what happens if we have more than five points. If there are six points,
then two planes are still enough (the plane of the first three points and the plane of the last three
points), while if there are seven points then three planes are needed (if two planes contain a set
of seven points, at least one will contain four of them). More generally, the minimum number of
planes needed to contain k points, no three of which are collinear, is equal to INT

(

(n + 2)/3
)

.

3. The lines ab and cd are not coplanar since a, b, c, d are not coplanar. If the lines
intersected, then they would be coplanar, and of course they are not parallel since they are not
coplanar.

4. Suppose that two of the lines are the same, say xpi = xpj . If we call this line M , then
M contains x, pi and pj . Now L contains the last two of these three points, therefore L = M .
Hence we also have x ∈ M = L; but this contradicts the basic condition x 6∈ L. The problem with
the logic arises from our assumption that xpi = xpj , and thus these lines must be sdistinct.

To prove that there are infinitely many lines through x, by the preceding argument it is enough
to show that L contains infinitely many points; specifically, such an infinite family can be found by
taking all points of the form p1 + n(p2 − p1).

5. Follow the hint. Let M be a line distinct from L1, · · · , Ln; this line exists by the
previous result. We then have

M ∩
(

L1 ∪ · · · ∪ Ln

)

= (M ∩ L1) ∪ · · · ∪ (M ∩ Ln) .

Now each set M ∩Lj has either one point or no points, and thus the displayed set contains at most
n points. Now M contains infinitely many points, so that there is some point y ∈ M not in the
displayed set. We claim that y 6∈ Lj for all j. This follows because y ∈ M and y 6∈ M ∩ Lj for all
j. The only way this can happen is if y does not lie on any of the lines Lj .

6. Again follow the hint, taking the points pj , a point x distinct from all of them, and a
line L through x which is not equal to any of the lines xpj . We claim that L does not contain any
of the points pj . Suppose that some pk ∈ L. Since L contains both this point and x, it follows
that L = xpk. But this contradicts our choice of L, so we have a contradiction. The problem arises
from our assumption that L was one of the lines xpj , and hence L must be distinct from all of
these lines.

7. We first show that the planes abu and abv are distinct. If they are equal, let Q be
the common plane they represent. Since u and v lie on this plan, it follows that the line uv is
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contained in Q. Now the line uv contains the point c, and therefore Q contains the points a, b, c.
The latter means that Q is equal to the plane P = abc. Since we also have z ∈ uv, it follows
that we also have z ∈ Q = P . This contradicts our assumption that z was not on P , and thus the
assumption that abu = abv must be false. Therefore these two planes must be distinct.

To see that there are infinitely many planes through ab, note that there are infinitely many
points uj on the line cz and by the preceding paragraph the planes abuj must be distinct.

8. Let L be a line in P , and let B, C, D be distinct points on L. Then there is a point A
which does not lie on L. By Exercise 4, the lines AB, AC, AD are distinct. Each of these lines
contains a third point, so let E ∈ AB, F ∈ AC and G ∈ AD be the third points. These three
points are distinct; for example, if E = F then the lines AB and AC would be equal, and since
this common line contains B and C it must be equal to L; this cannot happen since A ∈ AB but
A 6∈ L. Likewise (interchanging the roles of B, C, D) we can show that E 6= G and F 6= G. By
construction we know that A is not equal to E, F or G. We claim that B is not equal to any of
these three points either; by construction we cannot have B = E. If, say, B = F , then we know
that the lines AB and AF = AC are equal, so that C ∈ ABand A ∈ BC = L. This contradicts
our choice of A, so we cannot have B = F . Similarly, we cannot have B = G (switch the roles of
C and D in the argument we just finished). Finally, if we switch the roles of B and either C or
D, then we may similarly conclude that C and D are also distinct from E, F, G. Putting this all
together, we conclude that the points A, B, C, D, E, F, G are all distinct.

II.2 : Synthetic axioms of order and separation

1. Let a = (a1, a2 a3), b = (b1, b2 b3), and c = (c1, c2 c3). Since the three points are
collinear we have b2 = a + t(c − a for some scalar t. We need to show that under the conditions
of the exercise we have 0 < t < 1.

If we specialize the formula for b2 to the first coordinate we find that b1 = a1 + t(c1 − a1).
Solving for t, we obtain the following equation:

t =
(b1 − a1

c1 − a1

Since 0 < b1 − a1 < c1 − a1 it follows that 0 < t < 1 as required.

2. Following our usual procedure, we need to find scalars s and t such that 0 < t < 1 < s
and

tA + (1 − t)B = sC + (1 − s)D .

Since C = 0, it is easier to work this problem using ordinary coordinates instead of barycentric
coordinates. Thus we are looking for a point whose coordinates are (t, 1− t) =

(

2(s− 1), (s− 1)
)

.
Setting the first and second coordinates equal, we have t = 2s − 2 and 1 − t = s − 1. If we solve
this system of equations we obtain the values t = 2

3 and s = 4
3 . Thus there is a point X such that

X is between A and B, and also C is between D and X.

3. The betweenness conditions in the problem yield the equations C = A + u(B − A) and
E = A + v(B − A) where u, v > 1. Therefore we want to find a point X such that

X = sB + (1 − s)E = tD + (1 − t)C
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where 0 < s, t < 1. We shall use the same method as in many other problems. Expand the second
and third expressions in terms of A, B, and D, note that the coefficients add up to one in both
cases, and use the uniqueness of barycentric coordinates to conclude that the coefficients of A, B,
and D are equal.

Here is what we get if we expand the two expressions:

X = sB + (1 − s)[A + v(D − A)] = (1 − s)(1 − v)A + sB + (1 − s)vD

X = tD + (1 − t)[A + u(B − A)] = (1 − t)(1 − u)A + (1 − t)uB + tD

The coefficients of A, B, and D in both right hand expressions add up to 1, and therefore by
the uniqueness of barycentric coordinates we know that the corresponding coefficients are equal.
Therefore we have

s = (1 − t)u, (1 − s)(1 − v) = (1 − t)(1 − u), t = (1 − s)v

and these yield the following system of two linear equations for s and t:

s + tu = u

sv + t = v

If we solve this system we obtain the following values:

s =
u − uv

1 − uv
, t =

v − uv

1 − uv

To complete the proof, we need to check that s and t are between 0 and 1; the key point is to
recall that u and v are both greater than 1. The latter inequalities imply that the numerators and
denominators of the expressions for s and t are both negative, and thus it follows that the quotient
expressions for s and t are both positive. To see that these numbers are less than 1, multiply the
numerators and denominators by −1 to obtain

s =
uv − u

uv − 1
, t =

uv − v

uv − 1

and note that 0 < uv − u, uv − v < uv − 1 because u and v are both greater than 1.

4. The equation of L is 4y = x+10, and this may be rewritten in the form 0 = 4y−x−10 =
f(x, y). Two points (a, b) and (c, d) lie on the same side of L if and only if the signs of f(a, b) and
f(c, d) are both positive or both negative.

If we substitute the values for the coordinates of the two points, we obtain f(4,−2) = 4(−2)−
4− 10 = −22 and f(6, 8) = 4 · 8− 6− 10 = 16. Since one value is positive and the other is negative,
it follows that the two points lie on opposite sides of the line L.

5. In this case the line L is defined by the equation 3x−y−7 = 0. We now have f(8, 5) = 12
and f(−2, 4) = −17, so once again the two points lie on opposite sides of the line L.

6. Suppose that X and Y lie on the line M . Since L ∩ M = ∅, it follows that neither X
nor Y lies on L. Suppose that X and Y lie on opposite sides of L. Then by the Plane Separation
Property it follows that the segment (XY ) meets L in some point W . Since (XY ) is a subset of the
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line M , it follows that W ∈ L ∩ M ; but this contradicts our original assumption that L ∩ M = ∅.
Therefore the only possibility is that X and Y lie on the same side of L.

7. The analogous result in 3–dimensional space is as follows:

Let P and Q be parallel (hence disjoint) planes in space. Then all points of Q lie on the same side
of P .

Here is the analogous proof: Suppose that Xand Y lie on the plane Q. Since P ∩ Q = ∅, it
follows that neither X nor Y lies on P . Suppose that X and Y lie on opposite sides of P . Then by
the Plane Separation Property it follows that the segment (XY ) meets P in some point W . Since
X and Y lie in Q, we know that Q contains the entire line XY , and hence it also contains the
segment (XY ). Therefore it follows that W ∈ P ∩ Q; but this contradicts our original assumption
that P ∩ Q = ∅. Therefore the only possibility is that X and Y lie on the same side of P .

8. Suppose the conclusion is false, so that there is some triangle ∆ABC and line L such
that L contains points on each of the open segments (AB), (BC) and (AC). We shall call these
points X, Y and Z respectively.

Now the line L cannot be equal to any of the lines AB, BC or AC; to see that L 6= AB, note
that L also contains a point of (AC) and hence we would also have L = AZ = AC, which in turn
would imply that A, B and C would be collinear. Similar considerations show that L is not equal
to either of the lines BC or AC.

We also claim that L cannot contain any of the points A, B, C. For example, if A ∈ L,
then X,Z ∈ L would imply A = AX = AY , and since AX = AB and AZ = AC would imply
that L contains all of A, B, C and this is impossible since these three points are not collinear.
Interchanging the roles of the three vertices, we also find that neither B nor C can lie on L.

Since X ∈ L and A ∗ X ∗ B our results on order and separation imply that A and B lie on
opposite sides of L (compare the proof of Pasch’s Theorem). Similarly Y ∈ L and B ∗ Y ∗C imply
that B and C lie on opposite sides of L, and Z ∈ L and A ∗ Z ∗ C imply that A and C lie on
opposite sides of L. On the other hand, the first two conclusions imply that both A and C both lie
on the side of L which does not contain B, so that they must lie on the same side of L, and thus
we have a contradiction. The source of this contradiction was our original assumption that there
was a triangle ∆ABC and line L such that L contains points on each of the open segments (AB),
(BC) and (AC). Therefore this cannot happen, and the statement in the exercise must be true for
every line and triangle in the same plane.

9. By assumption we have

y =
∑

j

bjwj where all bj ≥ 0 and
∑

j

bj = 1 .

Furthermore, for each j we also know that

wj =
∑

k

aj,kvk where all aj,k ≥ 0 and
∑

k

aj,k = 1 for all j.

Therefore we have

y =
∑

j,k

bj aj,k vk
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and if we set ck =
∑

j bj aj,k it follows immediately that ck ≥ 0 for all j and

∑

k

ck =
∑

j,k

bj aj,k =
∑

j

bj

(

∑

k

aj,k

)

.

Since the summations inside the parentheses are all equal to 1, it follows that the summation of
interest is equal to

∑

j bj ; but we know the latter is equal to 1. Therefore it follows that y is a
convex combination of the vectors vk in the set S.
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