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NOTE ON ILLUSTRATIONS. Drawings for several of the solutions in this file are available
in the following file:

http://math.ucr.edu/∼res/math133/math133solutions4figures.pdf

II . Linear algebra and Euclidean geometry

II.5 : Euclidean parallelism

1. Follow the hint, and write L = x + V and M = y + W . If L and M were parallel then
we would have V = W , so since they are not we know that V 6= W . This implies that V and W

are both proper vector subspaces of U = V + W . Now V and W each have one element bases
given by the nonzero vectors v and w respectively, so V + W is spanned by {v, w }, which means
that dimU ≤ 2; since U properly contains V and W , it follows that its dimension is exactly 2.

Now let P = x + U , so that L ⊂ P . We claim that P ∩M = ∅, and we shall do so by reductio

ad absurdum. So assume M and P meet at the point z. Then by the Coset Property we know that
M = z + W and P = z + U . Thus we have x = z + bv + cw for suitable scalars b, c. Rearranging
this, we obtain

x − bv = y + cw

and by the first sentence of this proof the latter yields a point on L ∩ M . But we are given that
L∩M = ∅, so this is a contradiction. Therefore the line M and the plane P cannot have any points
in common.

2. The lines S ∩ P and S ∩ Q both lie in the plane S. If the intersection were nonempty
and X belonged to that intersection, then we would have

X ∈ (S ∩ P ) ∩ (S ∩ Q) = (S ∩ P ∩ Q) ⊂ P ∩ Q

which contradicts the hypothesis that P ∩ Q = ∅.

3. We shall do this problem using linear algebra. Following the hint, we first show that if
S is a plane and v 6∈ S, then there is a unique plane T such that v ∈ T and S ∩ T = ∅.

Existence. Write S = u + W where W is a 2-dimensional vector subspace of R3, and let
T = v + W . Then T 6= S because v ∈ T but v 6∈ S, and therefore by the Coset Property for
translates of the same subspace we know that S and T must be disjoint.

Uniqueness. Suppose we have an arbitrary 2-plane y + W ′ for some 2-dimensional vector
subspace W ′. By the Coset Property we have y+W ′ = v+W ′. We claim that v+W and v+W ′

have a point in common if W 6= W ′. The latter means that W +W ′ properly contains either W or
W ′; this proper containment implies that dimW + W ′ ≥ 3, and since W +W ′ is a vector subspace
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of R3 it follows that W + W ′ = R3. This in turn implies that dimW ∩W ′ = 1. By the proof of
the dimension theorem for subspaces of a vector space, it follows that there are vectors y1, y2, y3

such that the first one defines a basis for W ∩ W ′, the first two define a basis for W , and the first
and last define a basis for W ′, so that all three form a basis for R3.

We may now write
v − u = t1 y1 + t2 y2 + t3 y3

for suitable scalars ti, and we may rewrite this equation as follows:

v − t3 y3 = u + t1 y1 + t2 y2

The expression on the right hand side of this equation lies in v + W ′ = T , whild the expression on
the left hand side lies in u + W = S, and thus we conclude that S ∩ T 6= ∅. — This completes the
proof of the assertion in the second sentence of this solution.

Conclusion of the argument. Suppose that z ∈ P ∩Q. Then P and Q are two planes through
z such that each is disjoint from S. Since this contradicts that result that we established above, it
follows that there cannot be a point which lies on both P and Q.

4. Again follow the hint; we shall use the notation introduced there.

The vector Q(z) is perpendicular to e and f by the argument for deriving the Gram-Schmidt
orthonormalization process (see Section I.1 of the notes). Since v and w are linear combinations
of e and f, it follows that Q(z) is also perpendicular to v and w. The Pythagorean principle for
inner products now implies that

∣

∣z − se− tf
∣

∣

2

= |Q(z)|2 + |s − 〈z, e〉e|2 + |t − 〈z, f〉f |2

and this expression takes its minimum value for the values of s and t which make the last two
summands equal to zero. Now this is precisely the condition under which z−se−tf is perpendicular
to (all linear combinations of) e and f.

Finally since e and f span the same subspace of R3 as v and w, it follows that the set of all
vectors expressible in the form z−se− tf is identical to the corresponding set of vectors expressible
as z − av − bw, and therefore the minimum values for the (squares of the) lengths of vectors of
the two types must also be equal. Combining this with the previous observations, we obtain the
conclusion stated in the exercise.

5. Write x = pa and y = b + q(c − b), where p and q are scalars. Then we have

y − x = b + q(c− b) + pa

and since the original lines are skew lines we know that a and c − b are linearly independent by
(the solution to) Exercise 1. If we now apply Exercise 2, we see that the length of the displayed
vector is minimized when the vector in question is perpendicular to a and c−b, which is the same
as saying that the line xy is perpendicular to 0a and bc.

6. It will suffice to show that B−A and D−C are nonzero multiples of each other (so that
the lines AB and CD are either equal or parallel, and we know they are not equal), and similarly
that D − A and B − C are nonzero multiples of each other.

By our hypotheses we have A = 1

2
(W +X), B = 1

2
(X +Y ), C = 1

2
(Y +Z), and D = 1

2
(Z+W ),

so that
B − A = 1

2
(Y − W ), D − C = 1

2
(W − Y )
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and this shows AB is parallel to CD. Similarly, we have

D − A = 1

2
(Z − X), C − B = 1

2
(Z − X)

and this shows AD is parallel to BC.

7. Let M be the unique line through D which is equal or parallel to AC. Then B 6∈ M ,
and since AC has points in common with AB and BC it follows that M also has points X and Y

in common with these two lines.

There are three cases, depending upon whether

(i) D ∈ AC,
(ii) D and B lie on the same side of AC,

(iii) D and B lie on opposite sides of AC.

In the first case it suffices to show that D ∈ (AC), and in the other cases it we need to show that
X ∈ (BA and Y ∈ (BC. Note that X 6= A and Y 6= C in the last two cases because M must be
parallel to AC.

In the first case, we have D ∈ AC and D cannot be A or C. Now A ∗ C ∗ D would imply A

and D lie on opposite sides of BC, and D ∗ A ∗ C would imply C and D lie on opposite sides of
AB, so the condition D ∈ Int 6 ABC forces the conclusion A ∗ D ∗ C, so that D ∈ (AC).

In the second case, by the Crossbar Theorem we know that (BD and (AC) have a point E in
common. We claim that B ∗ D ∗ E holds. Since E ∈ (BD, the other possibilities are D = E or
B ∗ E ∗ D. The first of these is impossible because we have a pair of parallel lines such that one
contains D and the other contains E, and the second contradicts our assumption that B and D lie
on the same side of AC. Therefore the line M contains a point between A and E. If we apply this
and Pasch’s Theorem to ∆ABE and ∆CBE, we find that M must contain points on (AB) and
(BC) because the line AC = AE = CE is parallel to M . These points on M must be X and Y

respectively, so we know that X ∈ (BA) ⊂ (BA and Y ∈ (BC) ⊂ (BC.

The third case is similar, and once again we have the point E, but this time we claim that
B ∗ E ∗ D holds. As before, we cannot have D = E, but now B ∗ D ∗ E would imply that D and
B were on the same side of AC, so we are forced to conclude that B ∗E ∗D. In this case we know
that the line AC contains the point E betwween B and D. If we apply this and Pasch’s Theorem
to ∆XBD and ∆Y BD, we find that AC must contain points on (BX) and (BY ) because the line
M = DX = DY is parallel to AC. These points on AC must be A and C respectively, so we know
that A ∈ (BX) and C ∈ (BY ). Therefore we have B ∗ A ∗ X and B ∗ C ∗ Y , which means that
X ∈ (BA and Y ∈ (BC.

III . Basic Euclidean concepts and theorems

III.1 : Perpendicular lines and planes

1. Assuming that the three planes P , Q and T have one point in common but do not have
a line in common, define lines L,M,N such that L = P ∩Q, M = P ∩T and N = Q∩T . Then we
have L ∩ M ∩ N = P ∩ Q ∩ T , and we know it contains at least one point. However, if the planes
do not have a line in common, then it follows that L 6= M , for otherwise they would. Now the lines
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L and M have at most one point in common, so the same is true for the subset L ∩ M ∩N . Since
this subset contains at least one point and cannot contain more than one point, it must consist of
exactly one point.

2. As usual, follow the hint. The formula from Section I.2 states that

(

v ×w
)

·
(

y × z
)

= (v · y)(w · z) − (v · z)(w · y) .

In our situation w = z = u, while v = a and y = b; we know that u is a unit vector which is
perpendicular to a and b. If we make these substitutions we find that

(

a× u
)

·
(

b × u
)

= a · b

and also that |a| = |a× u| as well as |b| = |b× u|. Combining these, we see that the cosine of the
angle 6 (x + a)x(x + b) is equal to the cosine of the angle 6 (a × u)0(b × u).

3. Follow the hint, and write P = x+W , where W is a 2–dimensional vector subspace. Let
e and f form an orthonormal basis for W , let U and V be the 1–dimensional subspaces they span,
and take L and M to be the lines x+U and x+V . Since e and f are perpendicular, the lines L and
M will also be perpendicular. Suppose that we have a third line in the plane, say x + T , which is
perpendicular to both L and M , and let g be a nonzero vector in T ; note that T must be contained
in W . It will follow that { e, f , g } is a set of nonzero mutually perpendicular vectors and hence
is linearly independent. This is impossible; since W is 2–dimensional, every linearly independent
subset of it contains at most two vectors. Therefore a third perpendicular cannot exist.

4. We use similar ideas to those of the preceding exercise. Clearly we can form another line
x + T in this case, where T is spanned by e× f . If we are given any line x + S perpendicular to L

and M , then S is spanned by a vector h which is perpendicular to e and f; since all such vectors
are scalar multiples of the cross product, it follows that x + S must be the previously described
line x + T .

III.2 : Basic theorems on triangles

(Not complete. The remainder will be posted in another file.)

1. Suppose that ∆ABC ∼= ∆DEF . Then d(A,B) = d(D,E) and

d(B,G) = 1

2
d(B,C) = 1

2
d(E,F ) = d(E,H)

and since 6 CBA = 6 GBA and 6 FED = 6 HED we also have

| 6 GBA| = | 6 CBA| = | 6 FED| = | 6 HED| .

Therefore we have ∆GBA ∼= ∆HED by SAS.

Conversely, suppose that ∆ABG ∼= ∆DEH. Then as before we have d(A,B) = d(D,E), and

d(B,C) = 2 d(B,G) = 2 d(E,H) = d(E,F )

and the reasoning in the previous paragraph yields

| 6 CBA| = | 6 GBA| = | 6 HED| = | 6 FED| .
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Therefore we have ∆CBA ∼= ∆FED by SAS.

2. Since d(A,B) = d(A,C), d(A,D) = d(A,D) and the bisection condition implies

| 6 DAB| 1

2
| 6 CAB| = | 6 DAC|

it follows that ∆DAB ∼= ∆DAC by SAS. Therefore we also have d(A,D) = d(B,D), so that D

must be the midpoint of [BC]. Combining the latter with d(A,B) = d(A,C), we see that AD is
the perpendicular bisector of [BC], so that AD ⊥ BC.

3. By the Isosceles Triangle Theorem we have | 6 PTS| = | 6 PST |. Therefore by the
Supplement Postulate for angle measure we have

| 6 PLT | = 180 − | 6 PTS| = 180 − | 6 PST | = | 6 PSR|

so that ∆PLT ∼= ∆PSR by SAS and the hypothesis d(R,S) = d(L, T ). The triangle congruence
implies that d(P,L) = d(P,R).

We are given the betweenness conditions R ∗S ∗ T , R ∗ S ∗L and R ∗ T ∗L, and from these we
conclude that L ∗T ∗S is also true. Combining L ∗T ∗S and R ∗S ∗T with the distance equations,
we find that

d(L, S) = d(L, T ) + d(T, S) = d(R,S) + d(S, T ) = d(R, T )

and if we combine this with the previously obtained relations we see that ∆RTP ∼= ∆LSP by
SSS.

4. Since C ∗B ∗D and A ∗B ∗E hold, it follows that A and E lie on opposite sides of CD.
Therefore we shall have AC||DE if | 6 ACD| = | 6 CDE|; since B ∈ (CD), the latter is equivalent
to | 6 ACB| = | 6 BDE|.

To prove the final statement, note first that the common midpoint condition implies that
d(A,B) = d(B,E) and d(C,B) = d(B,D). By the Vertical Angle Theorem we also have | 6 ABC| =
| 6 DBE|, and therefore by SAS we have ∆ACB ∼= ∆DBE. The desired equation | 6 ACB| =
| 6 BDE| is an immediate consequence of this.

5. We shall follow the hint and first verify the betweenness relationships A ∗ C ∗ E and
F ∗ C ∗ G. First of all, B ∗ C ∗ D and C ∈ AE imply that B and D lie on opposite sides of AE.
Next, A ∗ F ∗ B and D ∗ G ∗ E imply that B and F lie on the same side of AE and also that D

and G lie on the same side of AE. This means that F and G must lie on opposite sides of AE, and
since C ∈ AE ∩ FG this means that F ∗ C ∗ G must be true. Furthermore, A ∗ F ∗ B, D ∗ G ∗ E

and F ∗ C ∗ G imply that A and E lie on opposite sides of BC.
We can now use the Vertical Angle Theorem to conclude that | 6 BCA| = | 6 DCE|, and there-

fore ∆BCA ∼= ∆DCE by SAS. By the Alternate Interior Angle Theorem, we also know that AB

is parallel to BE.
To conclude tha proof, we can now use the Alternate Interior Angle Theorem again to conclude

that | 6 FAC| = | 6 GEC|, and another application of the Vertical Angle Theorem implies that
| 6 FCA| = | 6 GCE|. Since we are given that d(A,C) = d(C,E), it follows that ∆FAC ∼= ∆GCE

by ASA.

7. Let α, β, γ and δ be the measures of 6 BAC, 6 ABC, 6 ACB, and 6 ADB. We know
that d = 130, but for the time being it is simpler to file this away for future use.

By the theorem on angle sums of a triangle we have

1

2
α + 1

2
β + δ = 180 = α + β + γ
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and if we subtract half the second equation from the first and afterwards multiply both sides by
two we obtain

2 δ − γ = 180 .

If we substitute δ = 130 and solve for γ we find that γ = 80.

8. By the Vertical Angle Theorem we have | 6 ABD| = | 6 CBF |, and since | 6 ADB| =
90 = | 6 BCF |, we may apply the “Third Angles Are Equal” theorem to conclude that | 6 DAB| =
| 6 BFC|.

11. We know that D = 1

2
(A + B) and E = 1

2
(A + C), so that d(D,E) is equal to

|D −E| =
∣

∣

1

2
(B − C)

∣

∣; since the latter is equal to 1

2
|B −C|, the conclusion of the exercise follows.
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