
SOLUTIONS TO EXERCISES FOR

MATHEMATICS 133 — Part 5

Fall 2007

NOTE ON ILLUSTRATIONS. Drawings for several of the solutions in this file are available
in the following files:

http://math.ucr.edu/∼res/math133/math133solutions4figures.pdf
http://math.ucr.edu/∼res/math133/math133solutions5figures.pdf

III . Basic Euclidean concepts and theorems

III.2 : Basic theorems on triangles

(Solutions not posted previously)

6. Since the angle sum of a triangle is 180 degrees, by the Isosceles Triangle Theorem and
6 BAC = 6 DAE we have

| 6 ABC| = 1

2
(180 − | 6 BAC|) = 1

2
(180 − | 6 DAE|) = | 6 ADE| .

Therefore the Corresponding Angles criterion implies that BC||DE.

9. If Y is an arbitrary point on L then d(B, Y ) = d(C, Y ) because L is the perpendicular
bisector of [BC]. It follows that d(A, Y ) + d(Y,B) = d(A, Y ) + d(Y,C). The right hand side is
minimized when Y is between A and C, and this happens precisely when Y is the point X where
AC meets L; note that this point is between A and C because A and C lie on opposite sides of
L. There is only one point X ∈ L with these properties, so we know that d(A, Y ) + d(Y,B) =
d(A, Y ) + d(Y,C) > d(A,C) for all other points Y on the line L.

10. The points X,Y,Z are not collinear because a line cannot intersect all three open sides
of a triangle. Also, the betweenness hypotheses imply

d(A,B) = d(A,X) + d(X,B),
d(B,C) = d(B, Y ) + d(Y,C), and
d(A,C) = d(A,Z) + d(Z,C).

Finally, the strong form of the Triangle Inequality (for noncollinear triples) implies that
d(X,Y ) < d(B,X) + d(B, Y ),
d(Y,Z) < d(C, Y ) + d(C,Z), and
d(X,Z) < d(A,X) + d(A,Z).

If we add these we obtain

d(X,Y ) + d(Y,Z) + d(X,Z) < d(B,X) + d(B, Y ) + d(C, Y )+d(C,Z) + d(A,X) + d(A,Z)
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and using the betweennes identities we see that the right hand side is equal to d(A,B) + d(B,C)+
d(A < C); thus we have shown the inequality stated in the exercise.

12. Let E be the midpoint of [AB]. Then by the final result in Section I.4 we know that
D − E = 1

2
(C − B). Since E ∈ (AB) and AD 6= AB we know that A, D, E are noncollinear, and

thus by the Triangle Inequality for noncollinear points we have

d(A,D) < d(D,E) + d(A,E) = 1

2

(

d(A,C) + d(A,B)
)

which is the inequality stated in the exercise.

13. Apply the theorem on angle sums of a triangle to the four triangles described in the
hint to obtain the following equations:

| 6 CAB| + | 6 ABC| + | 6 BCA| = 180

| 6 XAB| + | 6 ABX| + | 6 BXA| = 180

| 6 CAX| + | 6 AXC| + | 6 XCA| = 180

| 6 CXB| + | 6 XBC| + | 6 BCX| = 180

Adding the last three equations, we obtain

| 6 XAB| + | 6 ABX| + | 6 BXA| + | 6 CAX| + | 6 AXC| +

| 6 XCA| + | 6 CXB| + | 6 XBC| + | 6 BCX| = 540 .

Since X lies in the interior of ∆ABC it lies in the interiors of all the angles | 6 CAB|, | 6 ABC|,
| 6 BCA| and therefore we have

| 6 CAB| = | 6 CAX| + | 6 XAB|

| 6 ABC| = | 6 ABX| + | 6 XBC|

| 6 BCA| = | 6 BCX| + | 6 XCA|

If we substitute this into the previous equation we obtain

| 6 CAB| + | 6 ABC| + | 6 BCA| + | 6 AXB| + | 6 AXC| + | 6 XBC| = 540

and if we now use | 6 CAB|+ | 6 ABC|+ | 6 BCA| = 180 and subtract 180 from both sides we obtain

| 6 AXB| + | 6 AXC| + | 6 XBC| = 360

which is the equation stated in the exercise.

14. Let x = d(A,B) = d(D,E). Then by the Pythagorean Theorem we have d(E,F ) =
√

x2 − d(D,F )2 and d(B,C) =
√

x2 − d(A,C)2. If d(E,F ) < d(B,C), then the formulas in the
preceding sentence imply d(A,C) < d(D,F ).

15. By Exercise 12, we know that d(A,C) < d(E,C) < d(B,C); since the larger angle
is opposite the longer side, it follows that | 6 CEA| < | 6 CAE|. On the other hand, the Exterior
Angle Theorem implies that | 6 CEB| > | 6 CAE|, so that | 6 CEB| > | 6 CEA|. Since we also have

2



| 6 CEB|+| 6 CEA| = 180, it follows that | 6 CEB| > 90 > | 6 CEA|. Therefore 6 CEA is an ACUTE

angle.

16. Suppose we are given numbers a ≤ b ≤ c; then these numbers are consistent with the
strong Triangle Inequality if and only if c < a + b. So if this fails, then there is no triangle whose
sides have the given lengths. In Section III.6 we show that, conversely, if the conditions in the first
sentence hold, then one can realize the numbers as lengths of the sides of some triangle.

(a) Since 1 + 2 = 3, these numbers do not satisfy the strong Triangle Inequality and hence
cannot be the lengths of the sides of a triangle.

(b) Since 4 < 5 < 6 and 4 + 5 = 0 > 6, these numbers are consistent with the Triangle
Inequality.

(c) Since 1 ≤ 15 = 15 and 1 + 15 > 15, it follows that these numbers are consistent with the
Triangle Inequality.

(d) Since 1 + 5 < 8, these numbers do not satisfy the strong Triangle Inequality and hence
cannot be the lengths of the sides of a triangle.

17. The strong Triangle Inequality implies that if there is a number x such that 10, 15, x
are the lengths of the sides of a triangle, then x + 10 > 15 and x < 10 + 15. There is also the
inequality x + 15 > 10, but it is weaker than the first one. Therefore the conditions on x are that
5 < x < 25.

18. We know that (n + 1)2 = n2 + (2n + 1), so if we can write (2n + 1) = m2, it follows
that n2 +m2 = (n +1)2. Thus there is a right triangle whose sides have lengths n, m and n+ 1 by
the Pythagorean Theorem.

Since there are infinitely many odd positive integers who are perfect squares, it follows that
there are infinitely many choices of n and m such that the preceding holds.

To find all n < 100 which satisfy this condition, it is necessary to find all n < 100 such that
2n + 1 is a perfect square. In other words, we need to find all odd positive integers m ≥ 3 such
that m2 < 200, and this is the set of all odd positive integers ≤ 13. We can retrieve n because it
is equal to 1

2
(m2 − 1). The first few cases are then given as follows:

32 + 42 = 52

52 + 122 = 132

72 + 242 = 252

92 + 402 = 412

112 + 602 = 612

132 + 842 = 852

Of course, this could be continued indefinitely.

19. Apply the Law of Cosines to each triangle. Let y = d(A,C) = d(A,D) and z = d(A,B).
Then we have

d(B,C)2 = y2 + z2 − 2yz cos | 6 CAB|

d(B,D)2 = y2 + z2 − 2yz cos | 6 DAB|

It follows that d(B,C) < d(B,D) if and only if cos | 6 DAB| > cos | 6 CAB|, and since the cosine
function is strictly increasing between 0 and 180, the latter holds if and only if | 6 DAB| > | 6 CAB|,
Therefore we have d(B,C) < d(B,D) if and only if | 6 DAB| > | 6 CAB|, which is the conclusion of
the Hinge Theorem.
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III.3 : Convex polygons

1. We shall use the theorem stating that the line joining the midpoints of two sides of
a triangle is parallel to the third side (see Section I.4). Applying this to ∆ABD and ∆CBD, we
conclude that PS||BD and QR||BD. Therefore it follows that either PS||QR or else PS = QR.
Suppose that the latter is true; we know that PS and A lie on the same side of BD, while QR
and C lie on the same side of BD. Thus PS = QR implies that A and C lie on the same side of
BD. However, this is impossible because we know that A and C lie on opposite sides of BD (the
diagonal segments of a convex quadrilateral have a point in common). Therefore we have PS||QR.

A similar argument holds for PQ and RS. Both of these lines are parallel to AC by applying
the triangle theorem to ∆ABC and ∆ADC, showing that PQ||AC and RS||AC. We can now
argue as in the previous paragraph that PQ 6= RS, so that the lines PQ and RS are parallel. It
follows that P, Q, R, S form the vertices of a parallelogram.

2. By the preceding result we know that P, Q, R, S form the vertices of a parallelogram,
and it follows that (PR) and (QS) meet at their common midpoint.

3. Following the hint, we shall use vector methods. The parallelogram condition implies
that C = B + D − A (see the exercises for Unit I), and the midpoint conditions imply that
E = 1

2
(A+B) and F = 1

2
(C +D). To show that E, B, F, D form the vertices of a parallelogram,

it will suffice to show that F = B + D − E.
If we substitute the expression C = B + D − A in the midpoint equation for F , we find that

F = D + 1

2
(B −A), and if we substitute the expression for E in terms of A and B into B +D −E,

we find that the latter is also equal to D + 1

2
(B − A). Combining these equations, we find that

F = B + D − E as desired, so that the four points in the given order form the vertices of a
parallelogram.

4. First of all, we know that C lies in the interior of 6 DAB. Next, by the Isosceles
Triangle Theorem we know that | 6 DAC| = | 6 DCA|. Now AB||CD and the Alternate Interior
Angle Theorem imply that | 6 DCA| = | 6 CAB|, and thus we have | 6 DAC| = | 6 CAB|, which
means that [AC bisects 6 DAB.

5. We know that 6 ADE = 6 ADB and 6 CBF = 6 CBD. Since AD||BC, the Alternate
Interior Angle Theorem implies that | 6 ADE| = | 6 CBF |. Since A, B, C, D form the vertices of a
parallelogram, it follows that d(A,D) = d(B,C); combining these observations with the assumption
that d(B,F ) = d(D,E), we conclude that ∆ADE ∼= ∆CBF . Therefore we have that | 6 AED| =
| 6 CFB|, and by the Supplement Postulate for angle measurement we then also have

| 6 AEF | = 180 − | 6 AED| = 180 − | 6 CFB| = | 6 CFD| .

Now A and C lie on opposite sides of EF = BD, and if we combine this with the displayed equation
and the Alternate Interior Angle Theorem we conclude that AE must be parallel to CF .

6. Before proving this result, for the sake of completeness we include a verification that
the diagonals (AC) and (BD) of a parallelogram ABCD meet in their common midpoint, which
we shall call E. The fastest say to do this is algebraically, using the fact that C = B + D − A and
then checking directly that 1

2
(A + C) = 1

2
(B + D).

Suppose now that we have a parallelogram ABCD which is a rhombus. Then d(A,B) =
d(C,B) and d(A,D) = d(C,D) imply that BD is the perpendicular bisector of [AC] and hence
AC ⊥ BD.
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Conversely, suppose that AC ⊥ BD. Since E is the midpoint of both [AC] and [BD], it
follows that AC is the perpendicular bisector of [BD] and BD is the perpendicular bisector of
[AC]. The first conclusion implies that d(B,A) = d(D,A), and since we have d(A,B) = d(C,D)
and d(B,C) = d(A,D) for every parallelogram it follows that all four sides of ABCD have the
same length.

7. Since ∆EAB is an equilateral triangle, we have | 6 EAB| = | 6 EBA| = | 6 AEB| = 60.
The point E is assumed to lie in the interior of the square, so we then have

90 = | 6 DAB| = | 6 EAB| + | 6 EAD| = 60 + | 6 EAD|

90 = | 6 CBA| = | 6 EBA| + | 6 EBC| = 60 + | 6 EBC|
and therefore we have | 6 EAD| = | 6 EBC| = 30. Since the sides of a square have equal length,
it follows that ∆EAD ∼= ∆EBC by SAS. This means that | 6 AEB| = | 6 CEB| and d(D,E) =
d(C,E). The latter in turn implies 6 EDC| = | 6 ECD|.

In order to compute the measures of the angles in the preceding sentence, we need one more
property of the figure. Since ∆ABE is equilateral and ABCD is a square, it follows that d(A,D) =
d(A,B) = d(A,E) and d(B,C) = d(A,B) = d(B,E), so that ∆AED and ∆BEC are isosceles and
hence | 6 AED| = — 6 ADE—and— 6 BEC—= | 6 BCE|.

To simplify the algebra, let x = | 6 EDC| and y = | 6 EDA|. The preceding observations then
imply that x + y = 90 and 30 + 2y = 180. If we solve these equations for x and y we obtain y = 75
and x = 15, and therefore it follows that | 6 EDC| = | 6 ECD| = 15.

8. By the assumption in the exercise we know that (AC) and (BD) meet at some point E.
Since we have A ∗ E ∗ C and B ∗ E ∗ D, it follows from the theorems on order and separation that

C and D lie on the same side of AB,
A and B lie on the same side of CD,
B and C lie on the same side of AD, and
A and D lie on the same side of BC.

Therefore the four points A, B, C and D (taken in the alphabetical ordering) form the vertices of
a convex quadrilateral.

9. Follow the hint and use the conclusion of the preceding exercise. If the four points form
the vertices of a convex quadrilateral (taken in the alphabetical ordering), then (AC) and (BD)
have a point E in common by the proposition in the notes. The point E then lies in the interior
of 6 ABC, and since we have B ∗ E ∗ D it follows that the open ray (BE = (BD also lies in the
interior of 6 ABC. Furthermore, since B ∗E ∗D holds and E ∈ AC, it follows that B and D lie on
opposite sides of AC.

Conversely, suppose now that D lies in the interior of 6 ABC and D and B lie on opposite
sides of AC. The first of these implies that the open ray (BD meets (AC) in some point E, and the
second implies that (BD) meets AC in some point F . Since both E and F lie on the intersection
of the (distinct!) lines AC and BD and these lines have at most one point in common, it follows
that E = F . Finally, since E ∈ (AC) and F ∈ (BD), it follows that (AC) and (BD) have a point
in common, which must be E − F .

10. By the preceding exercise the points form the vertices of a convex quadrilateral (taken
in the alphabetical ordering) if and only if D lies in the interior of 6 ABC and B and D lie on
opposite sides of AC. The first of these implies x and z are positive, and the second implies that
y is negative.
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Conversely, suppose we have the conditions on the barycentric coordinates in the preceding
sentence. Since y is negative, it follows that B and D lie on opposite sides of AC, and since the
other two barycentric coordinates are positive it follows that D lies in the interior of 6 ABC.

11. The assumptions are equivalent to saying that C − D is a nonzero multiple of B − A,
so write C − D = k(B − A), where k 6= 0. We then have

D = kA − kB + C

and since the coefficients on the right hand side add up to 1 they give the barycentric coordinates
of D with respect to A, B and C. By the preceding exercise, we know that the four points form the
vertices of a convex quadrilateral (taken in the alphabetical ordering) if and only if k is positive.

12. By the preceding exercise we know that C − D = k(B − A), where k > 0. As before
we have D = kA − kB + C, and the conditions y = d(A,B) and x = d(C,D) also imply x = ky.
The midpoints G and H of [AD] and [BC] are then given by H = 1

2
(B + C) and

G =
(1 + k)

2
A − k

2
B +

1

2
C .

It follows that

H − G =
(1 + k)

2

(

B − A
)

so that GH is parallel to AB and CD, and furthermore we have

d(G,H) =
(1 + k)

2
· d(A,B) =

(1 + k)

2
· y =

(y + ky)

2
=

(x + y)

2

as stated in the exercise.

To prove the remaining parts of the exercises, it suffices to show that the midpoints of [AC]
and [BD] lie on the line GH. Let S and T denote these respective midpoints. Then we know that
GS is parallel to AB since it joins the midpoints of two sides of ∆ABD, and by Playfair’s Postulate
it follows that GS must be the same as GH, which is also a line through G which is parallel to
AB. Similarly, the lines HG and HT are parallel to AB, and therefore GH = HG = HT . Thus
we have shown that both S and T lie on GH. Note that S 6= T unless the quadrilateral is a
parallelogram (a standard result in plane geometry states that if the diagonals bisect each other,
then the quadrilateral is a parallelogram).

13. First of all, we have A ∗ E ∗ B because E ∈ (AB and d(A,E) = x < y = d(A,B).
Choose k > 0 so that C − D = k(B − A) and hence x = ky. If m > 0 is chosen such that
E − A = m(B − A), then we have

m · d(A,B) = d(A,E) = d(C,D) = k · d(A,B)

so that m = k. Therefore we also have E−A = k(B−A) = C−D. Since A, C, D are noncollinear,
this means that A, E, C, D (in that order) form the vertices of a parallelogram. In particular, we
know that AD is parallel to CE.

14. By the preceding exercise we know that A, E, C, D (in that order) form the vertices
of a parallelogram. Since consecutive angles of a parallelogram are supplementary, it follows that
| 6 DAB|+ | 6 AEC| = 180. However, by the preceding exercise we also know that A∗E ∗C and thus
by the Supplement Postulate we also know that | 6 AEC|+ | 6 CEB| = 180. Combining these, we see
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that | 6 DAB| = | 6 CEB| in all cases. Furthermore, since the opposite sides of a parallelogram have
equal length, we also know that d(A,D) = d(E,C). We shall use this fact repeatedly in proving
the equivalence of the three conditions in the exercise.

Proof that (1) =⇒ (2). In this case we are given d(A,D) = d(B,C). By the discussion
above we have d(B,C) = d(A,D) = d(E,C). Therefore the Isosceles Triangle Theorem implies
that | 6 CEB| = | 6 CBE|, and since 6 CBE = 6 CBA it follows that | 6 CEB| = | 6 CBA|. On the
other hand, by the general discussion we have | 6 DAB| = | 6 CEB|, and therefore it follows that
| 6 DAB| = | 6 CBA| as required.

Proof that (2) =⇒ (3). Since consecutive angles in a parallelogram are supplementary, it
follows that | 6 ADC| = 180 − | 6 DAB|. Since | 6 DAB| = | 6 CBA|, it will suffice to show that
| 6 BCD| = 180 − | 6 CBA|. There are several ways to do this, but the fastest might be to switches
the roles of A and C with those of B and D in the preceding discussion; this can be done because
the hypothesis does not change if one switches symbols in this fashion. — An alternative approach
(which we shall only sketch) is to check that E lies in the interior of 6 BCD and that | 6 ECD| =
| 6 DAB| (opposite angles of a parallelogram have equal measure), so that | 6 BCD| = | 6 ECD| +
| 6 ECB| = | 6 ECD| + | 6 DAB| = | 6 ECD| + | 6 CEB|. Since | 6 ECD| + | 6 CEB| + | 6 ABC| = 180
it follows that | 6 BCD| = 180 − | 6 CBA| as required.

Proof that (3) =⇒ (1). One way of doing this is to show that (3) =⇒ (2) and (2) =⇒ (1).
Each of these can be done by reversing the steps in the preceding parts of the exercise.

15. Let X and Y be the midpoints of [AB] and [CD] respectively. By construction we
then have d(A,X) = d(X,B) and d(C, Y ) − d(Y,C)

By the preceding exercise we know that d(A,D) = d(B,C) and also that | 6 DAX| = | 6 CBX|
as well as | 6 ADY | = | 6 BCY |. It follows that ∆DAX ∼= ∆CBX and ∆ADY ∼= ∆BCY . These
congruences imply d(X,D) = d(X,C) and d(Y,A) = d(Y,B). The first of these implies that XY is
the perpendicular bisector of [CD], and the second implies that XY is the perpendicular bisector
of [AB]. Therefore the line XY is perpendicular to both AB and CD.

16. We need to find s and t such that 0 < s, t < 1 and sC + (1 − s)A = tD + (1 − t)B. If
we substitute the coordinate expressions for the four points A, B, C, D we obtain the following
equations for the coordinates:

1

2
sy + (1 − s)(− 1

2
x) = − 1

2
ty + (1 − t)( 1

2
x)

sh = th

The second equation implies s = t, and if we substitute this into the first equation we obtain

1

2
sy + (1 − s)(− 1

2
x) = − 1

2
sy + (1 − s)( 1

2
x)

which means that the right hand side is the negative of the left hand side and hence both are equal
to zero. Therefore the equations imply sy = (1 − s)x and k = sh.

We can solve this for s to obtain s = x/(x + y), and if we substitute this and k = sh into
k/(h − k), it follows that the latter is equal to x/y.

17. (a) Following the hint, one first notes that

d(A,B) = d(B,C) = d(C,D) = d(D,A) =
√

p2 + q2
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and then one notes that A − B = (p,−q) = D − C. Therefore one has

AB = A + R · (p,−q) , CD = C + R · (p,−q)

so that the lines AB and CD are either parallel or identical. The latter is impossible because it
would imply that A, B, C would be collinear. Since the defining equation for AB is f(x, y) = qx+
py − pq = 0 and f(C) = q(−p) + p · 0 − pq = −2pq < 0, we know that A, B, C cannot be
collinear, and hence AB||CD.

If we interchange the roles of B and D in the preceding argument, we obtain the analogous
conclusion that AD||BC. Combining these with the observations in the first paragraph, we conclude
that A, B, C, D form the vertices of a parallelogram, and (by the first sentence of that paragraph)
this parallelogram is a rhombus.

(b) As suggested in the hint, let T be the orthogonal linear transformation on R2 defined by
T (x, y) = (x,−y); geometrically and physically, the mapping T corresponds to reflection about
the x-axis. By definition the map T sends A and C to themselves, and it interchanges B and D.
Since a set of points in R2 is collinear if and only if its image is collinear, it follows that T must
interchange the lines AB and AD, and it must also interchange the lines BC and BD.

Suppose now that F ∈ AB and G ∈ CD are such that FG ⊥ AB and FG ⊥ CD. Since T
preserves angle measurements, it follows that the line T (F )T (G) is perpendicular to both AD and
CB = BC. Furthermore, since T is distance-preserving, it follows that

d(F,G) = d ( T (F ), T (G) ) .

By construction, the left hand side is equal to the distance between the parallel lines AB and CD,
whild the right hand side of the equation is equal to the distance between the parallel lines AD
and BC.

18. As suggested by the drawing, we have b + 2c = a and b = c
√

2. Therefore we have

b = a − 2 c + a − 2b√
2

= a − b
√

2

which means that a = (1 +
√

2)b; if we solve for b and put the result into simplified radical form,
we find that b =

(√
2 − 1

)

a.
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