I. Classical Differential Geometry of Curves

We shall begin with a few words on background material from prerequisite courses. This course
explicitly assumes prior experience with the elements of linear algebra (including matrices, dot
products and determinants), the portions of multivariable calculus involving partial differentiation,
and some familiarity with the a few basic ideas from set theory such as unions and intersections.
For the sake of completeness, a file describing the background material (with references to standard
texts used in the Department’s courses) is included in the course directory and can be found in the
files called background.*, where * is one of the extensions dvi, ps, or pdf.

Differential geometry uses ideas from calculus and vector algebra to obtain geometrical infor-
mation about curves and surfaces. At many points it is necessary to work with topics from the
prerequisites in a more sophisticated manner, and it is also necessary to be more careful in our
logic to make sure that our formulas and conclusions are accurate. At numerous steps it might be
necessary to go back and review things from earlier courses, and in some cases it will be important
to understand things in more depth than one needs to get through ordinary calculus, multivari-
able calculus or matrix algebra. Frequently one of the benefits of a mathematics course is that it
sharpens one’s understanding and mastery of earlier material, and differential geometry certainly
provides many opportunities of this sort.

The origins of differential geometry

Straight lines and circles have been central objects in geometry ever since its beginnings.
During the fourth century B.C.E., Greek geometers began to study more general curves, starting
with the ellipse, hyperbola and parabola. In the following centuries they discovered a large number
of other curves and investigated the properties of such curves in considerable detail for a variety of
reasons. The development of analytic geometry and calculus, particularly during the seventeenth
and eighteenth centuries, yielded powerful techniques for analyzing curves and their properties. In
particular, these advances created a unified framework for understanding the work of the Greek
geometers and a setting for studying new classes of curves and problems beyond the reach of
classical Greek geometry. Interactions with physics played a major role in the mathematical study
of curves during that time, largely because curves provided a means for analyzing the motion of
physical objects. By the beginning of the nineteenth century, the differential geoemtry of curves
had begun to emerge as a subject in its own right.

This unit describes the classical nineteenth century theory of curves in the plane and 3-
dimensional space. Some further results from the twentieth century will be discussed in the next
unit.

References for examples

Here are some web links to sites with pictures and written discussions of many curves that
mathematicians have studied during the past 2500 years:

http://www-gap.dcs.st-and.ac.uk/~history/Curves/Curves.html
http://www.xahlee.org/SpecialPlaneCurves_dir/specialPlaneCurves.html
http://facstaff.bloomu.edu/skokoska/curves.pdf



I.1: Cross products

(do Carmo, § 1-4)

Courses in single variable or multivariable calculus usually define the cross product of two
vectors and describe some of its basic properties. Since this construction will be particularly
important to us and we shall use properties that are not always emphasized in calculus courses, we
shall begin with a more detailed treatement of this construction.

Note on orthogonal vectors

One way of attempting to describe the dimension of a vector space is to suggest that the
dimension represents the maximum number of mutually perpendicular directions. The following
elementary result provides a formal justification for this idea.

PROPOSITION. LetS = {a;, --- ,ax} be a set of nonzero vectors that are mutually perpen-
dicular. Then S is linearly independent.

Proof. Suppose that we have an equation of the form

n
E c,a; = 0
i=1

for some scalars ¢;. If 1 < j < k we then have

n n
0 = O-aj = (Zciai) -aj = Z(ciai-aj)
i=1

=1

and since the vectors in S are mutually perpendicular the latter reduces to cj|a;|?. Thus the original
equation implies that c;|a;|? = 0 for all j. Since each vector aj is nonzero it follows that |a;|? > 0
for all j which in turn implies ¢; = 0 for all j. Therefore S is linearly independent.m

Properties of cross products

Definition. If a = (a1, as,a3) and b = (b, b, b3) are vectors in R3 then their cross product or
vector product is defined to be

axb = (a2b3 — asba, asb; —aibs, a1bs — a2b1) .

If we define unit vectors in the traditional way as i = (1,0,0), j = (0,1,0), and k = (0,0,1), then
the right hand side may be written symbolically as a 3 x 3 deterinant:

i j k
a; a2 as
by ay as



The following are immediate consequences of the definition:

(1) axb = —-bxa

(2) (ca) xb = c(axb)

3) ax(b+c) = (axb) + (axc)

Other properties follow directly. For example, by (1) we have that a x a = —a X a, so that

2a x a = 0, which means that a x a = 0. Also, if ¢ = (¢1, ¢z, c3) then the triple product
[e,a,b] = c-(axDb)
is simply the determinant of the 3 x 3 matrix whose rows are ¢, a, b in that order, and therefore

we know that
the cross product a X b is perpendicular to both a and b.m

The basic properties of determinants yield the following additional identity involving dot and
cross products:

[c,a,b] = [a,b,c]
This follows because a determinant changes sign if two rows are switched, for the latter implies
[C, a, b] = _[aa c, b] = [a7 b7 C] -
The following property of cross products plays an extremely important role in this course.

PROPOSITION. Ifa and b are linearly independent, then a, b and a x b form a basis for R3.

Proof. First of all, we claim that if a and b are linearly independent, then a X b # 0. To see
this we begin by writing out |a x b|? explicitly:

laxbl|? = (azbz — azbs)? + (azby — a1b3)? + (a1by — azb;)?
Direct computation shows that the latter is equal to
(a2 + a3 + a2) (b3 + b3 +b3) — (a1b1 + asbs + a3b3)> = |a?|b*> — (a-b)?
In particular, if a and b are both nonzero then
|axb] = |a]|b||sind|

where 6 is the angle between a and b. Since the sine of this angle is zero if and only if the vectors
are linearly dependent, it follows that a X b £ 0 if a and b are linearly independent.

Suppose now that we have an equation of the form
zat+yb+z(axb) = 0

for suitable scalars x, y, 2. Taking dot products with a x b yields the equation z|a x b|? = 0, which
by the previous paragraph implies that z = 0. One can now use the linear independence of a and b
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to conclude that z and y must also be zero. Therefore the three vectors a, b and a x b are linearly
independent, and consequently they must form a basis for R3.m

In may situations it is useful to have formulas for more complicated expressions involving cross
products. For example, we have the following identity for computing threefold cross products.

“BAC—CAB” RULE. ax (b xc)=b(a-c)—c(a-b), or in more standard format the left
hand side is equal to (a-c)b — (a-b)ec.

Derivation. Suppose first that b and ¢ are linearly dependent. Then their cross product is zero,
and one is a scalar multiple of the other. If b = x ¢, then it is an elementary exercise to verify that
the right hand side of the desired identity is zero, and we already know the same is true of the left
hand side. If on the other hand ¢ = y b, then once again one finds that both sides of the desired
identity are zero.

Now suppose that b and ¢ are linearly independent, so that b x ¢ # 0. Note that a vector is
perpendicular to b X ¢ if and only if it is a linear combination of b and ¢. The ( <= ) implication
follows from the perpendicularity of b and ¢ to their cross product and the distributivity of the
dot product, while the reverse implication follows because every vector is a linear combination

zb+yc+z(bxc)
and this linear combinationn is perpendicular to the cross product if and only if z = 0; i.e., if and
only if the vector is a linear combination of b and c.
Since the vector b x (b X c) is perpendicular to b X ¢ we may write it in the form

b><(b><c) = zb+yc

for suitable scalars x and y. If we take dot products with b and ¢ we obtain the following equations:

0 = [bbbxc] = (b-(bx(bxc))) = b-(zb+yc) = z(b-b)+y(b-c)

—bxc?> = —[(bxec),b,c] = [b,(bxc),c] = [c,b,(bxc)] =
(c-(bx(bxc))) = ¢ (zb+yc) = z(b-c)+y(c-c)
If we solve these equations for £ and y we find that  =b - ¢ and y = —b - b. Therefore we have
bx(bxc) = (b-c)b—(b-b)c).

Similarly, we also have

cx(bxc) = (c-c)b—(b-c)c)).

Therefore, if we write a = pb 4+ gc + (b x ¢) we have
ax(bxc) = pbx(bxc) + gex(bxc) =

(pc-e)+a(c-e))b — (p(b-b)+q(b-c))c.
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Since b and ¢ are perpendicular to their cross product, the right hand side of the previous equation
isequal to (a-c)b—(a-b)cm

The formula, for a x (b X c) yields numerous other identities. Here is one that will be particularly
useful in this course.

PROPOSITION. Ifa, b, c and d are arbitrary vectors in R? then we have the following identity:

(axb)-(cxd) = (a-c)(b-d) — (a-d)(b-c)

Proof. By definition, the expression on the left hand side of the display is equal to the triple
product [(axb),c,d]. As noted above, the properties of determinants imply that the latter is equal
to [d, (a x b), c], which in turn is equal to

d-(ax(bxc)) = d-((a-c)b—(a-b)c)

and if we expand the final term we obtain the expression (a-c¢)(b-d) — (a-d)(b-c)=



1.2 : Parametrized curves

(do Carmo, § 1-2)

There is a great deal of overlap between the contents of this section and certain standard topics
in calculus courses. One major difference in this course is the need to work more systematically
with some fundamental but relatively complex theoretical points in calculus that can be overlooked
when working most ordinary and multivariable calculus problems. In particular this applies to the
definitions of limits and continuity, and accordingly we shall begin with some comments on this
background material.

Useful facts about limits

In ordinary and multivariable calculus courses it is generally possible to get by with only a
vague understanding of the concept of limit, but in this course a somewhat better understanding
is necessary. In particular, the following consequences of the definition arise repeatedly.

FACT 1. Let f be a function defined at all points of the interval (a — h,a + h) for some h > 0
except possibly at a, and suppose that

lim f(z) =b>0.

r—ra

Then there is a 6 > 0 such that § < h and f(xz) > 0 provided = € (a — §,a + ) and z # a.

FACT I1. In the situation described above, if the limit exists but is negative, then there is a
d > 0 such that 6 < h and f(z) > 0 provided = € (a — 6,a+ J) and = # a.

FACT III. FEach of the preceding statements remains true if 0 is replaced by an arbitrary real
number.

Derivation(s). We shall only do the first one; the other two proceed along similar lines. By
assumption b is a positive real number. Therefore the definition of limit implies there is some § > 0
such that |f(z) — b| < b provided provided z € (a — §,a + 0) and z # a. It then follows that

f@) = b+ (f@) —b) > b—f@-b > b-1b > 0

which is what we wanted to show.m
We shall also need the following statement about infinite limits:

FACT IV. Let f be a continuous function defined on some open interval containing 0 such that f is
strictly increasing and f(0) = 0. Then for each positive constant C there is a positive real number h
sufficiently close to zero such that z € (0, h) = 1/f(z) > C andz € (—h, 0) = 1/f(z) < -C.

Proof. Let ¢ be the positive number 1/C; by continuity we know that |f(z)| < € if x € (—h, h)
for a suitably small A > 0. Therefore z € (0, h) = 0< f(z) <eand z € (—=h,0) = —-e<
f(z) < 0. The desired inequalities follow by taking reciprocals in each case.s



What is a curve?

There are two different but related ways to think about curves in the plane or 3-dimensional
space. One can view a curve simply as a set of points, or one can view a curve more dynamically as
a description of the position of a moving object at a given time. In calculus courses one generally
adopts the second approach to define curves in terms of parametric equations; from this viewpoint
one retrieves the description of curves as sets of points by taking the set of all points traced out
by the moving object. For example, the line in R? defined by the equation y = mz is the set of
points traced out by the parametrized curve defined by z(t) = ¢t and y(¢) = m¢. Similarly, the unit
circle defined by the equation z2 4 42 = 1 is the set of points traced out by the parametrized curve
z(t) = cost, y(t) = sint. The set of all points expressible as x(t) for some ¢ € J will be called the
image of the parametrized curve (since it represents all point traced out by the curve this set is
sometimes called the trace of the curve, but we shall not use this term in order to avoid confusion
with the entirely different notion of the trace of a matrix). We shall follow the standard approach
of calculus books here unless stated otherwise.

A parametrized curve in the plane or 3-dimensional space may be viewed as a vector-valued
function - or x defined on some interval of the real line and taking values in V' = R? or R2. In this
course we usually want our curves to be continuous; this is equivalent to saying that each of the
coordinate functions is continuous. Given that this is a course in differential geometry it should
not be surprising that we also want our curves to have some decent differentiability properties. If x
is the vector function defining our curve and its coordinates are given by x;, where ¢ runs between
1 and 2 or 1 and 3 depending upon the dimension of V', then the derivative of x at a point ¢ is
defined using the coordinate functions:

x'(t) = (21(t), 25(t), z5(t))

Strictly speaking this is the definition in the 3-dimensional case, but the adaptation to the 2-
dimensional case is immediate — one can just suppress the third coordinate or view R? as the
subset of R? consisting of all points whose third coordinate is zero.

Definition. A curve x defined on an interval J and taking values in V = R? or R? is differentiable
if x'(t) exists for all t € J. The curve is said to be smooth if x’ is continuous, and it is said to be
a regular smooth curve if it is smooth and x'(¢) is nonzero for all ¢ € J. The curve will be said to
be smooth of class C™ for some integer r > 1 if x has an r*® order continuous derivative, and the
curve will be said to be smooth of class C* if it is infinitely differentiable (equivalently, C" for all
finite r).

The crucial property of regular smooth curves is that they have well defined tangent lines:

Definition. Let x be a regular smooth curve and let a be a point in the domian J of x.
The tangent line to x at the parameter value ¢ = a is the unique line passing through x(a) and
x(a) + x'(a). There is a natural associated parametrization of this line given by

T(u) =x(a) + ux'(a) .

One expects the tangent line to be the “best possible” linear approximation to a smooth curve.
The following result confirms this:

PROPOSITION. In the notation above, if u # 0 is small and a + u € J then we have
x(a+u) = x(u) + ux'(a) + uO(u)
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where lim,_,o ©(u) = 0. Furthermore, if p is any vector such that
x(a+u) = x(u) + up + uW(u)

where lim,_,o W (u) = 0, then p = x'(a).

Proof. Given a vector a we shall denote its i*® coordinate by a;.

Certainly there is no problem writing x(a + u) in the form x(u) + ux'(a) + ©©(u) for some
vector valued function ©; the substance of the first part of the proposition is that this function goes
to zero as u — 0. Limit identities for vector valued functions are equivalent to scalar limit identites
for every coordinate function of the vectors, so the proof of the first part of the proposition reduces
to checking that the coordinates 6; of © satisfy lim,_,q 0;(u) = 0 for all i. However, by construction
we have

zi(a+u) —z;(a
o) = BT )
and since x is differentiable at a the limit of the right hand side of this equation is zero. Therefore
we have where lim,,_,o ©(u) = 0.

Suppose now that the second equation in the statement of the proposition is valid. As in the
previous paragraph we have
zi(a +u) — zi(a)

wily) = - - pla)

but this time we know that lim,_,o w;(u) = 0 for all 7. The only way these equations can hold is if
pi(a) = zi(a) for all im

Piecewise smooth curves

There are many important geometrical curves that that are not smooth but can be decomposed
into smooth pieces. One of the simplest examples is the boundary of the square parametrized in
a counterclockwise sense. Specifically, take x to be defined on the interval [0,4] by the following
rules:

(a) (
(b) x(t
(0) (
(d) x(t) =

The formulas for (a) and (b) agree when ¢t = 1, and likewise the formulas for (b) and (c) agree
when ¢ = 2, and finally the formulas for (¢) and (d) agree when ¢t = 3; therefore these formulas
define a continuous curve. On each of the intervals [n,n + 1] for n = 0, 1,2, 3 the curve is a regular
smooth curve, but of course the tangent vectors coming from the left and the right at these values
are perpendicular to each other. Clearly there are many other examples of this sort, and they

include all broken line curves. The following definition includes both these types of curves and
regular smooth curves as special cases:

) (t,0)  forte0,1]
) = (1,t—1)forte[L,2
) (

(

2—t,1) fort € [2,3]
0,1—1t) for t € [3,4]

Definition. A continuous curve x defined on an interval [a,b] is said to be a regular piecewise
smooth curve if there is a partition of the inverval given by points

a = po < p1 - < ppo1 <pp =0b



such that for each i the restriction x[i] of x to the subinterval [p;_1,p;] is a regular smooth curve.

For the boundary of the square parametrized in the counterclockwise sense, the partition is
given by
0 <1 < 2 < 3 < 4.

Calculus texts give many further examples of such curves, and the references cited at the
beginning of this unit also contain a wide assortment of examples. One important thing to note
is that at each of the partition points p; one has a left hand tangent vector x’(p;—) obtained from
x[i] and a right hand tangent vector x'(p;+) obtained from x[i + 1], but these two vectors are
not necessarily the same. In particular, they do not coincide at the partition points 1,2,3 for the
parametrized boundary curve for the square that was described above.

Taylor’s Formula for vector valued functions

We shall need an vector analog of the usual Taylor’s Theorem for polynomial approximations
of real valued functions on an interval.

VECTOR VALUED TAYLOR’S THEOREM. Letg be a vector valued function defined on
an interval (a —r,a+ 1) that has continuous derivatives of all orders less than or equal to n+1 on
that interval. Then for |h| < r we have

“h (a+h—t)"

g dt

Bath) = g@ + Y 5e¥@ + [
k=1 @
where g%) as usual denotes the k™ derivative of g.

Proof. Let R,(h) be the integral in the displayed equation. Then integration by parts implies

that B
Raca(h) = 7 g™(a) + Ra(h)

and the Fundamental Theorem of Calculus implies that
gla+h) = gla) + Ri(h).
Therefore if we set Ry = 0 we have
gla+h) = ga) + Z (Ri(h) — Re—1(h)) + Rn(h)
k=1
and if we use the formulas above to substitute for the terms Ry (h) — Rx_1(h) and R, (h) we obtain
the formula displayed above.n

The following consequence of Taylor’s Theorem will be particularly useful:

COROLLARY. Given g and the other notation as above, let P,(h) be the sum of
gla) + kz Eg( )(a) .
=1
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Then given 1o < 1 and |h| < r9 < r we have |g(a + h) — P,(h)| < C |h|"*!, for some positive
constant C.

Proof. The length of the difference vector in the previous sentence is given by

a+h _ n
/ (a’ +h t) g(n+1) (t) dt

n! <

[Rn(h)| =
a+h a _\n
iy - [ [ 2R

|| u™ h|n+1
(maxie—ai<r 87 (2)]) /0 e < M (‘n|-|-1)!

g(""'l)(t)‘ dt <

where M is a positive constant at least as large as the maximum value of |g("*1) (¢)| for |t —a| < ro.m
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I.3: Arc length and reparametrization

(do Carmo, § 1-3)

Given a parametrized smooth regular curve x defined on a closed interval [a, b], as in calculus
we define the arc length of x from ¢t = a to t = b to be the integral

b
L = /\x’(t)|dt.

Some motivation for this definition is discused in Exercise 8 on page 10 of do Carmo. More generally,
if @ <t < b then the length of the curve from parameter value a to parameter value ¢ is given by

s(t) = /{: % ()| du .

By the Fundamental Theorem of Calculus, the partial arc length function s is differentiable on [a, b]
and its derivative is equal to |x/(t)|. If we have a regular smooth curve, this function is continuous
and everywhere positive (hence s(t) is a strictly increasing function of t), and the image of this
function is equal to the closed interval [0, L].

Reparametrizations of curves

Given a parametrized curve x defined on an interval [a, b], it is easy to find other parametriza-
tions by simple changes of variables. For example, the curve y(¢) = x(¢ + a) resembles the original
curve in many respects: For example, both have the same tangent vectors and images, and the
only real difference is that y is defined on [0,b — a] rather than [a,b]. Less trivial changes of vari-
able can be extremely helpful in analyzing the image of a curve. For example, the parametrized
curve x(t) = (et — et et + e~t) has the same image as the the upper piece of the hyperbola
y? — 22 = 4 (i.e., the graph of y = v/4 + z2); as a graph, this curve can also be parametrized using
y(u) = (u, V4 + u?). These parametrizations are related by the change of variables u = 2sinht; in
other words, we have

x(t) = y(2sinht) .

Note that u varies from —oo to 400 as ¢t goes from —oo to +o00, and u'(t) = cosht > 0 for all ¢.

More generally, it is useful to consider reparametrizations of curves corresponding to functions
u(t) such that u'(¢) is never zero. Of course the sign of v’ determines whether u is strictly increasing
or decreasing, and it is useful to allow both possibilities. Suppose that we are given a differentiable
function u defined on [a, b] such that u' is never zero on [a,b]. Then the image ot u is some other
closed interval, say [c,d]; if u is increasing then u(a) = ¢ and u(b) = d, while if u is decreasing
then u(a) = d and u(b) = c. It follows that u has an inverse function ¢ defined on [c, d] and taking
values in [a,b]. Furthermore, the derivatives dt/du and du/dt are reciprocals of each other by the
standard formula for the derivative of an inverse function.

It is important to understand how reparametrization changes geometrical properties of a curve
such as tangent lines and arc lengths. The most basic thing to consider is the effect on tangent
vectors.
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PROPOSITION. Let x be a regular smooth curve defined on the closed interval [c,d], let u :
[a,b] = [c,d] be a function with a continuous derivative that is nowhere zero, and let y(t) = x(u(t) ).
Then

This is an immediate consequence of the Chain Rule.s

COROLLARY. For each t € [a,b] the tangent line to y at parameter value t is the same as the
tangent line to x at u(t). Furthermore, the standard parametrizations are related by a linear change
of coordinates.

Proof. By definition, the tangent line to x at u(t) is the line joining x(u(t)) and x(u(t)) +
x'(u(t)). Similarly, the tangent line to y at ¢ is the line joining y () = x(u(t) ) and

y(®) +y' () =x(u(t)) + ') x'(u(t)) -

Since the line joining the distinct points (or vectors) a and a + b is the same as the line joining a
and a + c¢b if ¢ # 0, it follows that the two tangent lines are the same (take a = y(¢), b = x'(u)
and ¢ = u/(t)).

In fact, we have obtained standard linear parametrizations of this line given by f(z) =a+zb
and g(w) = a+ cwb. Tt follows that g(w) = f(cw).m

Arc length is another property of a curve that does not change under reparmetrization.

PROPOSITION. Let x be a regular smooth curve defined on the closed interval [c,d], let u :
[a,b] = [c,d] be a function with a continuous derivative that is nowhere zero, and let y(t) = x(u(t) ).

Then
d b
/ I ()| dhu = / 1y ()] de

Proof. The standard change of variables formula for integrals implies that

d b
/|x’(u)|du:/ i (ult) ) |o/(6)] dt -

Some comments about this formula and the absolute value sign may be helpful. If u is increasing
then the sign is positive and we have u(a) = ¢ and u(b) = d, so |u'(t)| = u/(t); on the other hand if
u is decreasing, then the Fundamental Theorem of Calculus suggests that the integral on the left
hand side should be equal to

a
J
so that the formula above holds because v’ < 0 implies |u/| = —u'. In any case, the properties of

vector length imply that the integrand on the right hand side of the change of variables equation
is |u'(t) - x'(u)|, which by the previous proposition is equal to |y’(t)|.

()| - = = [ )] voa ~ [

x' (u(t) )‘ [ (8)] dt

If v is a regular smooth curve defined on [a, b], then the arc length function

s(t) = / v/ () du
12



often provides an extremely useful reparametrization because of the following result:

PROPOSITION. Letv be as above, and let x be the reparametrization defined by x(s) = v(u s) ),
where p is the inverse function to the arc length function X : [a,b] — [0,L]. Then |x( )| =1 for
all s.

Proof. By the Fundamental Theorem of Calculus we know that X' (¢) = |v/(¢)|. Therefore by the
Chain Rule we know that
X'(s) = p'(s)v'(uls))

and by the differentiation formula for inverse functions we know that

1 1

K = Sy T T = e

and if we substitute this into the expression given by the chain rule we see that

X'() = [TV (T6))] = sy V(T(9))] = 1.a

Arc length for more general curves

The geometric motivation for the definition of arc length is described in Exercises 8-0 on pages
10-11 of do Carmo; specifically, given a parametrized curve x defined on [a, b] one picks a finite set
of points t; such that

a = tp < t1 < - <ty =0b

and views the length of the inscribed broken line joining tg to t1, 1 to 3 etc. as an approximation
to the length of the curve. In favorable circumstances if one refines the finite set of points by
taking more and more of them and making them closer and closer together, the lengths of these
broken line curves will have a limiting value which is the arc length. Exercise 9(b) on page 11 of
do Carmo gives one example of a curve for which no arc length can be defined. During the time
since do Carmo’s book was published, a special class of such curves known as fractal curves has
received considerable attention. The parametric equations defining such curves all have the form
x(t) = lim,, o X, (t), where each x,, is a piecewise smooth regular curve and for each n one obtains
X, from x,_; by making some small but systematic changes. Some online references with more
information on such curves are given below.

http://mathworld.wolfram.com/Fractal.html
http://academy.wolfram.agnescott.edu/ lriddle/ifs/ksnow/lsnow/htm
http://en2.wikipedia.org/wiki/Koch_snowflake

http://en.wikipedia.org/wiki/Fractal_geometry
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I.4: Curvature and torsion

(do Carmo, §§1-5, 1-6)

Many calculus courses include a brief discussion of curvature, but the approaches vary and it
will be better to make a fresh start.

Definition. Let x be a regular smooth curve, and assume it is parametrized by arc length
plus a constant (i.e., |x'(s)| = 1 for all s). The curvature of x at parameter value s is equal to

k(s) = |x"(s)l-

The most immediate question about this definition is why it has anything to do with our
intuitive idea of curvature. The best way to answer this is to look at some examples.

Suppose that we are given a parametrized line with an equation of the form x(¢t) = a+tb
where |b| = 1. It then follows that x is parametrized by arc length by means of ¢, and clearly we
have x(t) = 0. This means that the curvature of the line is zero at all points, which is what we
expect.

Consider now an example that is genuinely curved; namely, the circle of radius r about the
origin. The arc length parametrization for this curve has the form

x(s) = (rcos(s/r), rsin(s/r) )
and one can check directly that its first two derivatives are given as follows:
x"(s) = (— sin(s/r), cos(s/r))
x(s) = (_cos(s/r) _sin(s/r) )

ro T
It follows that the curvature of the circle at all points is given by the reciprocal of the radius.m

The following simple property of the “acceleration” function x”(s) turns out to be quite im-
portant for our purposes:

PROPOSITION. The vectors x"(s) and x'(s) are perpendicular.

Proof. We know that |x(s)| is always equal to 1, and thus the same is true of its square, which
is just the dot product of x’(s) with itself. The product rule for differentiating dot products of two
functions then implies that

0 = Ciig(x'(s)-x'(s)) = 2(x'(s)-x"(s))

and therefore the two vectors are indeed perpendicular.m

Geometric interpretation of curvature

We begin with a very simple observation.
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PROPOSITION. If x(s) is a smooth curve (parametrized by arc length) whose curvature k(s)
is zero for all s, then x(s) is a straght line curve of the form x(s) = x(0) + sx’(0).

Proof. Since x(s) is the length of x”(s), if the curvature is always zero then the same is true for
x"(s). But this means that x'(s) is constant and hence equal to x’(0) for all s, and the latter in
turn implies that x(s) = x(0) + sx'(0).m

Given a smooth curve, the tangent line to the curve at a point ¢ may be viewed as a first order
linear approximation to the curve. The notion of curvature is related to a corresponding second
order approximation to the curve at parameter value ¢ by a line or circle. We begin by making this
notion precise:

Defintion. Let n be a positive integer. Given two curves a(¢) and b(¢) defined on an interval J
containing t, such that a(ty) = b(ty), we say that a and b are strong n'" order approzimations to
each other if there is an € > 0 such that |h| < ¢ and ¢ty + h € J imply

|b(to +h) — a(to+h)| < C|nr*Tt

for some constant C' > 0. The analytic condition on the order of approximation is often formulated
geometrically as the order of contact that two curves have with each other at a given point; as the
order of contact increases, so does the speed at which the curves approach each other. The most
basic visual examples here are the z-axis and the graphs of the curves " near the origin. Further
information relating geometric ideas of high order contact and Taylor polynomial approximations
is presented on pages 87-91 of the Schaum’s Outline Series book on differential geometry (M.
Lipschultz, Schaum’s Outlines — Differential Geometry, Schaum’s/McGraw-Hill, 1969, ISBN 0-
07-037985-8).

LEMMA. Suppose that the curves a(t) and b(t) are defined on an interval J containing to such
that a(ty) = b(ty), and assume also that a and b are strong n'™® order approzimations to each other
at to. Then for each reqular smooth reparametrization t(u) with to = t(ug) the curves a°t and bet
are strong n'® order approzimations to each other at ug.

Proof. Let Jy be the domain of the function ¢(u), and let Kj be a closed bounded subinterval
containing ug such that the latter is an endpoint of Ky if and only if it is an endpoint of Jy;. Denote
the maximum value of |¢/(u)| on this interval by M. Then by hypothesis and the Mean Value
Theorem we have

b(tuo + 1)) — altlug+ )| < Cliuo+h) —tu)"** < CM™ - [hr+

which proves the assertion of the lemma.n

In the terminology of n*® order approximations, if we are given a regular smooth curve x
then a strong first order approximation to it is given by the tangent line with the standare linear
parametrization

L(to + h) = x(to) + hx'(t) .

Furthermore, this line is the unique strong first order linear approximation to x.
Here is the main result on curvature and strong second order approximations.

THEOREM. Let x be a regular smooth curve defined on an interval J containing 0 such that
x' has a continuous second derivative and |x'| =1 (hence x is parametrized by arc length plus a
constant).
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(1) If the curvature of x at 0 is zero, then the tangent line is a strong second order approzimation
to x.

(13) Suppose that the curvature of x at 0 is nonzero, let N be the unit vector pointing in the
same direction as x"(0) (the latter is nonzero by the definition and nonvanishing of the curvature
at parameter value 0). If T is the circle through x(0) such that [1] its center is x(0) + (x(0)) !N,
[2] it lies in the plane containing this center and the tangent line to the curve at parameter value
zero, then T is a strong second order approzimation to Xx.

For the sake of completeness, we shall describe the unique plane containing a given line and
an external point explicitly as follows. If a, b and c are noncollinear points in R? then the plane
containing them consists of all x such that x — a is perpendicular to

(b — a) X (c — a)
which translates to the triple product equation
[(x—a), (b—a), (c-a) = 0.
Suppose now that b; and ¢; are points on the line containing b and ¢. Then we may write
by = ub + (1-u)c, ¢ = vb + (1—-v)c
for suitable real numbers u and v. The equations above immediately imply the following identities:

(by —a) = u(b —a) + (1-u)(c — a)

(¢t —a) = vb —a) + (1-v)(c — a).

These formulas and the basic properties of determinants imply
[(x—a).(b; —a), (c; —a)] =

[(x —a).u(b; —a), v(ci —a)] + [(x—a).(1-u)(bi—a), 1—v)(c: —a)] =
w(x —a), (b—a),(c—-a)] + (1-u)(1-v)[(x—a),(c—a),(b-a)] =
wd — 1—-u)(1—-v)0 = 0

and hence the equation
(x—a), (b—a), (c—a)] = 0

implies the corresponding equation if b and ¢ are replaced by two arbitrary points on the line
containing b and c.m

Proof of Proposition. Consider first the case where k(0) = 0. Then the tangent line to
the curve has equation L(s) = sx’(0) and the second order Taylor expansion for x has the form
x(s) = sx'(0) + 1s2x"(0) + s36(s) where 6(s) is bounded for s sufficiently close to zero. The
assumption x(0) = 0 implies that x”(0) = 0 and therefore we have x(s) — L(s) = s26(s) where
0(s) is bounded for s sufficiently close to zero. Therefore the tangent line is a strong second order
approximation to the curve if the curvature is equal to zero.
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Suppose now that x(0) # 0, and let N be the unit vector pointing in the same direction as

x"(0). Define z by the formula
1

r(0)
and consider the circle in the plane of z and the tangent line to x at parameter value s = 0 such

that the center is z and the radius is 1/k(0). If we set r equal to 1/k(0) and T = x’(0), then a
parametrization of this circle in terms of arc length is given by

z = x(0) +

I'(s) = z — rcos(s/r)N + rsin(s/r)T .

Using the standard power series expansions for the sine and cosine function and the identity z =
x(0) — r N, we may rewrite this in the form

52

I'(s) = x(0) + o

N + s3a(s)N + sT + s36(s)T

where a(s) and 3(s) are continuous functions and hence are bounded for s close to zero. On the
other hand, using the Taylor expansion of x(s) near s = 0 we may write x(s) in the form

2

x(0) + sx'(0) + %x”(O) + $SW(s)

where W (s) is bounded for s close to zero. But x’(0) = T and

so that T'(s) — x(s) has the form s®W(s) where W(s) is a bounded function of s. Therefore the
circle defined by T is a strong second order approximation to the original curve at the parameter
value s = (O.m

Notation. If the curvature of x is nonzero near parameter value s as in the proposition, then
the center of the strong second order circle approximation

is called the center of curvature of x at parameter value s. The circle itsef is called the osculating
circle to the curve at parameter value s (in Latin, osculare = to kiss).

Complementary result. A more detailed analysis of the situation shows that if x£(0) # 0 then
the circle given above is the unique circle that is a second order approximation to the original curve
at the given point.m

Computational techniques

Although the description of curvature in terms of arc length parametrizations is important for
theoretical purposes, it is usually not particulary helpful if one wants to compute the curvature of
a given curve at a given point. One major reason for this is that the arc length function s(¢) can
only be written down explicitly in a very restricted class of cases. In particular, if we consider the
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graph of the cubic polynomial y = z3 with parametrization (¢, 3) on some interval [0, a] then the
arc length parameter is given by the formula

s(t) = /Ot\/mdu

and results of P. Chebyshev from the nineteenth century show that there is no “nice” formula
for this function in terms of the usual functions one studies in first year calculus. Therefore it is
important to have formulas for curvature in terms of arbitrary parametrizations of a regular smooth
curve.

Remarks.

1. The statement about the antiderivative of /1 + 9z is stronger than simply saying that
no one has has been able to find a nice formula for the antiderivative. It as just as impossible to
find one as it is to find two positive whole numbers a and b such that /2 = a/b.

2. A detailed statement of Chebyshev’s result can be found on the web link

http://mathworld.wolfram.com/Integral .html

and further references are also given there.

The following formula appears in many calculus texts:

FIRST CURVATURE FORMULA Let x be a smooth regular curve, let s be the arc length
function, let k(t) = k(s(t)), and let T(t) be the unit tangent vector function obtained by multiplying
x'(t) by the reciprocal of its length. Then we have

T/ (2)]

Derivation. We have seen that T (s) is equal to x/(s), and therefore by the chain rule we have
T'(t) = S@T(s@t) = [ (@)x"(s).

Taking lengths of the vectors on both sides of this equation we see that
IT'@®)] = K@ X'(s)] = X&) k@)

which is equivalent to the formula for k(¢) displayed above.m
Here is another formula for curvature that is often found in calculus textbooks.

SECOND CURVATURE FORMULA Let x be a smooth reqular curve, let s be the arc length
function, let T(t) be the unit length tangent vector function, and let k(t) = k(s(t)). Then we have

[x'() x x"(1)]

S MOk

Derivation. As in the derivation of the First Curvature Formula we have x’ = s'T. Therefore
the Leibniz product rule for differentiating the product of a scalar function and a vector function
yields

xl/ — SHT + S,TI .
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Since T x T = 0 the latter implies
x'xx" = (") (TxT’).

Since |T| = 1 it follows that T - T’ = 0; i.e., the vectors T and T’ are orthogonal. This in turn
implies that |T x T'| is equal to |T|-|T’| so that

Xoxx'| = SRITxT] = R = (T = T
(at the next to last step we again use the identity |T| = 1). It follows that

x/(8) x x"(t)
20k

T|

and the Second Curvature Formula follows by substitution of this expression into the First Curva-
ture Formula.m

Osculating planes

Thus far we have discussed lines and circles that are good approximations to a curve. Given a
curve in 3-dimensional space one can also ask whether there is some plane that comes as close as
possible to containing the given curve. Of course, for curves that lie entirely in a single plane, the
definition should yield this plane.

Given a continuous curve x(t), and a plane II, one way of making this notion precise is to
consider the function A(¢) giving the distance from x(¢) to II. If the point x(¢o) lies on II, then
A(tp) = 0 and one test of how close the curve comes to lying in the plane is to determine the extent
to which the zero function is an n*® order approximation to A(t) for various choices of n. In fact, if
k(to) # 0 then there is a unique plane such that the zero function is a second order approximation
to A(t), and this plane is called the osculating plane to x at parameter value ¢t = ty. Formally, we
proceed as follows:

Definition. Let x(s) be a regular smooth curve parametrized by arc length (so that |x'| = 1),
and assume that k(sg) # 0. Let a = x(0), let T = x'(sp), and let N be the unit vector pointing in
the same direction as x"’(sg). The osculating plane to the curve at parameter value sg is the unique
plane containing the three noncollinear vectors a, a + T, and a + N.

It follows that the equation defining the osculating plane may be written in the form

[(y—a), T,N] = 0.

We can now state the result on the order of contact between curves and their osculating planes.

PROPOSITION. Let x be a regular smooth curve parametrized by arc length (hence |x'| = 1),
assume that x has a continuous third derivative, and assume also that k(sg) # 0. Let II be the
osculating plane of x at parameter value sg, and let A(s) denote the distance between x(s) and II.
Then the osculating plane is the unique plane through x(sg) such that the zero function is a second
order approzimation to the distance function A(s) at sg.

Proof. Let a = x(sg), let T = x'(sg), let N be the unit vector pointing in the same direction
as x"'(sg), and let B be the cross product T x N. Then the oscularing plane is the unique plane
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containing a, a + T, and a + N, and the distance between a point y and the osculating plane is
the absolute value of the function D (y) = (y —a) - B. The second order Taylor approximation to
x(s) with respect to sg is then given by the formula

(s — s0)% k(s0)

5 ‘N + (s—s50)°W(s)

x(s)=a + (s—s9)-T +

where W (s) is bounded for s sufficiently close to sg. Therefore since B is perpendicular to T and
N we have ~
D (x(s)) = (s—s%)°W(s)-B

where W(s) - B is bounded for s sufficiently close to so. Therefore the given curve has order of
contact at least two with respect to its osculating plane.

Suppose now that we are given some other plane through a; then one has a normal vector V
to the plane of the form B+ p T + ¢ N where p and ¢ are not both zero. The distance between x(s)
and plane through a with normal vector V will then be the absolute value of a nonzero multiple of

the function
((x(s) - a)-v)

which is equal to

(s — 80)% K(s0)

g(s —s0) = (s—s0) (T-V) + 9 (N-V) + (3_80)3 (W(s)V) .
We then have (5 s0)
?3—80;)3 " (s —p30)2 + (s_qSO) + (W(s)-V)

where the third term on the right is bounded. But since at least one of p and ¢ is nonzero, it follows
that the entire sum is not a bounded function of s if s is close to sg. Therefore the curve cannot
have order of contact at least two with any other plane through a.m

Torsion

Curvature may be viewed as reflecting the rate at which a curve moves off its tangent line.
The notion of torsion will reflect the rate at which a curve moves off its osculating plane. In order
to define this quantity we first need to give some definitions that play an important role in the
theory of curves.

Definitions. Let x be a regular smooth curve parametrized by arc length plus a constant
(hence |x’| = 1), assume that x has a continuous third derivative, and assume also that x # 0
near the parameter value so. The principal unit normal vector at parameter value s is N(s) =
|x"(s)]7! x"(s). We have already encountered a special case of this vector in the study of curvatures
and osculating planes, and if T(s) = x'(s) denotes the unit tangent vector then we know that
{T(s), N(s) } is a set of perpedicular vectors with unit length (an orthonormal set).

If x is a space curve (i.e., its image lies in 3-space), the binormal vector at parameter value s
is defined to be B(s) = T(s) x N(s). It then follows that { T(s), N(s), B(s)} is an orthonormal
basis for R3, and it is called the Frenet trihedron (or frame) at parameter value s.

One can frequently define a Frenet trihedron at a parameter value sy even if the curvature
vanishes at sg, but there are examples where it is not possible to do so. In particular, consider the
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curve given by x(t) = (¢, 0, exp(—1/t2)) if t > 0 and x(t) = (¢, exp(—1/¢2)0) if t > 0. If we set
x(t) = 0, then x will be infinitely differentiable because for each k > 0 we have

. dF 2

P—»nloﬁ exp(—1/t°) = 0
(this is true by repeated application of L’'Hospital’s Rule) and in fact the curvature is also nonzero
if t # 0 and t? # 2/3. Therefore one can define a principal unit normal vector N(¢) when ¢ # 0
but, say, [t| < 1. However, if ¢ > 0 this vector lies in the zz-plane while if ¢ < 0 it lies in the
zy-plane, and if one could define a continuous unit normal at ¢ = 0 it would have to lie in both of
these planes. Now the unit tangent at ¢ = 0 is the unit vector e;, and there are no unit vectors that
are perpendicular to e; that lie in both the zy- and zz-planes. Therefore there is no way to define
a continuous extension of N to all values of ¢. On the other hand, Problem 4.15 on pages 75-76
of Schaum’s Outline Series on Differential Geometry provides a way to define principal normals in
some situations when the curvature vanishes at a given parameter value.m

One can retrieve the Frenet trihedron from an arbitrary regular smooth reparametrization with
a continuous second derivative.

LEMMA. In the setting above, suppose that we are given an arbitrary reparametrization with
continuous second derivative, and let s(t) denote the arc length function. Then the Frenet trihedron
at parameter value ty is given by the unit vectors pointing in the same directions as T(t), T'(t),
and their cross product. Furthermore, if one considers the reoriented curve y with parametrization
y(t) = x(—t), then the effect on the Frenet trihedron is that the first two unit vectors are sent to
their negatives and the third remains unchanged.

Proof. It follows immediately from the Chain Rule that the unit tangent T remains unchanged
under a standard reparametrization with s’ > 0. Furthermore, the derivation of the formulas for
curvature under reparametrization show that T'(¢) is a positive multiple of x”(s). this proves
the assertion regarding the principal normals. Finally, if we are given two ordered sets of vectors
{a, b} and {c, d} such that ¢c and d are positive multiples of a and b respectively, then ¢ x d is
a positive multiple of a X b, and this implies the statement regarding the binormals.

If one reverses orientations by the reparametrization ¢t — —%, then the Chain Rule implies
that T and its derivative are sent to their negatives, and this proves the statement about the first
two vectors in the trihedron. The statement about the third vector follows from these and the cross
product identity a x b = (—a) x (—b).=

We are finally ready to define torsion.
Definition. In the setting above the torsion of the curve is given by 7(s) = B'(s) - N(s).

This is not quite the same as the definition in do Carmo, so we shall show that our formulation
is equivalent.

LEMMA. The torsion of the curve is given by the formula B'(s) = 7(s) N(s).

Proof. If we can show that the left hand side is a multiple of N(s), then the formula will follow
by taking dot products of both sides of the equation with N(s) (note that the dot product of the
latter with itself is equal to 1). To show that the left hand side side is a multiple of N(s), it suffices
to show that it is perpendicular to T(s) and B(s). The second of these follows because

0 = 5(1) = di(B-B) = 2B-(dd—]:)

S
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and the first follows because

dB d dN dN
— = —(TxN) = N xN Tx—) = T —
ds ds( xN) (KN x )+( de) X(ds)

which implies that the left hand side is perpendicular to T'.m

We had mentioned that the torsion of a curve is related to the rate at which a curve moves
away from its osculating plane. Here is a more precise statement about the relationship:

PROPOSITION. Let x be a regular smooth curve parametrized by arc length plus a constant
(hence |x'| = 1), assume that x has a continuous third derivative, and assume also that k(so) # 0.
Let 11 be the osculating plane of x at parameter value sg. Then the image of x is contained in 11
for all s sufficiently close to sq if and only if the torsion vanishes for these parameter values.

Proof. Suppose first that the curve is entirely contained in the osculating plane for s close to sg.
The osculating plane at sqg is defined by the equation

[(y_a)aT07 NO] =0

where a = x(s9) and Ty and Ny represent the unit tangent and principal normal vectors at
parameter value so. If we set y = x(s) and simplify this expression, we see that the curve x
satisfies the equation

X(S) . B() = a- BO

where By = Ty x Ny. If we differentiate both sides with respect to s we obtain the equation
x'(s) - Bg = 0. Differentiating once again we see that x”(s) - By = 0. Since x'(s) = T(s) and N(s)
is a positive multiple of x”(s) for s close to sy (specifically at least close enough so that k(s) is
never zero), then By is perpendicular to both T(s) and N(s). Therefore B(s) must be equal to
+ By. By continuity we must have that B(s) = By for all s close to sy (Here are the details: Look
at the function B(s) - By on some small interval containing so; its value is +1, and its value at
so is +1 — if its value somewhere else on the interval were —1, then by the Intermediate Value
Theorem there would be someplace on the interval where its value would be zero, and we know this
is impossible). Thus B(s) is constant, and by the preceding formulas this means that its torsion
must be equal to zero.

Conversely, suppose that the torsion is identially zero. Then by alternate description of torsion
in the lemma we know that B'(s) = 0, So that B(s) = Bj. We then have the string of equations

0 = T-By =x-By = dii(x-Bo)

which in turn implies that x - Bg is a constant. Therefore the curve x lies entirely in the unique
plane containing x(s¢) with normal direction By.m

Other planes associated to a curve

In addition to the osculating plane, there are two other associated planes through a point on
the curve x at parameter value sy that are mentioned frequently in the literature. As above we
assume that the curve is a regular smooth curve with a continuous third derivative i arc length
parametrization, and nonzero curvature at parameter value sg.
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Definitions. In the above setting the normal plane is the unique plane containing x(sg),
x(sp) + N(sp), and x(s¢) + B(sp), and the rectifying plane is the unique plane containing x(sg),
x(s0) + T(so), and x(sg) + B(sp). These three mutually perpendicular planes meet at the point
x(sp) in the same way that the usual zy-, yz-, and zz-planes meet at the origin.

Oriented curvature for plane curves

For an arbitrary regular curve in 3-space one does not necessarily have normal directions when
the curvature is zero, but for plane curves there is a unique normal direction up to sign. Specifically,
if x is a regular smooth plane curve parametrized by arc length and B is a unit normal vector to a
plane II containing the image of x, then one has an associated oriented principal normal direction
at parameter value given by the cross product formula

N (s) = B xx(s)

and by construction II is the unique plane passing through x(s), x(s) + x'(s), and x(s) = /I\T(s)
There are two choices of B (the two unit normals for 7 are negatives of each other) and thus there
are two choices for T\T\(s) such that each is the negative of the other. One can then define a signed
curvature associated to the oriented principal normal N given by the formula

k(s) = (x"(s) : N(s))

and Since x”(s) is perpendicular to x’(s) and B this may be rewritten in the form

An obvious question is to ask what happens if k(sg) = 0 (which also equals k(s) in this case)
and the sign of k(s) is negative for s < sy and positive for s > sy. A basic example of this
sort is given by the graph of f(r) = z3 near x = 0, whose standard parametrization is given by
x(t) = (t, t3). In this situation the graph lies in the lower half plane y < 0 for ¢+ < 0 and in the in
the upper half plane y > 0 for ¢ > 0, and the curve switches from being concave upward for ¢ < 0
to concave downward (generally called convez beyond first year calculus courses). More generally,
one usually says that f has a point of inflection in such cases. The following result shows that more
general plane curves behave similarly provided the curvature has a nonvanishing derivative:

PROPOSITION. Letx be a regular plane smooth curve parametrized by arc length plus a constant

(hence |x'| = 1), assume that x has a continuous fourth derivative, let N define a family of oriented
principal normals for x, and assume that that k(so) =0 but k'(sg) > 0. Then x(s) is contained in
the half plane

N (s0)- (v — x(s0) < 0
for s sufficiently close to so satisfying s < so, and x(s) is contained in the half plane

—

N (so) - (y —x(s0)) > 0
for s sufficiently close to sg satisfying s > sg.
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A similar result holds if £'(s¢) < 0, and the necessary modifications of the statement and proof
for that case are left to the reader as an exercise.

Proof. To simplify the computations we shall choose coordinate systems such that x(sg) = 0 and
the plane is the standard coordinate plane through the origin with chosed unit normal vector es.
It will also be convenient to denote the unit vector x'(s) by T(s). We shall need to work with a
third order approximation to the curve, which means that we are goint to need some information
about x"'(sg). Therefore the first step will be to establish the following formula:

—

E'(so) = x"'(so) -+ N (so)

To see this, note that

(x'"(s) : N(s)) + (x"(s) - N'(9)) = (x"(s) - N(9)) + (N(s) - N'(s))

and the second summand in the right hand expression vanishes because |I\T\|2 is always equal to 1
(this is the same argument which implies that the unit tangent vector function is perpendicular to
its derivative).

Turning to the proof of the main result, the preceding paragraph and earlier consideration
show that the curve x is given near sy by the formula

k(s) (s —s0)? < (s — s0)3

x(s) = (5= 50)T(so) + 200 W(s) + S x"(s0) + (5= 50)"0(s)

where 6(s) is bounded for s suffieicntly close to zero. To simplify notation further we shall write
As =s— 3.

If we take the dot product of the preceding equation with /I\T(so) we obtain the formula, in

which y(s) is the dot product of 6(s) and ﬁ(so), so that y(s) is also bounded for s sufficiently
close to sg:

(xt)- N(0)) = 8 (a2 4 y(s) (29"

If s is nonzero but sufficiently close to zero then the sign of the right hand side is equal to the sign
of As because

(7) the sign of the first term is equal to the sign of As,
(1) if we let M be a positive upper bound for |y(s)| and further restrict As so that

K'(s0)
63

|As| <

then the absolute value of the second term in the dot product formula will be less than
the absolute value of the first term.

It follows that the sign of the dot product



is the same as the sign of the inital term

K'(s0)

30 (As)3

which in turn is equal to the sign of As. Since the dot product has the same sign as As for s # 0 and
s sufficiently small, it follows that x(s) lies on the half plane defined by the inequality y- N (s9) < 0
if s < 89 and x(s) lies on the half plane defined by the inequality y - N (s¢) > 0 if s > s(.m

In fact, the center of the osculating circle also switches sides when one goes from values of s
that are less than sg to values of s that are greater than sg. However, the proof takes considerably
more work.

COMPLEMENT. In the setting above, let z(s) denote the center of the osculating circle to x at
parameter value at parameter value s # sg close to so (this exists because the curvature is nonzero
at such points). Then z(s) is contained in the half plane

—

N (s0) - (y —x(s0)) <0

for s sufficiently close to sy satisfying s < s, and z(s) is contained in the half plane

—~

N (s0) - (y —x(s0)) >0
for s sufficiently close to sy satisfying s > sg.

Proof. We need to establish similar inequalities to those derived above if x(s) is replaced by
z(s); note that the latter is not defined for parameter value so because the formula involves the
reciprocal of the curvature and the latter is zero at sg.

The center of the osculating circle at parameter value s # sy was defined to be x + k!N,
where N is the ordinary principal normal; we claim that the latter is equal to x + EIN. By
definition we have e

x' = kN = kN

and since Kk = *+k is nonzero we know that x2 = k2.

common quantity yields the desired formula

Dividing the displayed equation by this

k"IN = ETIN .

Therefore the proof reduces to showing that the sign of

is equal to the sign of As.

Using the formula for x(s) near so that was derived before, we may rewrite the preceding
expression as

h(s) = "“'gj‘)) (As)® +y(s) (As)* + ﬁﬁ(s) - N (so) -

We need to show that h(s) has the same sign as k(s) and its reciprocal, and this will happen if

(o) = ho) g = APy (8 + s N - (Rieo) - R(o))
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is bounded for s # s sufficiently close to zero. To see, this, suppose that |[/(s)| < A for some
A > 0. If we then choose § > 0 so that |k(s)| < 1/A for for |As| < § but As # 0, if will follow that

As > 0 = h(s) = %—I—(h(S)—%) > A+ (-4 > 0

and similarly with all inequalities reversed and A switched with —A if As < 0.

In order to prove that £(s) is bounded, it suffices to prove that each of the three summands
is bounded for, say, |As| < r. The absolute value of the first is bounded by k’(sg) 73/6 and the
absolute value of the second is bounded by Br* where B is a positive upper bound for |y(s)|. By
the Cauchy-Schwarz inequality the absolute value of the third is bounded from above by

— —

N(s) — N(so)
|k (s)|

and using the Mean Value Theorem we may estimate the numerator and denominator of this
expression separately as follows:

(2) ﬁ(s) — /l\f(s()) < P-|As|, where P is the maximum value of |T\T\,\ on [sg — 1, S + 7.

(i1) k(s) = k'(S1) As for some S; between sg and s, so if we choose r so small that &' > 0 on
[so — T, so + 7], then |k(s)| > Q As, where @ > 0 is the minimum of k£’ on that interval.

It then follows that the quotient P/@ is an upper bound for the absolute value of the third term in
the formula for £(s), and therefore the latter itself is bounded. This completes the proof that z(s)
lies on the half plane described in the statement of the result.m

26



I.5: Frenet-Serret Formulas

(do Carmo, §§1-5, 1-6, 4—Appendix)

The Frenet-Serret Formulas describe the derivatives of the three fundamental unit vectors in
the Frenet trihedron associate to a curve.

FRENET-SERRET FORMULAS. Letx be a reqular smooth curve parametrized by arc length
(hence |x'| = 1), assume that x has a continuous third derivative, and assume also that k(so) # 0.
Let T(s), N(s) and B(s) be the tangent, principal normal and binormal vectors in the Frenet
trihedron for x at parameter value sg. Then the following equations describe the derivatives of the
vectors in the Frenet trihedron:

T = s N
N = — KT - 7B
B' = TN

Proof. We have already noted that the first and third equations are direct consequences of the
definition of curvature and torsion. To derive the second equation, we take the identity N = B x T
and differentiate it with respect to s:

N'(s) = B'(s)xT(s) + B(s) xT'(s) =

7(s) (N(s) x T(s)) + & (B(s) x N(s))

Since T, N and B are mutually perpendicular unit vectors such that B = T x N, as usual the
“BAC-CAB?” rule for threefold cross products implies that N x T = —B and B x N = —T. If
we make these substitions into the displayed equations we obtain the second of the Frenet-Serret
Formulas.m

The signifiance of the Frenet-Serret formulas is that they allow one to describe a curve in terms
of its curvature and torsion in an essentially complete manner.

LOCAL UNIQUENESS FOR CURVES. Suppose that we are given two regular smooth curves
x andy defined on the same interval containing so, where both curves are parametrized by arc length,
both have continuous third derivatives and everywhere nonzero curvatures, and their curvature and
torsion functions of both curves are equal. Then there is a rigid motion ® of 3-dimensional space
such that y = ®°x.

A rigid motion of R? or R? is a 1-1 and onto mapping ¢ such that
|®(b) — ®(a)] = [b — a|
for all vectors b and a. In linear algebra it is shown that every such rigid motion has the form
o(x) = Ax+c
where ¢ is some fixed vector and A is an orthogonal matrix (i.e., its rows and columns are or-
thonormal sets — actually, the rows are orthonormal if and only if the columns are, but we do not

need this right now).
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Proof. Let e, e and e3 be the standard unit vectors. We shall only consider the simplified
situation where x(sg) = y(0) = 0 and the Frenet trihedra for x and y at parameter value sy are
given by e, e; and e3 (one can always use a rigid motion to move the original curves into such
positions, and the motion will not change the curvature or torsion of either curve — this is not
really difficult to prove but it is a bit tedious and distracting).

Let { Tx(s), Nx(s), Bx(s)} and { Ty(s), Ny(s), By(s)} be the Frenet trihedra for x and y
respectively, and let

g(s) = |Tx(s) = Ty(s)|* + |Nx(s) = Ny(s)|* + [Bx(s) = By(s)]” .

By the Frenet-Serret Formulas we then have that ¢’ is equal to

2(((Tx_Ty)'(T;<_TIy)) +((Nx_Ny)'(N;c_le)) + ((Bx—By)'(B;_B;’))> =
2<<K(Tx—Ty)-(Nx—Ny)) + (T(Bx—By)-(Nx—Ny)) _

(5 (Nx = Ny) - (T = Ty) ) - (T<Nx—Ny)-<Bx—By>)).

It is an elementary but clearly messy exercise in algebra to simplify the right hand side of the
preceding equation, and the expression in question turns out to be zero. Therefore the function g
must be a constant, and since our assumptions imply g(sg) = 0, it follows that g(s) = 0 for all s.
The latter in turn implies that each summand

ITx — Ty|* , [Nx —Ny[* , [Bx — By

must be zero and hence that the Frenet trihedra for x and y must be the same. The first Frenet-
Serret Formula then implies x’ = y’, and since the two curves both go through the origin at
parameter value sq it follows that x and y must be identical.m

There is in fact a converse to the preceding result.

FUNDAMENTAL EXISTENCE THEOREM OF LOCAL CURVE THEORY. Given
sufficiently differentiable functions k and T on some interval (—c, c) then there is an h € (0,¢) and
a sufficiently differentiable curve x defined on (0,h) such that x(0) = 0, the tangent vectors to x
at all point have unit length, the Frenet trihedron of x at 0 is given by the standard unit vectors

(T(0), N(0), BO)) = (e1, e, €5)

and the curvature and torsion functions are given by the restrictions of k and T respectively.m

This is a consequence of the fundamental existence theorem for systems of linear differential
equations. If the curve exists, then the Frenet-Serret formulas yield a system of nine first order
linear differential equations for the vector valued functions T, N, and B in the Frenet trihedron

T = s N
N' = — kT — 7B
B' = TN
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and if one is given k and 7 the goal is to see whether this system of first order linear differential
equations can be solved for T, N, and B, at least on some smaller interval (—h, h). If one has such
a solution then the curve x can be retrieved using the elementary formula

x(s) = /0 T(u) du

where [s| < h (with the usual convention that [J = — fso if s < 0). A proof of the existence
of a solution to the system of differential equations is given on pages 309-311 in the Appendix to
Chapter 4 of do Carmo.m

The preceding two results combine to yield the Fundamental Theorem of Local Curve
Theory:

Given k and T as in the statement of the Existence Theorem, an initial vector x¢ and an orthonormal
set of vectors (a, b, ¢) such that a x b = ¢, then there is a positive real number hy and a unique
(sufficiently differentiable) curve x such that the tangent vectors to x at all point have unit length,
the Frenet trihedron of x at 0 is given by the standard unit vectors

(T(0), N(©), B(0)) = (a b, c)

and the curvature and torsion functions are respectively given by the restrictions of k and 7 to
(=h1, h1)m

Since plane curves may be viewed as space curves whose third coordinates are zero (and whose
torsion functions are zero), the Fundamental Theorem of Local Curve Theory also applies to plane
curves, and in fact the Fundamental Theorem amounts to saying that there is a unique curve with
a given (nonzero) curvature function &, initial value x¢ and initial unit tangent vector Ty; in this
case the principal normal Ny is completely determined by the. perpendicularity condition and the
Frenet-Serret Formulas.

Local canonical forms

One application of the Frenet-Serret formulas is a description of a strong third order approxi-
mation to a curve in terms of curvature and torsion.

PROPOSITION. Let x be a regular smooth curve parametrized by arc length plus a constant
(hence |x'| = 1) such that x has a continuous fourth derivative and k(0) # 0, and let { T, N, B }
be the Frenet trihedron at parameter value s = 0. Then a strong third order approximation to X is

given by
$2K2 s’k sk 3kt
x(0)+(s— 3!>T+(7—I—T>N+ 5 B

Proof. We already know that x'(0) = T and x”(0) = x N. It suffices to compute x”’(0), and the
latter is given by
(I‘LN)I = KN 4+ kN’ = N - T — k7B

where the last is derived using the Frenet-Serret Formulas.m
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Two significant applications of the canonical form for the strong third order approximation
appear on pages 28-29 of do Carmo. The proofs are elementary and contained on these pages of
the text.

APPLICATION 1. In the setting above, if T(0) > 0 then the point x(s) lies on the side
of the osculating plane defined by the inequality (y —x(0)) - B < 0, when s < 0 and s is suf-
ficiently close to 0, and x(s) lies on the side of the osculating plane defined by the inequality
(y —x(0)) - B > 0 when s > 0 and s is sufficiently close to 0. Similarly, if 7(0) > 0 then the
point x(s) lies on the side of the osculating plane defined by the inequality (y — x(0)) > 0, when
s < 0, and x(s) lies on the side of the osculating plane defined by the inequality (y — x(0)) <
pointx(s)liesontheothersideoftheosculatingplane(.m

APPLICATION 2. In the setting above, if s # 0 is sufficiently close to zero then x(s) lies on
the side of the rectifying plane defined by the inequality

(y —x(0)) N>0 =

Regular smooth curves in hyperspace

During the nineteenth century mathematicians and physicists encountered numerous questions
that had natural interpetations in terms of spaces of dimension greater than three (incidentally,
in physics this began long before the viewing of the universe as a 4-dimensional space-time in
relativity theory). In particular, coordinate geometry gave a powerful means of dealing with such
objects by analogy. For example, Euclidean n-space for and arbitrary finite n is given by the
vector space R™, lines, planes, and various sorts of hyperplanes can be defined and studied by
algebraic methods (although geometric intuition often plays a key role in formulating, proving, and
interpreting results!), and distances and angles can be defined using a simple generalization of the
standard dot product. Furthermore, objects like a 4-dimensional hypercube or a 3-dimensional
hypersphere can be described using familiar sorts of equations. For example, a typical hypercube
is given by all points x = (z1, T2, T3, z4) such that 0 < z; < 1 for all ¢, and a typical hypersphere
is given by all points x such that

2 2 2 2 2
x| = 27 + 25 + 25 + 7 = 1.

A full investigation of differential geometry in Euclidean spaces of dimension > 4 is beyond the
scope of this course, but some comments about the differential geometry of curves in 4-space seem
worth mentioning.

One can define regular smooth curves, arc length and curvature for parametrized 4-dimensional
curves exactly as for curves in 3-dimensional space. In fact, there are generalizations of the Frenet-
Serret formula and the Fundamental Theorem of Local Curve Theory. One complicating factor
is that the 3-dimensional cross product does not generalize to higher dimensions in a particularly
neat fashion, but one can devolop algebraic techniques to overcome this obstacle. In any case,
in four dimensions if a sufficiently differentiable regular smooth curve x is parametrized by arc
length plus a constant and has nonzero curvature and a nonzero secondary curvature (which is
similar to the torsion of a curve in 3-space), then for each parameter value s there is an ordered
orthonormal set of vectors F;(s), where 1 < i < 4, such that F; is the unit tangent vector and the
sequence of vector valued functions (the Frenet frame for the curve) satisfies the following system
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of differential equations, where k1 is curvature, ko is positive valued, and the functions k1, K2, K3,
all have sufficiently many derivatives:

Fa = K1 F2

FIZ = - kK + kKoF3

Fg = —K2 F2 + K3 F4
Fﬁl = —KRK3 F3

The Fundamental Theorem of Local Curve Theory in 4-dimensional space states that locally
there is a unique curve with prescribed higher curvature functions k1 > 0, k2 > 0 and k3, prescribed
initial value x(sg), and whose Frenet orthonormal frame satisfies F;(sq) = v; for some orthonor-
mal basis {vi, v, v3, v4 }. An online description and derivation of such formulas in arbitrary
dimensions is available at the site

http://www.math.technion.ac.il/ rbrooks/dgeol.7.ps

and a discussion of such formulas in complete generality (i.e., appropriate for a graduate level
course) appears on page 74 of Hicks, Notes on Differential Geometry.
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I1. Closed Cuves as Boundaries

Nineteenth century techniques provided powerful means for analyzing curves quantitatively and
locally. However, by the end of the nineteenth century mathematicians and users of mathematics
encountered several questions of a more qualitative nature for closed curves. The difference between
local and global properties is characterized very well on the first paragraph of page 34 of Stoker,
Differential Geometry: A global property is one that cannot be studied by only examining the curve
near each point or parameter value.

Let us agree that a regular smooth closed curve of class C" (where 1 < r < o) is a regular
smooth curve x : [a,b] — R™, where n = 2 or 3, such that for each k¥ < r the k*® derivatives at
a and b are equal (if 7 = oo the inequality should be k < 7). Such a curve is said to be a simple
closed curve if x(t1) # x(t2) for t; # t2 unless t; = a and t5 = b or vice versa; in other words, it
never goes through the same point twice except at the endpoints.

Here is an example of a global property that is “intuitively obvious” but definitely not easy
to prove from scratch. For plane curves, examples strongly suggest that the following statement is
true:

JORDAN CURVE THEOREM. Let C be the image of a reqular smooth closed curve in R2.
Then the points of the plane not in C are contained in one of two regions A and B such that

(1) if two points are either in A or in B, then there is a reqular smooth curve joining them
which lies entirely in A or B respectively,

(74) there is a suitably large disk about the origin that contains one of the regions (the inside
region) and the curve itself, but there is no such disk that contains the other one (the inside region),

(731) if one point lies in A and the other lies in B, then every regular smooth curve joining the
two points must also pass through a point of C.

The best way to understand the meaning of this result is to sit down and draw all sorts of
closed curves in the plane. Each of them looks as if it has an inside region and an outside region,
just like a circle. For a circle it is easy to describe the inside and outside explicitly; one is the set
of all point whose distance from the center less than the radius, and the other is the set of point
whose distance from the center is greater than the radius. In other relatively simple cases one can
similarly describe the inside and outside regions using explicit inequalities (the reader is invited
to try this with some basic examples and also to do so for piecewise smooth closed curves such as
triangles), but in general it is hopeless to search for such descriptions. An excellent example in this
connection is given online at the site

http://ccins.camosun.bc.ca/~jbritton/fishmaze.pdf

which also indicates the relative difficulty of determing whether two points not on the curve lie
in the same or different regions. Clearly one needs additional means to attack such questions
successfully.

Although the validity of the Jordan Curve Theorem was surely believed by many mathemati-
cians and users of the subject for a long time and proofs in wide ranges of special cases were well
understood, attempts to give a mathematically rigorous proof of a general result along these lines
did not begin until quite late in the nineteenth century, and the first complete proof was given by
O. Veblen during the first decade of the twentieth century. In fact, he proved the result under the
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weaker hypothesis that the simple closed curve is merely continuous. A subsequent result of A.
Schonflies yielded much stronger conclusions, including a fairly explicit description of the inside
region associated to the simple closed curve. One objective of this section is to review and augment
the concepts and results from multivariable calculus that are needed to formulate one version of the
Schonflies Theorem. Another is to consider some applications of the Jordan Curve and Schonflies
Theorems to studying the global properties of smooth regular closed curves.

The Jordan Curve Theorem is proved in many topology textbooks. A proof for smooth curves
using ideas from differential geometry is given in Section 16 of the clasic text by J. J. Stoker
(Differential Geometry, etc.). The Schonflies Theorem is somewhat more difficult to locate in
textbooks; we shall discuss one proof of this result in the files schoenflies.* that are stored in the
course directory, but this proof requires material from the texts for the Department’s graduate level
courses in topology and complex analysis. A concise but very informative summary of the history
of the Jordan Curve Theorem, the Schonflies Theorem and their analogs in higher dimensions is
available online at the site

http://math.ohio-state.edu/ fiedorow/math655/Jordan.html
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II.1: Regions, limits and continuity

(do Carmo, 2-Appendix A, 5-Appendix)

In the discussion of the Jordan Curve Theorem we mentioned the concept of a region without
saying exactly what we meant. The first order of business is to make this precise.

When working with continuous functions of a single real variable, there are only a few reason-
able choices for the sets on which most functions in elementary calculus are defined. Namely, for
most purposes the right sets to consider are intervals of some sort, the main choices being whether
the intervals have left or right hand endpoints or are bounded or unbounded either to the left or
to the right. For continuous functions of two or more variables, the situation is far more compli-
cated even if we restrict ourselves to sets defined by reasonable inequalities (note that intervals are
defined by one or more inequalities, each of which may or may not be strict). Further discussion
and an example appear on pages 838-839 of Calculus (Seventh Edition), by Larson, Hostetler and
Edwards, and Exercises 17-28 on page 846 of that book provide further examples for consideration.

In two or more dimensions, boundary sets can be extremely difficult to analyze. This contrasts
sharply with the 1-dimensional situation, where the boundary generally consists of finitly many
points. Most of the special plane curves described in the links at the beginning of Unit I are
boundaries (or pieces from the boundaries) of fairly decent regions, but one can also go further and
view most of the fractal curves from the references in Section 1.3 as boundaries of regions that are
not all that terrible. Mathematicians want and need to understand just how bad boundaries can be,
and during the past 80 years they have developed a large array of methods for constructing regions
whose boundaries are extremely wild. The subject of fractal geometry deals with some special
types of irregular boundaries that are “not too wild” in an appropriate sense. If one goes from
two dimensions to three, the variety of bizarre possibilities increases dramatically (the previously
mentioned site on the Jordan Curve Theorem has some particularly striking pictures). For these
reasons it is frequently convenient to focus on the interior (non-boundary) points of regions, and
formally one does this as follows:

Definition. Let n = 2 or 3 (actually,everything works for all n > 2, but in this course we are
mainly interested in objects that exist in 2- or 3-dimensional space. A subset U of R™ will be called
a connected open domain provided

1) for each P € U there is an r > 0 such that the open disk or ball or neighborhood
g
centered at P with radius equal tor

N, = {acR"|la - pl <1}

is entirely contained in U,

(17) for each pair of points p and q in U there is a piecwise smooth curve I' defined on [0, 1]
and taking values entirely in U such that I'(0) = p and I'(1) = q.

Most of the subsets of R™ that are defined by finitely many strict polynomial inequalities of
the form p;(y) < a; satisfy (i), and either they satisfy (i7) or else they can be split into pairwise
disjoint pieces such that (7¢) holds on each of the pieces. Of course, these ssets include a vast
number of central examples in multivariable calculus.

It is only necessary to make a few minor adjustments in order to work with limits and continuity
on connected open domains. Once again the basic idea is that a function f is defined for all points
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sufficiently close to a pont a in some regions except perhaps at a itself. Since we are dealing with
an open domain U this amounts to saying that there is some r > 0 such that the function is defined
on the deleted neighborhood

N.(a) — {a} = {xER”

0<|x—a|<r}.

One may then say that
lim f(x) = b

X—a

if and only if
for every € > 0 there is a 6 > 0 such that x # a and |x — a| < ¢ imply |f(x) — b| < e.

Continuity at a then means that

lim f(x) = f(a)

xX—a

exactly as in the (opaque to the beginner) definitions from first year calculus.

Further discussion, including examples, pictures and exercises for review, may be found in
Section 12.2 of Calculus (Seventh Edition), by Larson, Hostetler and Edwards, and pages 115-124 of
Basic Multivariable Calculus, by Marsden, Tromba and Weinstein (full bibliographical information
on these books appears in the online files background.* mentioned at the beginnning of these
notes.

Limits and continuity for vector valued functions will also play an important role in this course.
The quickest way to address this point is to say that a vector valued function has a limit if and
only if each of its coordinate functions does, and in this case the limit of the vector valued function
is the vector whose coordinates are the limits of the coordinate functions.

VECTOR LIMIT FORMULA. Let F be a vector valued function defined on a deleted neigh-
borhood of a, let f; denote the it* coordinate function of F, and suppose that

lim fi(z) = b

X—a

holds for all i. As usual let e; denote the it" unit vector in R™. Then we have
lim Fy(z) = z_; b;e; =

This has an important consequence:

CONTINUITY AND COORDINATE FUNCTIONS. In the notation as above, assume
that all fucntions are also defined at a. Then F is continuous at a if and only if for each i, the
coordinate function f; is continuous at a.m

Alternative approach

Here is another way of looking at limits that is an even more direct generalization of ideas
from single variable calculus. Given a sequence {xj of vectors in R"” we can define the limit of
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the sequence to be the vector whose i coordinate is the limit of the numerical sequence { P;(x}) }

where P; denotes the operation of taking the i*® coordinate of a vector. We then have the following
characterization:

LIMITS AND SEQUENCES. LetF be a vector valued function defined on a deleted neighbor-

hood of a. Then
limF(x) = b

xX—a

if and only if for each sequence of vectors { xy in the deleted neighborhood of a whose limit is a we
have

lim F(xx) = b .=

k—o0

There is a similar statement for continuity; writing down the precise statement of the result is
left to the reader.m
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I1.2: Smooth mappings

(do Carmo, 2-Appendix B)
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I1.3: Inverse and implicit function theorems

(do Carmo, 2-Appendix B)

38



II.4: Global properities of plane curves

(do Carmo, §1-7)
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