TEX Made Easy

Using TEX With The Plain Macro Package

Daniel M. Zirin

(©1993 Zar Limited

Version: 1.2
Published by Zar Limited, P.O.Box 13107, Denver, CO 80201, U.S.A..

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior written permission of the author
and the publisher.

The TEX macros presented in this book have been included for their instructional
value. They have been tested with care but are not guaranteed for any particular
purpose. The author does not offer any warranties or representations, nor does it
accept any liabilities with respect to the macros.

TEX is a trademark of the American Mathematical Society.

TEX Made Easy Preface Zar Limited

Preface

When I was asked to give a full-fledged TEX course in early 1987, I had to
decide what my objectives were. After teaching a one day TEX seminar in 1985, 1
realized that to achieve anything, I needed several days of one to two hour classes.

My first thought was to use Donald Knuth’s “The TEXbook” to teach the
course. But after using TEX since 1981 and tutoring users for several years, I'd
received numerous requests for a small “TEX User’s Guide” to quickly get started
on the typesetting road. The users I dealt with were usually graduate students or
secretaries in Chemistry interested in spending as little time as possible to start
typesetting sophisticated math formulae as well as continue to generate memos and
letters using existing templates. For this reason, I decided it was time for a new
approach.

Once committed to writing my own text, I had to make some objectives.
My audience would be mostly secretaries with a few students (undergraduate and
graduate) and faculty members. Knowing that most of the people had experience
with some type of computer, I assumed prior knowledge of how to use an editor
but made no assumptions about their knowledge of word-processors (not just ig-
norance of TgX). I also felt it was necessary to make sure they lost no standard
word-processing functions needed to make simple letters, memos, and tables while
exposing them to the real reason to use TEX: math equations. Finally, to pique the
interest of those that absorbed all I could give them, I finished the text with some
“neat” macros to get them interested in further pursuing the joys of TEX.

The outline I used for the first course used five days for a ten hour class (two
hours a day). The first day covered basic TEX and how to get started and was
unchanged for the final out-line. The second and third days of the original course
mixed standard text processing, math, and display modes. This became confusing
so the final outline uses the second day to discuss text processing and the third day
to discuss math and display modes. The forth day stayed more or less the same
covering alignment (tables). The fifth day was initially used to cover questions and
typesetting needs not covered by the previous days text. For this reason, you may
find the material covered in the last day’s text to be random in nature without much
flow or direction. However, the questions asked by users after the fifth day were far
fewer than after the first course (and a great deal more obscure).

The font used to typeset this document, Computer Modern Roman ten point
lettering magnified 44% (magstep2), was used to generate glossies for an overhead
viewer. If you should happen to be appointed head TEX guru and find it necessary
to give your own class, feel free to use “TEX Made Easy” as your course notes as
a supplement to Donald E. Knuth’s “The TEXbook”. Whenever the user has a
question about one of the topics in “TpX Made Easy”, refer to the bottom of the
page where you will find a refernce to a page in “The TEXbook” for further detailed
information. Together, “TpX Made Easy” and “The TEXbook” make a beautiful
pair!

The Great Zar

Zar Limited Acknowledgements TEX Made Easy

Acknowledgements

I wish to thank my loving mother, Dr. Mary F. Zirin, for her endless proof-
reading and grammar help. My sister, Dana, should be thanked for helping me find
a new name for this book. Thanks should be given to my wife Diane for her patience
and love. I'd like to thank Barbara Beeton and Michael Eck for their assistance with
technical errors. And finally, I wish to thank Robert Messer of Albion College for
suggestions, comments, and help in detecting technical errors.

If the reader is interested in other more professional works by Zirin’s, may I
direct you to ‘Astrophysics Of The Sun’ by Harold Zirin published by the Cambridge
University Press in 1988 (ISBNs 0-521-30268-4 and 0-521-31607-3). For those
not interested in seeing the light, I suggest ‘The Cavalry Maiden’ by Nadezhda
Durova translated by Mary Zirin published by the Indiana University Press in 1988
(ISBN 0-253-31372-4). Dare I also mention my wife’s thesis on ‘Calculation of

e —H Scattering Processes using Hyperspherical Coordinates’ by Diane Hood at
the California Institute of Technology in 1986. Perhaps my sister will get into the
act someday!

i1

TEX Made Easy
Using TEX With The Plain Macro Package

Day 1

Daniel M. Zirin Instructor

(©1993 Zar Limited

Zar Limited Day One TEX Made Easy
What Is TEX?

TEX! is a computerized typesetting program which was de-
veloped by Donald E. Knuth of Stanford University. TEX’s ca-
pabilities include:

e Standard text formatting such as left and right justifica-
tion, automatic page breaks, paragraph indentation, pro-
portional spacing, automatic word hyphenation, etc.

e Ligature replacements (‘fifty’ is replaced with ‘fifty’ and
‘fluffier’ is replaced with ‘fluffier’).

e Generating math expressions.

e Generating tables (also known as alignment).

e Permitting the use of macros (also known as definitions).
TEX reads a standard ASCII text file as input, formats the text
with TEX commands, and generates an output file with printer
instructions (known as a DVI file). TgX is a post-processor
program, not a WYSIWYG program (What You See Is What
You Get). There are, in addition to TEX, programs which will
read a DVI file and display your formatted text on a variety of
terminal screens and printers.

The Campus Computing Organization has purchased site-
licenses for MicroTEX? (a PC-DOS version of TEX), a few DVI
programs, one of which is called DVIPS3, to generate output
for the Apple Laserwriter laser printer), and PREVIEW? (a
PC-DOS graphics screen preview program). Other versions of
TEX exist for hundreds of different computers and operating
systems.

1 TRX is a registered trademark of the American Mathemat-
ical Society.

2 Available from Addison-Wesley Publishing Company, Inc.

3 Available from ArborText, Inc. (a.k.a. Textset, Inc.)

2

TEX Made Easy Day One Zar Limited

How TEX Is Used

The typical TEX user will follow the steps below when gen-

erating a paper:

1)

3a)

3b)

Editing
Use an editor which generates ASCII output to create or

modify a file containing the text of the paper with embed-
ded TEX commands.

TeX
Leave the text editor and start processing the file with the

TEX program. The TEX program will create a DVI (DeVice
Independent) output file.

DVI

With the DVI file and a graphics terminal screen, first pro-
cess the DVI file with a previewer (if one is available) to
check for obvious errors before generating a printed hard-
copy of your formatted text. This will save you time and
paper.

Process the DVI file with a DVI-to-printer program. These
programs typically process a DVI file and generate an ad-

ditional output file your printer will understand. I will call
this output file ‘PINPUT".

Print

Print the ‘PINPUT’ file created in step 3b on the desired
printer.

Zar Limited Day One TEX Made Easy

Editing Your Input File

To start generating a TEX input file, you should reacquaint
yourself with your keyboard. If you are still using a lower case
‘I’ to type the number ‘1°, change today.

Spacing ¢ When TEX encounters multiple spaces, all but one
space is ignored. TEX will automatically add a little extra space
when a sentence ends (a lowercase letter followed by a period
followed by a space signifies the end of a sentence). If a fixed
number of spaces are needed, use the TEX command backslash
space (‘\ ’) to generate a forced space. It is also important to
know that TEX considers the end of a line (<KRETURN>) to be
a space.

Indentation e If TEX encounters a blank line, a new indented
paragraph is started automatically and the blank line removed.
TEX will treat a series of blank lines like a single blank line.

Quotation ¢ When you want to quote a phrase, TEX uses and
understands all three quote marks on your keyboard (left & right
single quote and double quote). To generate the quoted phrase,
“I couldn’t understand.”, you should use two left single quotes
before and two right single quotes after the text of the phrase.
If you need a right single quote followed by a right double quote,
you should type:
. to leave us.’\thinspace’’

The double-quote key produces the same result as two single
right quotes.

Hyphenation e Hyphens, dashes, and minus signs are visi-
bly different. To generate a hyphen (for compound words),
type one minus key. To generate an en-dash (used for number
ranges), type two minus keys. To generate an em-dash (used
for sentence punctuation), type three minus keys. And finally,
to generate the minus sign used in math formulas, type one
minus key preceded and followed by a dollar sign.

TEX Made Easy Day One Zar Limited

Editing Your Input File (Continued)

The Tie e Finally, when entering text, you should never split
words across lines since TEX does this for you. TEX determines
how to split lines by first trying to break a line where a space
is encountered. If the result creates large gaps between words,
TEX starts trying to hyphenate words. This algorithm means
that TEX could split a line in the middle of a name. To keep
TEX from doing this, use the tilde (‘") instead of a space where
you want to discourage TEX from breaking lines. For example,
Prof.”"David A."Miller
will keep TEX from breaking a line between ‘Prof.” and ‘David’
as well as between ‘A.” and ‘Miller’. The tilde (called a tie)
can also be used to keep TEX from placing extra space after the
period in ‘Prof.” because TEX considers it the end of a sentence.

A Sample Input File

1:0nce upon a time, in a distant

2:galaxy, there lived a man known as Yoda.
3:

4:This man

5:was short and ugly and had huge
6:warts on his

7:nose.

8:

9:

10:Not a happy man at all.

The Result
Once upon a time, in a distant galaxy, there lived a man
known as Yoda.
This man was short and ugly and had huge warts on his
nose.
Not a happy man at all.

Zar Limited Day One TEX Made Easy
Commands

The first thing you need to learn is how to speak to TEX.
TEX treats everything except TEX commands as text. A com-
mand always starts with a prefix character (a backslash) fol-
lowed by a series of letters (a word) or a single non-letter.

e Word commands cannot use numbers. A word command is

a backslash followed by one or more letters (a-z and A-Z).

e Word commands are case sensitive. \Input is not the same
as \input.

e TEX ignores spaces after word commands. If you need a
space to follow a word command, add a backslash-space

(‘\ ’) or an open-curly-bracket close-curly-bracket (‘{}’).

Some examples of what TEX word commands might look like:

Command Word Command Word
\input ‘input’ \Bigl ‘Bigl’
\TeX ‘TeX’ \alphal23 ‘alpha’
\pi~2 ‘pi’ \bullet a ‘bullet’
\TeX\ it ‘TeX’ ¢ \gamma{ }Ef ‘gamma’

Some examples of what TEX character commands might look
like:

Command Character Command Character
\& ‘&’ \$ ‘%’
\ * €% \, €,

(See page 7 of the TEXbook! for more information.)

L Written by Donald E. Knuth and published by Addison-
Wesley Publishing Co. & the American Mathematical Society.

6

TEX Made Easy Day One Zar Limited
Special Characters

As you may have already guessed, TEX assigns some char-
acters (such as a backslash) special meanings. The following
table lists all special characters and tells how to generate the
character desired with TEX commands:

Sym Special TEX Meaning Replace With
\ Command prefix. \backslash
{ Start of a group. $\{$
} End of a group. $\}$
$ Start math or display mode. \$
& Separate columns in a table. \&

Parameter for definitions or tables. \#
" Superscript in math mode. \"{}
_ Subscript in math mode (underscore). \-
% Used for adding comments in TEX. \%
~ Put a space in this location and \~{}
don’t break a line here.
< w/out the dollar signs, TEX makes . $<$
> w/out the dollar signs, TEX makes ;. $>$

The symbols backslash (‘\’), right & left curly bracket (‘{’, ‘}’),
hat (‘**’), underscore (‘_’), and tilde (‘7’) are rarely used sepa-
rately. Most of the other symbols are preceded by a backslash.
The percent sign will stop the rest of the text line from

being processed. For example, typing

. was 75% of market value.
in your text file will produce ‘... was 75’. In this case, you
should type

. was 75\% of market value.

to produce the desired result.

(See page 37 of the TEXbook for more information.)

Zar Limited Day One TEX Made Easy
Accents
To generate an accent above or below a character, you

should precede the letter with an appropriate TEX accent com-
mand. For example, if I wanted the word

Cesaro
to have the grave accent, I would type
Ces\‘aro
If I want to create
garcon

I must use the command ‘\c¢’. Since TEX cannot distinguish
between a single letter command and a word command, I would
have to add a space between the TEX command and the letter
to be accented or add a null curly bracket, as in:
gar\c con
or
gar\c{}con
or
gar\c{c}on
If T attempted ‘gar\ccon’, TEX would try to determine what
the command ‘\ccon’ means and cry bloody murder.

You may also come across another tricky situation involving
accenting ‘i’ or ‘j°. To accent these letters, you should remove
the dot from the letter. This can be accomplished by using the
TEX commands ‘\i’ and ‘\j’ which produce ‘1’ and ‘j’.

(See page 52 of the TEXbook for more information.)

TEX Made Easy

Day One Zar Limited

Symbol And Accent Commands

Accents

type
\‘o
\’o
\"o
\"O
\70
\=0
\.o
\u o
\v o
\H o
\t oo
\c o
\d o
\b o

to get

o 0 W 8)O:O<OCO°OIOIO:O>O\O

Special Letters

type
\oe,\OE
\ae,\AE
\aa,\AA
\o,\O
\L\L

\sss

\L,\j

e, 7¢

\dag
\ddag
\S

\P
{\it\$}

to get
ce,(E
x, /B
&,A
3,0
LL

grave accent)

acute accent)
circumflex or ‘hat’)
umlaut or dieresis)
tilde, ‘squiggle’, or ‘snook’)
macron or ‘bar’)

dot accent)

breve accent)

hacek or ‘check’)

long Hungarian umlaut)
tie-after accent)

cedilla accent)
dot-under accent)
bar-under accent)

NN NSNS NN NN SN NN NN

(French ligature OE)

(Latin and Scandinavian ligature AE)
(Scandinavian A-with-circle)
(Scandinavian O-with-slash)

(Polish suppressed-L)

(German ‘es-zet’ or sharp S)
(undotted ‘i’ and ¢j’)

(upsidedown bang & question mark)
(dagger or obelisk)

(double dagger or diesis)

(section number sign)

(paragraph sign or pilcrow)

(English pounds sign)

Zar Limited Day One TEX Made Easy
Simple Font Changes

TEX starts generating letters of your text in Computer
Modern Roman ten point or CMR10 (similar to Times Roman
font). Ten-point font means the letters will be limited to ten
points in size from top to bottom (this is a bit more than one-
seventh inch). TEX has commands to change this font to a
different style:

e\rm e This resets the font back to the default setting: Roman
10 point (CMR10).
e\bf ¢ This sets the current font to Boldface eXtended
roman 10 point (CMBX10).
o\t ® This sets the current font to Text Italics roman 10
point (CMTI10).
e\sl e This sets the current font to SLanted roman 10 point
(CMSL10).
e\tt @ This sets the current font to try and imi-
tate your typewriter at 10 point (CMTT10).
With the ‘\it’ and ‘\sl’ fonts there is an extra command ‘\/’
(called an italic correction) which adds a tiny space when leaving
italics or slant and entering a non-slanted font. For example:
This changes the flavor of things.
The above line switched from slant to roman between the letter
‘t> and ‘I’ in the word flavor and as a result, the letters slightly
overlap. To fix, type the line
{\sl This changes the f\/}lavor of things.
to produce:
This changes the flavor of things.

(See page 13 of the TEXbook for more information.)

10

TEX Made Easy Day One Zar Limited

More About Fonts

Loading Different Fonts

If you want to make use of more fonts in your documents,
use the ‘\font’ command as follows:

\font\name=font

The ‘name’ field can be any series of letters you want to use to
identify the new font. The ‘font’ field must be a valid font name
of a character font that comes with your TEX software package.
When I discussed the five basic fonts, I hinted at a few valid
font names (‘\rm’ is called CMR10, ‘\bf’ is called CMBX10,
‘\it’ is called CMTT10, ‘\sl’ is called CMSL10, and ‘\tt’ is called
CMTT10). In the MicroTEX software package, you will find a
list of all valid font names in the directory ‘\'TEX\FONTS’.

Once you have typed a ‘\font’ command, you may use the
font by typing a backslash followed by the ‘name’ identification.
For example:

\font\smallfive=cmrb

{\smallfive This will be tiny.}

Magnification

If you find the final hardcopy output from TEX too small
to read, use the ‘\magnification’ command at line one in your
text file. The format is:

\magnification=value
The ‘value’ field is equal to ‘\magstep0’ by default. If you want
larger text, increase ‘\magstep(’. For example:
\magnification=\magstep2

Valid magsteps are 0, 1, 2, 3, 4, 5, and \magstephalf but using
anything other than ‘\magstep0’ requires special font files that
may not exist in your TEX software package.

If you use ‘\magnification’, in addition to your text, all di-

mensions in your document not specified as ‘true’ will be mag-
nified.

11

Zar Limited Day One TEX Made Easy
More About Fonts (Continued)

Loading Different Sized Fonts

There is another way to load fonts with the ‘\font’ com-
mand:

\font\name=font scaled mag

This form of the ‘\font’ command allows you to load a magnified
font without magnifying your entire file. For example:

\font\bigbold=cmbx10 scaled \magstep2

{\bigbold This will be very large.}
Again, if you load magnified fonts larger than ‘\magstep0’, you
may not have the needed font files in your TEX software package.

If you use ‘\magnification’ at the top of your file and use a
“\font’ with ‘scaled’, the new font will be loaded at the combined
magnifications. For example, if you magnify your entire file at
magstepl and load a font scaled magstep2, the new font will be
loaded at magstep3 (1+2).

Magnification Sizes Using 10 Point Lettering
This is typeset using magstep0.

This is typeset using magstephalf.

This is typeset using magstepl.

This is typeset using magstep2.

This is typeset using magstep3.

This is typeset using magstep4.
This is typeset using magstepd.

(See pages 16 and 153 of the TEXbook for more information.)

12

TEX Made Easy

Day One Zar Limited

Dimensions

Dimensions in TEX can be specified in a variety of measur-
ing units. The below table should help explain each possible

TEX dimension:

Unit

pt
in
cm

mim

PC
dd
bp
sp
em

€X

Meaning Unit/Inch

point 72.27
inch 1
centimeter 2.94
millimeter 25.4
pica 6.023
didot point 67.54
big point 72

scaled point 4736086.72
~width of ‘M’ (varies)
in current font

~height of ‘x’ (varies)
in current font
math unit (~18em)

mu can only be used in math mode.

You may precede a dimension with an optional plus (‘+’) or
minus (‘—’) sign. Dimensions do not have to use decimal points.
You can also precede a dimension name with the word ‘true’
(for example ‘10.125truebp’). Use of ‘true’ dimensions overrides
the effect of using ‘\magnification’ at the top of your file. The
maximum size of a dimension is approximately 18.9 feet, so you
shouldn’t have to worry about making a page too big for TEX.

(See page 57 of the TEXbook for more information.)

13

Zar Limited Day One TEX Made Easy
Page Boundaries And Margins

When TEX starts reading your text file, it makes some as-
sumptions about generating page boundaries. TgEX has four
page-boundary commands to change the default settings:
e\hoffset ¢ This command defines the left margin of your for-
matted text. The default setting is 0 (no left mar-
gin).
e\voffset ¢ This command defines the top margin of your for-
matted text. The default setting is 0 (no top mar-
gin).
e\hsize e This command defines the printed width of your
formatted text excluding the left margin. The de-
fault setting is 6.5 inches.
e\vsize e This command defines the printed length of your
formatted text excluding the top margin. The de-
fault setting is 8.9 inches.
Unless these commands appear before text at the top of your
file, a page-boundary change will go into effect after the cur-
rent page has been formatted. Normally, you should never reset
these commands. Margin settings should be changed instead
(explained on page 31).
To change the default settings for any of these commands,
type the following at the top of your file
\name=dimension (preferred)
or
\name dimension
where name is the command you wish to change and dimension
is the setting you wish to apply to name. For example:
\hoffset=7.0in
\vsize 10.5truein

(See page 251 of the TEXbook for more information.)

14

TEX Made Easy Day One Zar Limited

Parameters And Grouping

Some TEX commands require text parameters (not dimen-
sions). If a TEX command requires a text parameter, TEX takes
the first character following the command unless the character
is a ‘start group’ character (a left curly bracket), in which case
TEX assigns the text between grouping characters to the text
parameter. An example, please. ..

\centerline A letter.
The TEX command ‘\centerline’ takes the required text param-
eter and centers it on the current line. In this example, TEX
only centers the letter ‘A’ on the current line and starts a new
line with an indented paragraph beginning ‘letter.” (the space
after ‘\centerline’ isn’t centered because TEX ignores spaces af-
ter commands). To center the entire phrase ‘A letter.” on the
current line, use the grouping characters to form the text pa-
rameter for ‘\centerline’ as follows:

\centerline{ A letter.}

Grouping characters have other uses as well. In some pre-
vious examples we used a null group (‘{}’) as a method for
separating TEX commands and the text following a command.
The example

\bf{}Boldface
separates the command ‘\bf’ (change into the boldface font)
from the text ‘Boldface’. Another example of grouping would
be:

\sl This is slanted.\/ {\rm But this isn’t.} But this is.
Here we start in the slanted font, and set up a group for the
roman text “But this isn’t.” When we exit the group, TEX
automatically restores the previous settings and the slanted font
typesets “But this is.” Here is the result:

This is slanted. But this isn’t. But this is.
(Also, note the proper use of an italic correction after the word
‘slanted.’)

(See page 19 of the TEXbook for more information.)

15

Zar Limited Day One TEX Made Easy

Let’s Start TEXing

During this course, I will describe how to use TEX on an
IBM PC with an Apple LaserWriter. We will use the sample
file on page 6 as our test file and name it ‘sample.tex’. In the
example below, all typewriter text will be what the PC displays
on your screen and all slanted text will be what you type and
send to the computer.

C:\USER> tex sample
MicroTeX Version...
Copyright (c) 1986 by Addison-Wesley Publishing...

This is TeX, PC-DOS...(preloaded format=plain...)
(c:\user\sample.tex)

*\end

[1]

Output written on c:\user\sample.dvi (1 page...)
Transcript written on c:\user\sample.log.
237Kbytes remaining

c:\USER>

On the first and last line, ‘C:\USER>’ is the prompt from the
PC. On the first line we typed ‘tex sample’ to start the Mi-
croTEX program and process the file ‘sample.tex’ (we don’t need
to indicate the full name of the file if the file-name suffix is ‘.tex’).
On line six, TEX tells us that the file ‘c:\user\sample.tex’ was
completely processed and finally, TEX prompted us with an as-
terisk (‘*’). This is because the file ‘sample.tex’ didn’t have
the TEX command ‘\end’ signifying the end of all processing.
Therefore, we enter the ‘\end’ command now, and TEX finishes
processing and returns us to the PC prompt. On line nine, TEX
tells us the name of the output DVI file ‘sample.dvi’ which will
be used by a previewer or DVI-to-printer program later.

16

TEX Made Easy Day One Zar Limited
Let’s Start TEXing (Continued)

In addition to telling us about our new DVI file, TEX also tells
us about a ‘transcript’ file called ‘sample.log’. The transcript
file normally contains a list of errors TEX found and any action
you took to correct those errors. In our example, the transcript
file would contain lines five through nine (including the text we
entered at the asterisk prompt).

There is one more line in the transcript file which doesn’t
appear in the output you see on your screen. That extra line
appears between line one and line two on the previous page and
contains ‘**sample’. The double asterisk is a prompt from TEX
for an input file, and ‘sample’ is our response. Let’s suppose
that we typed ‘TEX’ at the PC prompt. TEX wouldn’t know
what file to process so TEX would prompt with ‘**’ for an in-
put file. We could then type ‘sample’ or ‘sample.tex’ and TEX
would proceed normally. You may encounter this in the future
if you make a typo to start TEX. For example, typing ‘TEX
SAMPEL’ at the PC prompt would cause TEX to look for a file
that doesn’t exist. TEX would then display a message indicating
a file ‘SAMPEL.TEX’ wasn’t found and prompt you for a new
or different file-name.

When we entered the TEX command ‘\end’ at the TEX
prompt ‘*’, we could have typed any TEX command or text.
Until TEX sees the command ‘\end’, TEX will continue process-
ing text by prompting with ‘*’. This can be useful if you have
separated your paper into separate files containing different sec-
tions. You could start TEX with a command like ‘TEX FILE1’;
then, after TEX finishes processing FILE1 and prompts with ‘*’,
you proceed to issue multiple ‘\input’ commands for each sep-
arate file you wish to process in addition to FILE1. When you
finished, you would stop TEX with the ‘\end’ command.

17

Zar Limited Day One TEX Made Easy
Let’s Start TEXing (Continued)

It is also possible to generate a separate file containing ‘\in-
put’ commands as in the following:

:\hoffset=1.5in

:\hsize=5.5in

:\voffset=1.0in

:\vsize=9.0in

:\input toc

:\input chapl

:%\input chap?2

:\input epilog

:\end

With a file like this, we have a simple method for generating
a large paper or manuscript. In line 7, we are temporarily not
processing the file ‘chap2’ by using the TEX comment charac-
ter. When we finish typing chapter 2, the percent sign will be
removed.

Finally, let us suppose that in the above file, line two reads
“\hszie=5.5in’. When TEX reads this typo, you would see the

(Y

© 00 NO O b WN

following;:
! Undefined control sequence.
1.2 \hszie
=5.5in
?

The first line tells us what type of error occurred. This error
message means there is no such TEX command ‘\hszie’. The
second line of the message tells us the line number of this error
in our file. The third line, shifted to the right, contains the rest
of the line that TEX has not processed. The question mark at
the end of the error is the error prompt from TEX.

18

TEX Made Easy Day One Zar Limited
Let Start TEXing (Continued)

Typing a question mark in response to the TEX question mark

prompt following an error displays a list of acceptable replies to

the question mark prompt. Here is that display:

?7

Type <return> to proceed, S to scroll future error
messages,

R to run without stopping, Q to run quietly,

I to insert something, E to edit your file,

H for help, X to quit.

?

For starters, lets reply with an ‘H’ for help with our error mes-

sage:

7H

The control sequence at the end of the top line

of your error message was never \def’ed. If you have

misspelled it (e.g., ‘\hobx’), type ‘I’ and the correct

spelling (e.g., ‘I\hbox’). Otherwise just continue,

and I’11 forget about whatever was undefined.

o

TEX is making this easy for us to correct. To fix our error con-

cerning ‘\hszie’, we simply type ‘I\hsize’ at the question mark

prompt and TEX will be happy. However, correcting the error

using the ‘I’ command does not correct our file. We will have

to note the line number and re-edit our text file to fix the error

permanently in our input file.

If we chose not to correct this error message and continue
by typing the return key, TEX would remove the text ‘\hszie’,
and continue with the rest of our file. The result would cause
our output not to have the correct ‘\hsize’ and, in addition, the
output would show the characters ‘=5.5in’ at the top of our file
as the start of the first indented paragraph.

(See page 23 of the TEXbook for more information.)

19

Zar Limited Day One TEX Made Easy
Generating Output

After a DVI output file is created with the TEX program,
we can display the DVI file on our screen with the PC command
‘PREVIEW’ as follows:

C:\USER> PREVIEW SAMPLE
Once the PREVIEW program starts, you can send commands
to the program simply by pressing a single key (no need to press
the return key following the command). Some commands are:
e 7 o Display help. Use the space bar to scan through
the help display. After three pages, the help
display automatically returns you to your for-
matted text.
e m e Magnify display and center display at the loca-
tion containing the plus or hash marks.
e s o Shrink display.

e (arrows) e The arrow keys on your keyboard move the plus
or hash mark to allow you to magnify the dis-
play at different locations.

e | ¢ Move display to the left.
e r ¢ Move display to the right.
e u e Move display up.

e d ¢ Move display down.

e q o Quit.

20

TEX Made Easy Day One Zar Limited
Generating Output (Continued)

If you are happy with your output and want a hardcopy
version, use the ‘DVIPS’ PC command to read your DVI file
and produce a PostScript output file (a PS file). The PS file
can then be sent to the local LaserWriter! laser printer with the
PC command ‘SPR’. Here is an example:
c:\USER> DVIPS SAMPLE
DVILASER/PS IBM-PC Version...

Copyright (c) 1985 by Textset, Inc...
TeX output...

DVILASER> <Return>

Doing [1]. (end)

DVILASER Job Summary:

Pages processed: 1

Maximum paper width required: 5.72in
Maximum paper height required: 10.24in
No character overruns.

Output written on sample.ps, 957 bytes.

c:\USER> SPR SAMPLE.PS
On line one, we start the DVIPS program. On line five, we were

asked to type the return key. And finally, on the last line, we
ask the PC to print the PS file.

1 LaserWriter is a registered trademark of Apple Computer,
Inc.

21

Zar Limited Day One TEX Made Easy

22

TEX Made Easy
Using TEX With The Plain Macro Package

Day 2

Daniel M. Zirin Instructor

(©1993 Zar Limited

Zar Limited Day Two TEX Made Easy
Movement

TEX provides the commands ‘\hskip’, to move across a line,
and ‘\vskip’, to move down the page. To use them, type:
\hskip dimension
\vskip dimension
For example, typing

\hskip 2truein This starts two inches to the
right.\par

\vskip 40truept

This line is 40 points below the last line.\par

would generate:

This starts two inches to the right.

This line is 40 points below the last line.

In the first line, the ‘\hskip’ is actually two inches plus the
automatic paragraph indentation of 20 points. To skip exactly
two inches across the line at the start of a paragraph, precede
“\hskip’ with ‘\noindent’.

TEX also has three more commands for vertical movement
called ‘\smallskip’ (~3 points), ‘\medskip’ (=6 points), and
‘“\bigskip’ (=12 points). These values are approximately %, %,
and 1 line height respectively.

(See page 70 of the TEXbook for more information.)

24

TEX Made Easy Day Two Zar Limited
Paragraphs

At the beginning of the course, I discussed how to generate
paragraphs by using blank lines. There is another space-saving
way to signify the end of a paragraph by using the TEX command
“\par’. For example:

This is a paragraph.\par This is another.\par
This example makes two paragraphs on one text line in your
file.

When TEX first starts reading your input file, ‘\vskip’ com-
mands are ignored until a printable character is generated. This
poses a problem if you want a chapter or title page generated
with a few blank lines at the top of the page. To get around
this problem, you can generate a printable space at the top
of the page before any ‘\vskip’ commands by using the ‘\null’
command. The ‘\null’ command, however, starts a blank para-
graph and requires a ‘\par’ to follow to indicate the end of a
paragraph. Here is an example of a title page:

\null\par

\vskip 2in

\centerline{\bf The TeX Talk}

The example places an empty paragraph at the top of the page,
moves down two inches and displays our title centered in bold-
face print.

Once TEX starts a new paragraph, the paragraph must
end before a vertical move command (like ‘\vskip’) can be used.
That is why the above example contained a ‘\par’ after ‘\null’.
We could have also placed a blank line after the ‘\null’ instead of
“\par’. When TEX generates a paragraph, TEX considers itself
in horizontal mode.

25

Zar Limited Day Two TEX Made Easy
Paragraphs (Continued)

If you want to skip an extra line or two, before starting a

new paragraph, use the ‘\parskip’ command as follows:
\parskip=dimension
By default, ‘\parskip’ is set to Opt. Note that it works in addi-
tion to any line spacing. For example
\parskip=12pt

will skip 12 points of space down the page, in addition to the
spacing inserted after the previous line, before starting a new
paragraph.

26

TEX Made Easy Day Two Zar Limited
Items Of Interest

When you want to make several points in a paper, you
may wish to indent your separate descriptions and precede the
beginning of each description with a number or letter sequence.
For example:

1. This is the first of several items that are long and boring
to the typical human.
a) Ear wax.
b) Taxes.
2. These next few cases are excluded for your protection.

The above was made with the ‘\item’ and ‘\itemitem’ com-
mands. These two commands take a required text argument
to be placed before the start of the paragraph. The above was
made with the following:

\item{1.} This is ... human.\par

\itemitem{a)} Ear wax.\par

\itemitem{b)} Taxes.\par

\item{2.} These next few ... protection.\par
The text argument can be anything you want. These two com-
mands also use another command ‘\parindent’ to determine the
amount of space to indent or double indent each paragraph.
If we typed ‘\parindent=1in’ before the above lines, the result
would be:

1. This is the first of several items that are long and
boring to the typical human.
a) Ear wax.
b) Taxes.
2. These next few cases are excluded for your protec-
tion.

27

Zar Limited Day Two TEX Made Easy
Items Of Interest (Continued)

TEX uses commands ‘\hangindent’ and ‘\hangafter’ to gen-
erate the ‘\item’ command formatting process. The dimension
“\hangindent’ specifies the amount to indent the next paragraph
and the variable ‘\hangafter’ determines when ‘\hangindent’
takes effect in the current paragraph. If ‘\hangafter’ is a posi-
tive integer, the paragraph lines will start indenting on line num-
ber ‘\hangafter’. Otherwise, the paragraph indentation will end
on the line number equal to the absolute value of ‘\hangafter’.
When each paragraph ends, the values of ‘\hangindent’ and
“\hangafter’ are automatically reset to ‘Opt’ and ‘1’ respectively.

(See page 102 of the TEXbook for more information.)

28

TEX Made Easy Day Two Zar Limited

Margins And Referencing

Suppose you want to quote a long passage. TEX supplies
the command ‘\narrower’. Using ‘\narrower’ causes the left and
right margins to be increased by the size of ‘\parindent’. For
example:

This text is using the ‘\narrower’ command. It
helps the TEXpert generate beautiful passages in the
middle of a manuscript.

The above example was made with the following:

{\narrower This text is ... a manuscript.\par}
Changing ‘\parindent=0.5in’ before ‘\narrower’ gives us nar-
rower width and more paragraph indentation. ..

This text is using the ‘\narrower’ com-
mand. It helps the TEXpert generate beautiful
passages in the middle of a manuscript.

We can use a large ‘\parindent’ and place a name in the
text argument of ‘\item’ to generate references, but this method
gives us a staggered left column of names:

Smith, Maile E., Modern Poetry In Physical Chem-
istry, Cambridge Press, 1985.
Thompson, Butler A., Semi-sweet Coffee From The West
Indies, New York Tribune, 1987.
To make references start in the same column, we use ‘\narrower’
and ‘\parindent’ in the following manner:
{\narrower\narrower\parindent=-40pt
$$1) Smith, Maile E., Modern...\par}
And the result is...

29

Zar Limited Day Two TEX Made Easy

Margins And Referencing (Continued)

1) Smith, Maile E., Modern Poetry In Physical Chem-
istry, Cambridge Press, 1985.

12) Thompson, Butler A., Semi-sweet Coffee From The
West Indies, New York Tribune, 1987.

The command ‘” was used to leave a space (equal
to the width of the character ‘0’) to line up with reference num-
bers greater than nine (another method would be to use the tie
character ‘7’). This isn’t quite what we want because we in-
creased the right margin also. Instead of using ‘\narrower’, we
will use ‘\leftskip’ to change only the left margin as follows:
{\leftskip=40pt\parindent=-40pt

$$1) Smith, Maile E., Modern...\par}

And we have reached our objective:

1) Smith, Maile E., Modern Poetry In Physical Chemistry,
Cambridge Press, 1985.
12) Thompson, Butler A., Semi-sweet Coffee From The West
Indies, New York Tribune, 1987.

In the same fashion, you may also use ‘\rightskip’ when you
want to increase the right margin.

(See page 100 of the TEXbook for more information.)

30

TEX Made Easy Day Two Zar Limited
Footnotes

To generate a footnote in TEX, use the ‘\footnote’ com-
mand. The ‘\footnote’ command requires two text arguments.
For example:

\footnote{ textl }{ text2 }

The first text argument is the symbol to place at the current
location in the current paragraph and at the beginning of the
footnote at the bottom of the page. The second text argument
is the text to be placed at the bottom of the page.* You will
see the result of the footnote generated before the start of this
sentence at the bottom of the page. It was generated with the
following;:

page.\footnote{*}{This is ... command.}

(See page 116 of the TEXbook for more information.)

* This is a sample footnote for those interested in the TEX
“\footnote’ command.

31

Zar Limited Day Two TEX Made Easy
Filler And Boxes

When TEX processes your document, all characters, words,
lines, paragraphs, and pages are considered to be different size
boxes. Where there are no boxes (blank spaces), TEX considers
there to be glue or rubber. Take a look at this page for example.
The page including margins is a box. Within that box, the top,
bottom, left, and right margins are four more boxes containing
glue. The inner box surrounded by margin boxes is another box.
Fach line containing text is a long rectangle box. In between
these line boxes are glue. Inside of the line boxes are lots of
tiny boxes containing word boxes. In between each pair of word
boxes is more glue. And finally, inside the word boxes are the
smallest boxes containing a letter.

Its important to know this to explain how the TEX filler
commands ‘\vfill’ and ‘\hfill’ work. For example, when TEX
read the first line of this page, the ‘\centerline’ command told
TEX the following;:

\line{\hfill\bf Filler And Boxes\hfill}

The ‘\line’ tells TEX to generate a line (a long rectangle box)
containing the first required text argument. Inside the text argu-
ment the phrase ‘Filler And Boxes’ was preceded and followed
by ‘\hfill’ commands. The properties of the command ‘\hfill’
are:
1) To push any text on either side of the ‘\hfill’ in the opposite
direction;
2) To put blank space in the area left open by pushing the
neighboring text.
Therefore, the first ‘\hfill’ pushes ‘Filler And Boxes’ to the right
and the second pushes this phrase to the left with equal force.
This caused our text to be centered. Finally, the ‘\hfill’ com-
mands put blank space in the area to the left and right of our
centered text.

32

TEX Made Easy Day Two Zar Limited
Filler And Boxes (Continued)

In addition to ‘\hfill’, there is another command called
‘\vfill’ which has the following attributes:
1) It cannot be used in horizontal mode.
2) It pushes lines above and below in opposite directions.
3) It puts blank space in the vacancy made by moving neigh-
boring lines.
This command must be used at the end of your document to
fill the last page with blank space and make TEX happy.

If you want to force TEX to make a new page, you will also
need a ‘\vfill’ followed by an ‘\eject’ command. For example:

This is on page one.\par\vfillleject

This isn’t.\par\vfill\end
The text “This is on page one.” will be on page one, the text
“This isn’t.” will be on page two and the document will end
after the word “isn’t.”

You can’t use ‘\hfill’ and ‘\vfill’ just anywhere. These com-
mands can only be used when they are restricted inside of a box.
That is to say, ‘\hfill’ can only be used in a line box, and ‘\vfill’
can only be used in a column box or at the end of a page where
you will use ‘\eject’ or ‘\end’.

Both ‘\hfill’ and ‘\vfill’ have close relatives. The ‘\hfil’ and
‘\vfi’ commands do the same thing with infinitely less strength
(if you precede a word with ‘\hfil’ and follow the word with
‘\hfill’, ‘\hfill’ will overpower ‘\hfil’ and the result will push the
word to the left margin). There is also ‘\hfilll’ to push with
infinitely more strength of ‘\hfill’ (there is no ‘\vfilll’).

The commands ‘\hss’ and ‘\vss’ shrink or pull on neigh-
boring text. Normally this means they remove blank space, but
if you precede and follow a word by ‘\hss’, the result will center
the word and add blank space in the vacancies to the left and
right.

(See page 71 of the TEXbook for more information.)

33

Zar Limited Day Two TEX Made Easy

Page Numbering

When TEX generates a page, it leaves some room at the
top and bottom of a page for a page number. By default, TEX
makes page numbers centered at the bottom of the page. To
change this format, use the following commands:

\headline This is the command that reserves the top
line of each page intended for a possible page
number or other heading. By default, this is
empty.

\footline This is the command that reserves the bot-
tom line of each page intended for a possible
page number or other footing. By default,
“\footline’ is set equal to ‘\hss\folio\hss’.

\folio This is the command that generates a text
version of the current page number.

\pageno This command can be used to change a page
number within your document.

\nopagenumbers This command removes page numbering from
the bottom of the page.

The location of a page number should be changed before the

first character for the current page is seen by TEX (usually after

an ‘\eject’ or at the top of your text file).

To change ‘\headline’, type ‘\headline={ whatever }. If
you define ‘\headline’ to be ‘\hfill\folio’, the page number will
appear at the top right corner of each page. If you move the
‘\hfill’ to the righthand side of ‘\folio’, the page number will be
displayed at the top left corner of each page. Typing

\headline={\hfill}
removes the page number from the top of the page altogether
(this is the default). If you change ‘\headline’, you should
change ‘\footline’ as well, or the page number will appear at
the top and bottom of each page. If you don’t precede ‘\folio’
with ‘\rm’, the page number will be printed in the font in use
at the bottom of the page.

34

(xxxV)
Page Numbering (Continued)

To change ‘\footline’, use:
\footline={ whatever }
The same rules apply to ‘\footline’ as ‘\headline’. The default
setting for ‘\footline’ is to center the page number (exact text
is shown on the previous page). Setting ‘\footline’ to ‘\hfill’
removes the page number from the bottom of the page.

The ‘\nopagenumbers’ command sets the ‘\footline’ com-
mand equal to ‘\hfill’, thus removing the page number from the
bottom of the page.

To change the page number of the next page, use the com-
mand:

\pageno=number

If the number is negative, roman numerals will be used to num-
ber the pages. Here are two examples:

\pageno=12

\pageno=-6
In the first example, the page number will contain ‘12’, the
following will be ‘13’, and so on. For the second example, the
page number will be ‘vi’, the following page will be ‘vii’, and so
on.

The following text was typed to generate the page number-
ing format of the page you are reading now:

1: \multiply\pageno by -1
2: \headline={\hss(\rm\folio)\hss}
3: \footline={\hfil- \rm\folio\ -\hfill}

The text on line one could also be ‘\pageno=-\pageno’ to ac-
complish the same thing.

(See page 252 of the TEXbook for more information.)

- XXXV -

Zar Limited Day Two TEX Made Easy

Making A Table Of Contents

Now that you know about filler commands, you can make

a simple TOC (Table Of Contents). To make our sample TOC,

we will use the commands ‘\centerline’, ‘\line’, ‘\dotfill’ and

“\hrulefill’. Let me explain these separately:

e \centerline ¢ This centers a line of text. The text to be
centered is the required argument for this com-
mand.

e \line e This creates a line box. The required text argu-
ment is forced into a box that must be contained
on a single line.

e \dotfill e This does the same thing as ‘\hfill’ except it fills
the area left blank with a row of periods.
e \hrulefill ¢ This does the same thing as ‘\hfill’ except it fills
the area left blank with a solid line across the
baseline.
Here is our text file:
1:\centerline{\bf Table Of Contents}
2:\null\par
3:\noindent Day 1\par
4:\line{\indent Using Fonts \dotfill\ 1}
5:\line{\indent Using Math \dotfill\ 2}
6:\line{\indent Paragraphs \hrulefill\ 3}

The ‘\null\par’ is used to move down the page one line. Note

that we could not use either fill command without the use of
‘\line’. And now, the result:

Table Of Contents

Day 1
Using Fonts ...t 1
Using Math 2
Paragraphs 3

(See page 223 of the TEXbook for more information.)

36

TEX Made Easy Day Two Zar Limited
Line Spacing

When TEX generates characters or letters, the characters
are placed on a baseline to make words of a line appear to sit
on a horizontal string. Let’s take the letter ‘M’ for example.
The legs of this letter begin on the baseline and extend up the
length of the character height boundary. If we look at the letter
‘e’ we have a different situation. This character hangs a bit
below the baseline. The top bowl of the letter ‘g’ extends above
the baseline while the bottom bowl of the letter ‘g’ starts at the
baseline and extends below the baseline. The length from the
baseline. The distance from the baseline to the lowest point of
the letter ‘g’ is called the depth of the character ‘g’ .

Each pair of baselines in TEX are separated by the value of
“\baselineskip’. If the interline spacing is less than the value of
“\lineskiplimit’, then the value of ‘\lineskip’ is used to separate
the maximum depth of the previous line from the maximum
height of the current line.

In short, the value of ‘\baselineskip’ determines the spacing
between lines and ‘\lineskip’ is a backup spacing in case you
generate a peculiarly large character. The default setting for
“\baselineskip’ is ‘12pt’, the default setting for ‘\lineskiplimit’
is ‘Opt’, and the default setting for ‘\lineskip’ is ‘1pt’.

To change these values for any of these three commands,
use:

\baselineskip=dimension

\lineskiplimit=dimension

\lineskip=dimension
A good double-space setting for these commands would be to
change ‘\baselineskip’ as follows:

\baselineskip=18pt

(See page 78 of the TEXbook for more information.)

37

Zar Limited Day Two TEX Made Easy
Definitions

I have been using the term ‘commands’ to mean all TEX
control words and control letters. This is not exactly true. TEX
has a small set of primitive commands. All other control words
and control letters are definitions (also called macros). For ex-
ample, the ‘\par’ control word is a TEX primitive command,
while ‘\centerline’ is a definition that combines control words
to perform the task of centering a line of text (see page 33). In
fact, many of the control words in the ‘\centerline’ definition
reference other control words which are also definitions.

The simplest form of a definition is:

\def\name{ whatever }
Let’s take, for example, the ‘\nopagenumbers’ definition:
\def\nopagenumbers{\footline={\hfill}}
The text following ‘\def’ is the definition name and can be
any series of letters or a single non-letter. A definition name
must conform to the rules for valid TEX commands explained
on page 7. Because of this, you cannot mix letters and num-
bers in a definition name (this is a common error). The text
enclosed in the grouping characters after the definition name
can be anything you please. For example, if a person’s name
appears several times in your document and the name is long or
has many accents, you can make your own definition to generate
the person’s name as follows:
\def\zar{Mr. D\’ani\u el M."Z\H\i rin}
Once I have typed the above line in my text file, every future
occurrence of ‘\zar’ will generate:
Mr. Daniél M. Zirin
You must be careful to type ‘\zar\ ’or ‘\zar{} ’ if you want
a space to follow the text generated by your new control word.
Definitions are extremely useful and should be utilized as much
as possible.

(See page 199 of the TEXbook for more information.)

38

TEX Made Easy Day Two Zar Limited
Making Definitions With Arguments

To make a definition (macro) using the ‘\def’ command,

use the following format:
\def\name#1#2#3.. #9{ whatever }

I will make a simple example to explain how this form of ‘\def’
works:

\def\zar#1#2{ThiS is #1 number #2 }
The name of this definition (command) is ‘\zar’. The text
‘H#142’ tells TEX there are two required text arguments for this
definition. The left curly bracket starts the definition and text
argument number 1 is placed where ‘#1’ is located in the defini-
tion. The second text argument is placed where ‘#2’ is located
and the right curly bracket ends the definition.

If T were to type ‘\zar{reference}{12.3}’, TgX would gener-
ate ‘This is reference number 12.3.°.

(See page 200 of the TEXbook for more information.)

39

Zar Limited Day Two TEX Made Easy
Word Hyphenation

If a line within a paragraph is too long or short because a
word or characters at the end of the line cannot be hyphenated,
TEX will complain about an underfull hbox (indicating the line
is too short and has some extra large spacing) or an overfull hbox
(indicating the line is too long and ends in the right margin).
To fix this, try one of the following;:

1) Use a discretionary hyphen in the middle of the word at the
end of the overfull line or at the beginning of the line follow-
ing the underfull line. The discretionary hyphen command
(“\-’) is placed in the middle of the word between two letters
where you would allow hyphenation. For example, typing
‘dif\-fi\-cult’ would allow TEX to hyphenate the word ‘dif-
ficult’ between the two ‘f’s and between the letters ‘ic’. !
If a line break is not needed in the middle of ‘difficult’, no
hyphens will appear.

2) Remove one or more words prior to the problem line.

3) Rephrase part of the sentence prior to the problem line.

If you want to make TEX hyphenate a word differently, use

the ‘\hyphenation’ command as follows:
\hyphenation{ di-f-fi-cult table }

You may place any number of words inside the ‘\hyphenation’
command text argument as long as each word is separated by
a space. If you don’t put hyphens in a word, TEX will never
hyphenate that word.

If you don’t want TEX to hyphenate any words, type:

\pretolerance=10000

This may cause some large spacing between words in lines of
your document. By default, ‘\pretolerance=100’.

(See pages 95, 96, and 452 of the TEXbook for more info.)

1" A discretionary hyphen will suppress possible ligaturing.

40

TEX Made Easy Day Two Zar Limited
The Dreaded Black Box And Spacing

When TEX can’t break a line and has to format text or
math in the right column, an ugly black box will appear in your
output at the end of the line (in the right margin). There are
various ways to fix this problem:

1) If the line is strictly text in a paragraph, a discretionary
hyphen can be used to allow TEX to hyphenate a word in
a place it normally wouldn’t.

2) TEX tries to force lines to line up within 0.1 point. You can
change this strict setting with the ‘\hfuzz’ command (as in
‘\hfuzz=1pt’ for example).

3) If the line is a long math equation, split the equation into
two lines.

4) Reword or rearrange the words in the sentence containing
the black box.

5) Remove the ugly black box altogether with the ‘\overfull-
rule’ command. Typing ‘\overfullrule=0pt’ makes the box
0 points wide (non-existent). By default, the box is 5 points
wide (this method will not cure the problem line).

If you want french style spacing in your document, you can
use the ‘\frenchspacing’ command (‘\nonfrenchspacing’ is the
default). If you use ‘\frenchspacing’, no extra space is added
after punctuation.

If you want a staggered or ragged right margin, use the
“\raggedright’ command.

(See pages 30 and 307 of the TEXbook for more information.)

41

Zar Limited Day Two TEX Made Easy

42

TEX Made Easy
Using TEX With The Plain Macro Package

Day 3

Daniel M. Zirin Instructor

(©1993 Zar Limited

Zar Limited Day Three TEX Made Easy
Math Mode And Greek Lettering

When TgX sees a dollar sign (the math-mode shift char-
acter), TEX enters math mode. In math mode, all roman and
lowercase greek letters are italicized while other characters are
not. In addition, all spaces (not just spaces after control words)
are ignored. When a second dollar sign is encountered, TEX
exits math mode and returns to horizontal mode. For example,
typing the next two lines

$x +y/ (- y)$
$\delta t =t1-t2%
would generate the following two lines:
z+y/(z—y)
ot = t1 — 2
Note, however, the space following ‘\delta’ was needed to sepa-
rate the control word from the following letter ‘t’ (the space was
ignored otherwise). If you want to force extra space in a math
formula, use the backslash space (‘\ ’) control sequence.

As you may have guessed from the previous paragraph, you
generate greek letters by entering math mode and typing a back-
slash followed by the word for the greek letter desired. For some
letters, capitalizing the first letter of the greek word will gener-
ate uppercase greek letters.

If you want a roman letter unitalicized, use the ‘\rm’ com-
mand. For example

$ This\ is\ italics.\ {\rm This\ isn’t.}$
would produce:
This is italics. This isn't.
Notice that the right quote mark used in “isn’t” becomes a prime
in math mode. The left quote would not be changed. If you want
a capital greek letter to be italicized (by default, it isn’t), use
the ‘\mit’ (math italics) command in the same manner.

(See page 127 of the TEXbook for more information.)

44

TEX Made Easy Day Three Zar Limited
Greek Letter Commands
Here is the full list of greek letter commands.

Lowercase Greek Letters

a \alpha Loveennn \iota 0 ... \varrho
B o..... \beta k \kappa o \sigma
v ... \gamma A .. \lambda ¢ . \varsigma
0 \delta |7 \mu (N \tau
€ ... \epsilon Voeeennn. \nu v ... \upsilon
€ \varepsilon E ool \xi ¢ \phi
¢ ounnn. \zeta O .. o} ¢ ... \varphi
1/ I \eta 7/ S \pi X ceeeens \chi
0 \theta w . \varpi Voo \psi
¥ . \vartheta P oen.. \rho w ... \omega
Uppercase Greek Letters

I' .. \Gamma = . \ Xi o \Phi
A \Delta Im....... \Pi U o...... \Psi
O ... \Theta > ... \Sigma Q .. \Omega
A . \Lambda T .. \Upsilon

(Other capital greek letters are found in the standard roman
alphabet.)

For a large list of math mode symbols, see Appendix A.

45

Zar Limited Day Three TEX Made Easy
Making Simple Displayed Equations

In addition to math mode, there is something called display
mode. It works exactly the same as math mode except that the
equation is separated from the text and centered on its own line.
To enter display mode, type two successive dollar signs, enter
your equation, then type two successive dollar signs to leave
display mode. For example, if I type ‘§ x - y = z $’ right here,
[get ‘e —y=2". IfItype ‘$$ x -y =z $$’, T will see *

T—Yy==z

’. Notice that the paragraph never stops and my single quotes
before and after the equation are left dangling by themselves (I
do this only to illustrate how display mode works).

There are a few special symbols you may use in math or
display mode. To superscript, use the hat symbol (‘*’). To
subscript, use the underscore character (‘_’). If you need to use
both superscripts and subscripts, TEX doesn’t care which comes
first. For example, typing ‘¢ x"{22}.5 $ and ‘$ x_{5}"{22}
$’ produce the same result z22. In the first example, I didn’t
enclose the number ‘5’ in a group because I was only subscripting
a single character. It’s a good idea to get used to using groups
in order to avoid trouble.

If you use large operators, such as integrals and summa-
tions, you will see a difference in their appearance between math
and display mode. For example, if I type ‘$ \sum_{n=1}"m and

\int_{-\infty}"{\infty} $’, TEX produces ‘}_""" ; and [*. If I

use display mode,
Z and /
n=1

6. 9]
— 00

(See page 139 of the TEXbook for more information.)

46

Table Of Contents

Preface i
Acknowledgementsl ii
What Is TEX 7 ..o e 2
How TEX Is Usedccoiiiiiiiiii i 3
Editing Your Input File 4
Commandsiiiiiiiiiii e 6
Special Characterscciiiiiiiiiinnn. 7
Accents e 8
Symbol And Accent Commands 9
Simple Font Changes 10
More About Fonts i 11
Dimensions i e 13
Page Boundaries And Margins 14
Parameters And Grouping 15
Let’s Start TEXing i, 16
Generating Output 20
Movement i 24
Paragraphs 25
Items Of Interest 27
Margins And Referencing 29
Footnotes i 31
Filler And Boxes 32
Page Numbering oL, 34
Making A Table Of Contents 36
Line Spacing e 37
Definitions 38
Making Definitions With Arguments 39
Word Hyphenation 40
The Dreaded Black Box And Spacing 41
Math Mode And Greek Lettering 44
Greek Letter Commands 45
Making Simple Displayed Equations 46

Contents-i

TEX Made Easy Day Three Zar Limited

More About Math

If you need to make ‘...

(ellipsis), typing three periods
in a row would give you ‘... (closer together). Instead, you
should enter math mode and type ‘\ldots’. Math mode also has
a ‘\cdots’ for centered dots (as in ‘- --’) and ‘\cdot’ for a single
centered dot.

When generating parentheses, braces, and other variably
sized symbols, TEX automatically increases or decreases the
symbol size for you. Here is an examples:

$$\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x}}}}$$
generates

\/1+\/1+\/1+\/1T'r

In the next example, I will be using ‘\left(’ for left parentheses
and ‘\right)’ for right parentheses. The rest of the commands
needed should be in your TEX vocabulary.

m

2:;21 <(1 +) /foo‘”)

n=1

The parentheses could also have been replaced with other de-
limiters such as brackets (‘[" and ‘]’).

Refer to appendix A for a list of available symbols.

47

Zar Limited Day Three TEX Made Easy
Making Fractions

When you want to make a fraction in TgX, use the control
sequence ‘\over’ by typing ‘${1\over 2}+x$’ to produce ‘1 + 2.

If you don’t want a line between the top and bottom en-
tities, use the ‘\atop’ or ‘\choose’ commands. For example,
typing ‘$ {1 \atop 2} + x $” would give you ‘; + 2. ‘\choose’
removes the dividing line and encloses the fraction in parenthe-
ses.

If you want to specify the thickness of the line between

the top and bottom entities, use the ‘\above’ command as in
1+
‘${1+x\above 3pt 2}+y$’ to generate ‘Tm + 9’

When TEX typesets a subscript, the characters subscripted
are generated in a different font style. There are four math
styles: display style which generates most characters identical
to text style except for large operators; text style (x + y); script
style used to typeset subscripts (z+y); and scriptscript style used
to typeset sub-subscripts («+y). For example, if I want a sum-
mation to appear in my paragraph with limits above and below
it, I could type ‘$\displaystyle\sum {n=1}"{m} $’ to produce

m
‘Z’. The style you specify will stay in effect until you or TEX

n=1
changes it, or you finish the equation. Do you know why two

‘“\displaystyle’ commands are needed in ‘$$\displaystyle{a\over
b}\abovelpt \displaystyle{c\over d}$$’ to produce:

SHSY RS RS
-~

This is because the command ‘\above’ changes the styles. The
“\over’ commands changed the styles from ‘\displaystyle’ to
“\textstyle’ inside the groups.

(See page 139 of the TEXbook for more information.)

48

TEX Made Easy Day Three Zar Limited

Math Punctuation

In addition to using ‘\ldots’ in math mode to achieve ‘...’
there are a few other punctuation rules in math mode which you
should know about.

When you use math mode, the comma and semi-colon are
treated as punctuation in formulas, so TEX adds some extra
space after these characters. The period, however, is not treated
as punctuation, so no extra space is added after or before this
character.

If you want to use a comma as punctuation in math mode,
enclose the comma in a separate group as in ‘$12{,}345x$’.

If you use the colon in math mode, TEX treats it like a
relation (‘z := y’ for example). If you want a colon to act as
punctuation in math mode, use the ‘\colon’ command.

If you want to underline text, math mode provides a ‘\un-
derline’ command. You may use it as follows:

$\underline{\rm text}$
Underlining is strongly discouraged outside of math mode for
four good reasons:

e Since underlining is done in math mode, words must be
separated with a backslash space.

e If you underline words in a phrase separately, the line below
words will vary in depth below each word depending on the
maximum character depth of each word.

e If you underline multiple words and separate each word
with a backslash space, TEX will have trouble breaking a
line when encountering an underlined phrase because TEX
treats everything underlined as one word that can’t be hy-
phenated.

¢ You have several other methods for enhancing a word or
phrase with different fonts (such as boldface or italics).

(See page 161 of the TEXbook for more information.)

49

Zar Limited Day Three TEX Made Easy

Math Accent Commands

o
QS
Q
Q)
(e

type

$\hat o$
$\check o$
$\tilde o$
$\acute o$
$\grave o$
$\dot o$
$\ddot o$
$\breve o$
$\bar o$
$\vec o$
\imath
\jmath

S = Qp O Oc O Q. Or Ov O O« O

(See page 135 of the TEXbook for more information.)

90

TEX Made Easy Day Three Zar Limited

How To Strut Your Stuff

If you type the equation
$$a 0+{1\over a 1+
{1\over a_ 2+
{1\over a 3+
{1\over a 4}}}}$8,

the result will be

1
CL()-|—
ay + as+ n

1
a;_;,—{—ﬁ
This is undesirable because the fractions get too small to read.
If you try to add ‘\displaystyle’ commands after all but the last
“\over’, TEX will produce

as + —
ay4

Again, this is undesirable because the ‘1’s are almost touching
the bars above them. For this equation, we need a ‘\strut’
command. When you type ‘\strut’, TEX generates a vertical
line with a height of 8.5pt, a depth of 3.5, and a width of Opt.
The effect is to tell TEX to use the maximum possible line height
and depth for ten point lettering.

51

Zar Limited Day Three TEX Made Easy
How To Strut Your Stuff (Continued)

The correct way to type our equation is:

$$a 0+{1\over\displaystyle a 1+

{\strut 1\over\displaystyle a_2+

{\strut 1\over\displaystyle a_3+

{\strut 1\over a 4}}}}$$
The ‘\strut’ could also have been placed after the ‘1’s but defi-
nitely before the ‘\over’ commands. Our final product will look
like:

as + —
2
Use of ‘\strut’ is not limited to math or display mode. In
fact, ‘\strut’ is used more often in tables than anywhere else.

In short, ‘\strut’ tells TgX to make the current line
as tall and deep as possible.

The ‘\strut’ command is almost equivalent to the com-
mand:
\vrule height8.5pt depth3.5pt widthOpt
If you ever need a larger or smaller ‘\strut’ command, use the
above line to create your own (this may be useful if you use
different sized fonts in your document). Use of ‘\magnification’
at the top of your file will also magnify the size of ‘\strut’.

(See pages 142 and 246 of the TEXbook for more information.)

52

TEX Made Easy Day Three Zar Limited

Math Limits And Equation Numbers

When TEX typesets integral and summation signs in display
mode with subscripts and superscripts, it places the limits of
the summation above and below the sigma, but the limits of
the integral are placed to the right. For example,

i and /
n=1

[©.@)

— 00

To change TEX’s conventions for limits, use ‘\limits’ or ‘\no-
limits’ immediately after the math mode command. For exam-

ple,

$$\int\limits {0}~ {\pilover 2}$$ yields /;
0

$$\sum\nolimits_{n=1}"{m}$$ yields Zm_1°

If you need an equation number in display mode, TEX pro-
vides ‘\eqno’ and ‘\leqno’ to place the equation number to the
right of the equation and left of the equation respectively. For
example, typing ‘$$x"2-y"2 = (x+y)(x-y).\eqno(15)$$’ will pro-
duce

22 —y* = (z+y)(z—y) (15)

Replacing ‘\eqno’ with ‘\leqno’ will generate
(15) 2 —y® = (z +y)(z —y)-

You can type anything for the equation number. The com-
mands ‘\eqno’ and ‘\leqno’ simply separate the equation from
the equation number.

(See page 144 of the TEXbook for more information.)

93

Zar Limited Day Three TEX Made Easy
Math Functions

Mathematical functions like ‘log’ and ‘cos’ are never itali-
cized in formulas or equations. Instead of changing fonts every-
time you need to use a function in math or display mode, use
one of the following commands to generate functions in roman

type:

\arccos \csc \ker \min
\arcsin \deg \1g \Pr
\arctan \det \lim \sec
\arg \dim \liminf \sin
\cos \exp \1limsup \sinh
\cosh \gcd \1n \sup
\cot \hom \log \tan
\coth \inf \max \tanh

Note that ‘\Pr’ is capitalized. You need not worry about adding
italic corrections after using one of the above functions (TEX will
do it automatically, if needed).

If you use subscripts and superscripts with the functions
‘\det’, ‘\ged’, ‘\inf’, ‘\lim’, ‘\liminf’, ‘\limsup’, ‘\max’, ‘\min’,
‘\Pr’, and ‘\sup’ in display mode, TEX will use limits (that
is, place the subscripts and superscripts above and below the
function).

If you use a function not listed in the above table, define a
new function command at the top of your file. For example, if
you prefer to use ‘acos’ instead of ‘arccos’, generate a definition
similiar to

\def\acos{\mathop{\rm acos}}.

(See page 162 of the TEXbook for more information.)

54

TEX Made Easy Day Three Zar Limited
Fine Points Of Mathematics Typing

Punctuation e To use punctuation in a formula, put the pe-
riod, comma, semicolon, colon, question mark, bang, etc., after
the $ in math mode. If the formula is typeset in display mode,
place the punctuation inside the $$. For example,
If $x<0$, we will prove that $Py=f(x).$$
...for $x = a$, b, or c.
Typing ‘$x = a, b$ or c.” would disallow a line break between
the comma and the letter ‘b’. The space after the comma would
be removed by math mode as well. If the formula includes a
comma, for example
$x = f(a, b)$,
put the comma between the dollar signs. The difference is in
its use; in the first example, the comma is used for sentence
punctuation, while the comma in the second example is actually
part of the formula.
Fonts e If you need to use a non-italicized letter or word in a
formula (other than functions), change fonts while in math or
display mode with ‘\rm’ (or any of our other font commands).
By default, all math is typeset in the font ‘\mit’ (math ital-
ics) which differs slightly from regular italics. TEX restores the
original text font after leaving math mode.
Spacing Between Formulas e If you typeset more than one
formula in a single display, you need special spacing between
formulas. For example,

Fn: n—1+Fn—27 n > 2.

To separate the condition ‘n\ge2’ from the rest of the formula,
use either ‘\ ’ (backslash space ‘ ’), ‘\quad’ (’), or ‘\qquad’
(¢ ’). A ‘quad’ is a printer’s term for a space with the width
of a capital ‘M’. Both ‘\quad’ and ‘\qquad’ may be used in
horizontal mode when you need extra space in a text paragraph.

%3]

Zar Limited Day Three TEX Made Easy
Fine Points Of Mathematics Typing (Continued)
Spacing Inside Formulas e In the equation
Fo,=F,_1+F,_2, n>2,

TEX inserts a thick space before and after the equal sign and
greater-than-or-equal sign and a medium space before and after
the plus sign. If you need to fine tune spacing within a formula,
you can use one of the following commands:

\, Thin space (g of a ‘\quad’)

\> Medium space (£ of a ‘\quad’)

\; Thick space (3 of a ‘\quad’)

\! Negative thin space (—¢ of a ‘\quad’)
If you use these commands in a subscript or superscript group,
they will come out smaller to compensate for the change in size
from the current font.
Line Breaking e If a line break is required in the middle of
math mode, TEX will automatically break a formula after a
relation sign (=, >, —, etc.) or after a binary operation symbol
(+, —, X, etc.) if it isn’t in a group (between curly brackets).
If you want to discourage TEX from breaking a line, enclose the
sensitive part of the formula in a separate group. If you want
to allow TEX to break a line in the middle of an equation, use
‘*’ (discretionary multiplication sign). Use of ‘*’ will cause a
line break and insertion of a x sign at the end of the line. In
the example,

$f(x,y) = {x"2-y"2} = (x+y)*(x-y)$,

TEX will allow a line break after the two equal signs, after the
plus sign, after the second minus sign, and at the discretionary
multiplication sign.

(See pages 161 and 173 of the TEXbook for more information.)

96

TEX Made Easy Day Three Zar Limited

All Delimiters Great And Small

(
)
[or \lbrack
] or \rbrack
\{ or \lbrace
\} or \rbrace

Left parenthesis: (
Right parenthesis:)
Left bracket: |
Right bracket: |
Left curly brace: {
Right curly brace: }

\1floor Left floor bracket: |
\rfloor Right floor bracket: |
\lceil Left Ceiling bracket: [
\rceil Right Ceiling bracket:]
\langle Left angle bracket: (
\rangle Right angle bracket:)

/ Slash: /

\backslash Backslash or reverse slash: \
| or \vert Vertical bar: |

\| or \Vert Double vertical bar: ||
\uparrow Upward arrow: 1

\Uparrow Double upward arrow: 1)
\downarrow Downward arrow: |
\Downarrow Double downward arrow: |}
\updownarrow Up-and-down arrow: J
\Updownarrow Double up-and-down arrow: J§

All of the above delimiters can be enlarged with ‘\big’ (‘[]),
‘“\Big’ (‘ H "), ‘\bigg’ (¢ ” "), and ‘\Bigg’ (* ” ') prefixes.

If the delimiter is an opening or closing delimiter, you
should use ‘bigl’, ‘bigr’, ‘Bigl’, ‘Bigr’, etc.. If the delimiter is a
relation, like a greater-than sign, use ‘bigm’, ‘Bigm’, etc.. Using
“\big’ without a suffix makes the delimiter spacing equivalent
to that of a normal variable. Proper use of ‘\big’ commands
ensures proper math spacing.

o7

Zar Limited Day Three TEX Made Easy
All Delimiters Great And Small (Continued)

TEX also has commands ‘\left’ and ‘\right’ to adjust auto-
matically the size of a delimiter for you. For example,

3
$$1 + \left(1\overl — x~2\right)~3$$ 1+ (1 _11:2) :

The left and right parentheses were automatically made just big
enough to cover the enclosed material. You must use ‘\left’ and
‘“\right’ in pairs (you can’t use a ‘\left’ without having a ‘\right’
in the same equation). In addition, ‘\left’ and ‘\right’ work
exactly like grouping characters (‘{}’). This means, you can use
a ‘\over’ command between ‘\left’ and ‘\right’ commands (as
in the above example).

(See pages 145-150 of the TEXbook for more information.)

o8

TEX Made Easy Day Three Zar Limited
Multiple Line Displayed Equations

If an equation is too long to fit on one line, use the ‘\dis-
playlines’ command. Here is an example:
$$\displaylines{ equation 1 \cr
equation 2 \cr
equation 8 \cr

equation n \cr}$$
The equations will be centered on separate lines (when we get
to tables, I’ll explain how to align equations). For example, to
generate the displayed equations

x = x;
if r=y then y=u;

if z=y and y=2z then xz=-2z.

I could type:

$$\displaylines{ x\equiv x;\cr
{\rm if}\quad x\equiv y\quad{\rm then}\quad y\equiv
x;\cr
{\rm if}\quad x\equiv y\quad{\rm and}\quad y\equiv z
\quad{\rm then}\quad x\equiv z.\cr}$$
All equations must be enclosed in a huge text argument.
Each equation is separated by a ‘\cr’ command. The last ‘\cr’
is required to finish the last line of the ‘\displaylines’ equation.
The ‘\displaylines’ uses ‘\hfil’ commands before and after
each line of the equation to center each equation. If you want
to change this, use ‘\hfill’ to override the default action.

(See page 194 of the TEXbook for more information.)

99

Zar Limited Day Three TEX Made Easy

Math Mode Fonts

To change the fonts used by math mode, you will need to
reload four fonts for three sizes (total of twelve ‘\font’ com-
mands). The four basic fonts used by math mode are Ro-
man, Math Italic, SYmbols, and EXtended math (CMR, CMMI,
CMSY, and CMEX). Here is how TEX assigns these fonts prior
to processing your document:
:\font\tenrm=cmr10\textfontO=\tenrm
:\font\teni=cmmilO\textfonti=\teni
:\font\tensy=cmsy10\textfont2=\tensy
:\font\tenex=cmex10\textfont3=\tenex
:\font\sevenrm=cmr7\scriptfontO=\sevenrm
:\font\seveni=cmmi7\scriptfontl=\seveni
:\font\sevensy=cmsy7\scriptfont2=\sevensy
:\font\sevenex=cmex7\scriptfont3=\sevenex
:\font\fiverm=cmr5\scriptscriptfontO=\fiverm
10:\font\fivei=cmmi5\scriptscriptfonti=\fivei
11:\font\fivesy=cmsyb\scriptscriptfont2=\fivesy
12:\font\fiveex=cmex5\scriptscriptfont3=\fiveex
The ‘\font’ commands actually load or make the font available
for use, and the ‘\textfont’, ‘\scriptfont’ and ‘\scriptscriptfont’
commands actually tell math mode what font should be used.

Lines 1-4 load fonts at ten point size for textstyle and dis-
playstyle characters. Lines 5—8 load fonts at seven point size
for scriptstyle characters (subscripts and superscripts). And,
lines 9-12 load fonts at five point size for scriptscriptstyle char-
acters (sub-subscripts and super-superscripts). Lines 5-12 may
produce errors depending on the font set supplied by your TEX
software package. If errors occur, omit lines 5-12 and script-
style and scriptscriptstyle characters will remain seven points
and five points in size respectively.

You should normally not change the font type for any of the
above math mode fonts since TEX assumes that certain charac-
ters exist in specific locations within the above fonts. You may,
however, reload any of the above fonts at a magnified size.

(See page 153 of the TEXbook for more information.)

O©CoO~NOUdkd WK

60

TEX Made Easy Day Three Zar Limited
More Math Fonts And Setup Instructions

Some people hate math italics with a passion. If you are
one of these people, TEX has the commands ‘\everymath’ and
“\everydisplay’. Typing

\everymath={\rm}
at the top of your file will cause the math shift character (‘$’)
to change mode to math mode and then ‘\rm’ (change font to
roman) before any math expressions are read. For example,

\everymath={\bf}
$£(x) = \displaystyle{i\over 2}y$

would produce

1

f(x) = 2Y:

(I used ‘\displaystyle’ because my TEX software package didn’t
have the font I needed to typeset the fraction without it) You
may also use ‘\everydisplay’ to change the font when you enter
display mode (‘$%’).

(See pages 153 and 179 of the TgXbook for more information.)

61

Zar Limited Day Three TEX Made Easy

62

TEX Made Easy
Using TEX With The Plain Macro Package

Day 4

Daniel M. Zirin Instructor

(©1993 Zar Limited

Zar Limited Day Four TEX Made Easy
Using Tabs To Make A Table

The simplest way to make a table is to use tabs to generate
columns. TEX provides a command called ‘\settabs’ to split the
page into columns. For example,

1:\settabs 3\columns

will divide the printed width of your page into three equally
wide columns. You can then fill the columns with information
by preceding each line with a ‘\+’ command, ending each line
with a ‘\cr’ command sequence, and separating each column
with an ampersand (‘&’). It is not necessary to fill all columns
and you can always finish a line with ‘\cr’ without filling all
columns. After typing the above example, you can enter the
following information:

2:\+Column 1&Column 2&Column 3\cr

3:\+&This starts in column 2\cr

4:\+&&Column 3 info\cr

5:\+\cr
:\+\sl Slanted&&Regular type\cr
:\+This is a very long column&QOoops.&&Whoa!\cr
Here is what we will see when TEX formats the above seven
lines:

6
7

Column 1 Column 2 Column 3
This starts in column 2
Column 3 info

Slanted Regular type
This is a very long cdDoaps. Whoa!

Notice that on line six we typed ‘\sl’ to slant the text in that
column. The font was removed when the column ended. On line
seven, placing information in column four when we only asked
for three columns causes TEX to continue making equally sized
columns in the right margin.

64

TEX Made Easy Day Four Zar Limited

Using Tabs To Make A Table (Continued)

Once a ‘\settabs’ command has been typed, tabbed lines
may appear anywhere in your file (you can even separate tabbed
lines with paragraphs of text). For example:

\settabs 5\columns

\+This&is&a&table&of info.\cr

This is a new paragraph.\par

\+&&This is&another&table\cr
The above four commands would generate the following output:

This 18 a table of info.
This is a new paragraph.
This is another table

To change the number of columns, type another ‘\settabs’ com-
mand.

When entering information for a column in a table, you
can use ‘\hfill’ (and its variants) to center, left justify, or right
justify text. For example, typing

\+This\hfill&\hfill is a\hfill&\hfill table.&\cr
will cause ‘This’ to be flush left in column one, ‘is a’ to be
centered in column two, and ‘table.” to be flush right in column
three.!

If you need variably sized columns, there is another form
of the ‘\settabs’ command which uses a sample line to deter-
mine the width of each column and to determine the number of
columns. For example,

\settabs\+I.D.\quad&Horacio L. Fernandez\quad&\cr
will generate a table with the width of column one equal to
‘I.D.” plus a space, the width of column two equal to ‘Horacio
L."Fernandez’ plus a space, and the third column can occupy
the rest of the line.

(See page 231 of the TEXbook for more information.)

1 The last column of a ‘\settabs’ table is special and will
ignore filler commands.

65

Zar Limited Day Four TEX Made Easy

Making Tables With Alignment

In addition to making tables with ‘\settabs’, you can also
use ‘\halign’. Use of ‘\halign’ is a bit more complicated and
takes more memory to generate a table, but, as we will see in
the following pages, ‘\halign’ is more versatile.

To use ‘\halign’ type

\halign{ preamble \cr
row 1 \cr
row 2 \cr

last row \cr}

Let’s first explain the easy part. To enter information into
the various rows of your table, use the same format as tabbed
lines excluding the ‘\+’ command. Separate each column with
an ampersand (‘&’), and finish each line with a ‘\cr’ command.
After entering the last row of your table, you need an end group
character (‘}’) after the final ‘\cr’ command.

The first line contains a preamble which is similar to the
sample line format of ‘\settabs’. Enter TEX commands to for-
mat each column of the table in the preamble using a number
sign (‘#’) to represent the information being placed in each
column, using an ampersand (‘&’) to separate each column’s
format instructions, and using a ‘\cr’ to end the preamble.

Once the preamble is set up, TEX reads the rest of the
table (until the end group character) and automatically sizes
each column for you by the information in the preamble and
the maximum width of the columns. Because TEX reads the
entire table before formatting the table, you cannot insert a
paragraph in the middle of a table generated with ‘\halign’. In
addition, using ‘\halign’ for a large table can cause the TEX
program to exceed the computer’s memory and crash.

66

TEX Made Easy Day Four Zar Limited
Making Tables With Alignment (Continued)

To generate the last table we made with ‘\settabs’, type
the following to use horizontal alignment:

\halign{#\quad&#\quad&#\cr
13%Horacio L. Fernandez&(818) 555-1213\cr}

The first line told TEX to start the table (‘{’), place the
first column entries at the start (‘#’), separate the first column
from the second column by the longest entry for column one
plus a quad of space (‘\quad’), start column two (‘&’), separate
the second column from the third column by the width of the
longest entry in column two plus a quad of space (‘\quad’), start
column three (‘&’), enter column-three entries next (‘#’), and
finally end the line (‘\cr’).

The second line is our only row of the table. The number
‘13’ is placed in column one, ‘Horacio L. Fernandez’ is placed
in column two, the phone number ‘(818) 555-1213’ is in column
three, the current row in the table finishes (‘\cr’), and the table
ends (‘}’).

If you use ‘\halign’ to format a table, you cannot tell TEX
there are more columns than you specify in the preamble. You
can, however, leave columns blank as long as all column sepa-
rators (‘&’) are present. If you don’t have entries for the last
three columns in a row, you may also type the ‘\cr’ command
prematurely, if desired.

Fach column is enclosed by implied grouping characters
(‘{}’), so you can enter a font command for a column entry and
the previous font will be restored when the column ends. In
addition, you could also use a font command in the preamble
and all entries for the column containing the font command will
be formatted in the new font.

67

Zar Limited Day Four TEX Made Easy
Making Tables With Alignment (Continued)

As an example, let’s try to make the following table (the
lines aren’t part of the table):
[.LD. Restaurant (Costs) Income Profit
1 McRonalds ($12,500) $1,325,000 $1,312,500
)
)

2 Oh Henri’s ($2,350 $4,735 $2,385
12 Jack’s Diner ($725 $24 —3$701
93 Taco Roundup ($1,475) $2,460,500 $2,459,025

Here’s how we set up the preamble:

\halign{\hfil#\quad&\hfil\bf#\hfil\quad&\hfil

(#)\quad&\hfil#\quad&\s1l\hfil#\cr

The ‘\halign’ command starts the first column at the left
margin, a quad of space separates column one from column two,
column two is centered and displayed in boldface, column two
and three are separated by another quad of space, column three
is flush right and enclosed in parentheses, column three and four
are separated by a quad of space again, column four is flush right
and separated from column five by a quad of space, and column
five is flush right using the slant font.

To add a line of information in the middle of the table, use
“\noalign’ as in the following two examples:

\noalign{(Jack’s Diner is new)}

\noalign{\vskip 6pt}
In the first example, we insert the phrase “(Jack’s Diner is new)”
without placing the information in any columns, and without
indentation. The second example separates the previous row
from the next by an extra six points of space.

The ‘\noalign’ command can only appear immediately after
a ‘\cr’ command in a table alignment.

68

TEX Made Easy Day Four Zar Limited
Making Tables With Alignment (Continued)

In addition to ‘\noalign’ you can use a command ‘\span’
to allow information to span the width of two columns. ‘\span’
replaces the ampersand (‘&’) in an alignment table.

If you need to enter information that spans several columns,
use the ‘\multispan’ command as follows:

\multispan{4}\hfil This is a comment.&\cr
The above example places the text ‘This is a comment.” flush
right across the first four columns in a five column table (the am-
persand before the ‘\cr’ command is used to separate columns
one through four from column five). Column five is left empty.

If you don’t want to enter information for a column and
you also don’t want the information in the preamble to cause
TEX to generate printable characters, use the ‘\omit’ command
between ampersands (‘&’) instead of leaving the column blank.
Here’s an example:

1: \halign{\ indent\hfil#lb. "bag\quad&\hf il#\cr
2:10&\$3.50\cr 5&\$2.00\cr

3:\omit&or \$2.05\cr

4:1&\$1.25\cr}

The ‘\omit’ command in line three will remove the text ‘Ib. " bag’
from the preamble for that column as well as leaving the column
entry blank. The result will look like the following;:

10Ib. bag _ $3.50
5lb. bag $2.00
or $2.05

1lb. bag $1.25

(See page 235 of the TEXbook for more information.)

69

Zar Limited Day Four TEX Made Easy
Making Tables With Line Borders

To generate a table with borders requires that you learn
about ‘\offinterlineskip’ and ‘\vrule’.

If you type ‘\offinterlineskip’, TEX removes the spaces be-
tween lines (ignoring ‘\baselineskip’ and ‘\lineskip’). Make sure
that you start a new group before typing ‘\offinterlineskip’, so
line spacing will be restored when you finish the table and the
group.

The ‘\vrule’ command makes a vertical line (rule) 0.4 points
wide and the height & depth of the current line (‘|’). The actual
format for typing the ‘\vrule’ command is:

\vrule widthdim heightdim depthdim
where the width, height, and depth are all optional. For exam-
ple, the ‘dreaded black box’ that TEX makes at the end of lines
which stick out into the right margin was generated with
\vrule widthbpt

In addition to ‘\vrule’, there is also ‘\hrule’ that works
exactly the same way generating a horizontal line. By default,
“\hrule’ makes a line the width of the page, 0.4 points high, and
0 points deep.

70

TEX Made Easy Day Four Zar Limited

Making Tables With Line Borders (Continued)
To make a table with vertical lines, a column in the ‘\halign’
preamble must be reserved for each vertical line across the table.
Here is an example:

1:{\offinterlineskip

:\halign{ \vrule # & \strut\ # \ & \vrule # &
\ # \ & \vrule # \cr
:\multispan{5}\hrulefill\cr

:height2pt & \omit & & & \cr

:& Country & & Score & \cr

:height2pt & \omit & & & \cr
:\multispan{5}\hrulefill\cr

:height2pt & \omit & & & \cr

:& U.S.A. & & 210 & \cr

:& Germany & & 140 & \cr

:& Japan & & 50 & \cr

:height2pt & \omit & & & \cr
14:\multispan{5}\hrulefill\cr}}

Don’t worry about the ‘\halign’ preamble right now. Instead, I
will try to explain what happens for each row of the table.

On line one, a new group is started and interline spacing
is turned off. When the table ends, a close-group character will
be needed and line spacing will return to its original settings.

On line two and three, the ‘\halign’ starts the table and
defines the preamble. Notice that when ‘\halign’ is typed a
second group begins.

On line four, ‘\multispan’ overrides the preamble for all five
columns and inserts a horizontal line.

On line five, column one will contain ‘\vrule height2pt’.
This is needed because no line space was added between the
horizontal line above and the next line with table entries. The
“\omit’ destroys the preamble for the second column containing
an undesirable ‘\strut’ (which would force the current line to a
height greater than two points).

©O© 00 NO Ul WN

e
w NN = O

71

Zar Limited Day Four TEX Made Easy

Making Tables With Line Borders (Continued)

On line six, the first column is skipped (the ‘\vrule’ will
expand to the maximum height and depth of the current row
of our table). The second column uses ‘\strut’ to make the
height and depth of the current row the maximum and the title
‘Country’ will be displayed.

Here is the result of typing the previous example:

Country | Score

U.S.A. | 210
Germany | 140
Japan 50

Now that you know how to type everything needed to make
a beautiful table, I'll let you in on a secret. If we typed the
following two lines,
\def\smalline{height2pt&\omit&&&\cr}
\def\hrline{\multispan{5}\hrulefill\cr}
at the top of the file (between lines one and two of the example
on the previous page), lines 4, 8, and 14 could have been replaced
with ‘\hrline’ and lines 5, 7, 9, and 13 could have been replaced
with ‘\smalline’. Here is the shorter version:
1:{\offinterlineskip
2:\def\smalline{height2pt&\omit&&&\cr}
3:\def\hrline{\multispan{5}\hrulefill\cr}
4:\halign{ \vrule # & \strut\ # \ & \vrule # &
5: \ #\ & \vrule # \cr
6:\hrline\smalline
7:& Country & & Score & \cr
8
9

:\smalline\hrline\smalline

:& U.S.A. & & 210 & \cr
10:& Germany & & 140 & \cr
11:& Japan & & 50 & \cr
12:\smalline\hrline}}

(See page 246 of the TEXbook for more information.)

72

TEX Made Easy Day Four Zar Limited
Making Matrices In Displayed Equations

e \matrix e
Here is an example of what ‘\matrix’ can generate:

€11 €12 . €1c

€21 €929 e €2
R =

€r1 €r2 ... Epc

This command works exactly like ‘\halign’. Here is how the
above equation was made:

$$R=\1left (\matrix{e {11}&e {12}&\1ldots&e {1c}\cr

e {21}&e {22}&\1dots&e {2c}\cr

\vdots&\vdots&\ddots&\vdots\cr

e_{ri1}&e_{r2}&\1dots&e {rc}\cr}\right)$$

The above example uses ‘\ldots’, ‘\vdots’, and ‘\ddots’ for
low, vertical, and diagonal dots respectively.

See page 176 of the TEXbook for more information.

e \pmatrix ¢ \bordermatrix e

The command ‘\pmatrix’ is a variant of ‘\matrix’ that au-
tomatically encloses a matrix in parentheses. The ‘\border-
matrix’ command inserts parentheses and generates column and
row labeling of a matrix.

You can read about these on pages 176 and 177 of the

TEXbook.

73

Zar Limited Day Four TEX Made Easy
Making Matrices In Displayed Equations (Continued)

e \cases o
If you need to typset the equation

1/3 if z > 10;
f(x):{l/Q if 5 < < 10;
1 if x < 5.
TEX offers a command ‘\cases’. It works a bit like ‘\halign’.
Any number of cases can be specified, and TEX will generate
and enlarge the left curly bracket in the displayed formula. Here
is the text needed to display the above formula:
$$f (x) = \cases{ 1/3 & if $x\ge 10%;\cr
1/2 & if $5\1le x<10%$;\cr
1 & if $x<5$.\cr}$$
The ampersands (‘&’) are used to separate two columns;
the formula to the left of the ampersand and the conditional to
the right of the ampersand. The ‘\cr’ commands tell TEX where
each line of ‘\cases’ ends. Notice that the formula to the left of
the ampersand is typeset in math mode while the information
to the right is typeset in horizontal mode (the mode used to
generate standard text). The ‘\cases’ starts a group and finishes
the group after the last ‘\cr’.
See page 175 of the TEXbook for more information.

74

TEX Made Easy Day Four Zar Limited
Aligning Displayed Equations
To make the below equation,

T(n) < T(2len]) < (3len] _ ollsnly
< 3c- 3"

= 3cn'8?

use the ‘\eqalign’ command. Use of ‘\eqalign’ is very similiar
to a two-column ‘\halign’ table with the left and right columns
pushed to the center. Here is the text used to make the above
example:

$$\eqalign{T(n)\le T(2"{[\1lg nl}) &

\le (3~ {[\1g nl}-2"{[\1g nl}) \cr

& < 3c\cdot 3°{\1g n} \cr

& = 3c n~{\1g 3} \cr}$$
On line one and two, the first line of the equation is generated
with the alignment of subsequent lines under the second less-
than or equal sign.

If a ‘\eqno’ was used after the end of ‘\eqalign’ (the end
group ‘}’) and before the end of the displayed equation (‘$%$’),
the equation number would be flush right vertically centered
over all lines of the equation. Here is an example:

T(n) < T(2le™) < (3l&n] _ gllsn])

/
= 3cn'e3, (18)

If you don’t like the spacing between lines that ‘\eqalign’ auto-
matically makes, insert a ‘\noalign{\vskip dimension}’ imme-
diately after a ‘\cr’ command.

5

Zar Limited Day Four TEX Made Easy
Aligning Displayed Equations (Continued)

If you need equation numbers for each line of a ‘\eqalign’,
use either ‘\eqalignno’ for equation numbers to the right or
“\leqalignno’ for equation numbers displayed to the left of each
line. These two commands work like a three-column table. The
first column is for the left side of the formulas, the second col-
umn is for the right side of the formulas and the third column is
reserved for the equation number (if any). Here is an example
of “\leqalignno’:

(1) (z+y)(z—y)=2>—zy+yz—9y°
= 2% —y*
(2) (z +y)* =2° + 2zy + y°.

The above displayed equation was made with:
$$\leqgalignno{ (x+y) (x-y) & =x"2-xy+yx-y~2 & (1) \cr
& =x"2-y~°2; & \cr

(x+y) "2 & =x"2+2xy+y~2. & (2) \cr}$$

(See page 190 of the TEXbook for more information.)

76

TEX Made Easy
Using TEX With The Plain Macro Package

Day 5

Danziel M. Zirin Instructor

(©1993 Zar Limited

Zar Limited Day Five TEX Made Easy
Centering An Aligned Table

To cause a table generated with ‘\halign’ to be centered,
precede the TEX commands needed to produce the table with?
\centerline{\vbox{
and terminate the table with two extra end-group characters
(‘}}’). Here’s an example:

\centerline{\vbox{
\offinterlineskip
\def\skipit{\cr\noalign{\vskip3pt}}
\halign{\hfil #\quad&#\cr

Column 1&Column 2\skipit
\multispan{2}\hrulefill\skipit
Frank&2101b.\skipit
Joe&3251b.\cr}}}

The result of the above TEX commands follows:

Column 1 Column 2

Frank 210lb.
Joe 325lb.

1 See chapter 11 and page 77 of the TEXbook for more infor-
mation about the ‘\hbox’ and ‘\vbox’ commands.

78

TEX Made Easy Day Five Zar Limited
Leaving Room To Insert Figures

If a figure needs to be placed in a page of your document,
use ‘\midinsert’ to save room for the figure when TEX formats
your document. The command ‘\midinsert’ checks to see if the
text or blank space can be placed at the current line without
causing a page eject. If there is enough room, the text or blank
space will be formatted on the current page otherwise it will be
placed at the top of the following page.

To use this command, type ‘\goodbreak\midinsert’, fol-
lowed by text and/or ‘\vskip’ commands, and terminated with
“\endinsert’. For example, typing

\goodbreak\midinsert

\hrule\vskip 2in\hrule

\endinsert
will cause a horizontal line to appear before and after two inches
of vertical blank space. You could replace ‘\hrule \vskip 2in
\hrule’ with a text paragraph, table, equation, or any combi-
nation. Using ‘\midinsert’ and ‘\endinsert’ implies a separate
group, so changes made after ‘\midinsert’ will go away when
“\endinsert’ is typed.

(See page 115 of the TEXbook for more information.)

79

Zar Limited Day Five TEX Made Easy
Making Your Own Filler Commands

If you don’t like using ‘\dotfill’ or ‘\hrulefill’ for making
a table of contents, you can make your own specialized filler
command by defining a character-repeat sequence. To make
your own filler, use the ‘\leaders’ command as follows:!

\def\myfill{\leaders\hbox to 5pt{\hss:\hss}\hfill}

Once the above is typed, our new filler can be used in the
following examples:

\line{\myfill This is cute.\myfill}

\line{Chapter 1\myfill 14}
to produce the following:

If we increase the size of the box containing our repeat se-
quence to ten points (‘{\hss:\hss}’ is our repeat sequence and
the box is currently five points wide), the above two ‘\line’ com-
mands would generate:

- : This is cute. S A
Chapter 1 : : @ : : : ¢ : 0 14

Changing the colon in our repeat sequence to ‘\%’ would
make:

% % % % %0 %o % % % % % This is cute. % % % % % % % % % %
Chapter 1 % % % % % % % % %0 %6 %0 Y0 %6 %0 %0 %0 %0 %0 %0 %o %o 14

(See page 223 of the TEXbook for more information.)

1 See chapter 11 and page 77 of the TEXbook for more infor-
mation about the ‘\hbox’ command.

80

TEX Made Easy Day Five Zar Limited
Character Overstriking

To print one character on top of another, use one of the
following commands:

\rlap ‘\rlap’ takes a text argument to overstrike the char-
acters immediately following ‘\rlap’. For example,
‘\rlap{/}c’ would print ‘¢

\llap ‘\llap’ takes a text argument to overstrike the char-
acters immediately preceding ‘\llap’. For example,
‘/\llap{c}’ would generate ‘¢’.

To cause TEX to make the next character baseline higher
or lower than the current baseline use the ‘\raise’ and ‘\lower’
commands. For example, to place a tilde under the greek letter
tau, define a new command as follows:!
\def\tildetau{τ\1llap{\lower7.5pt\hbox{\“{}}}}
Once the above definition is made, typing ‘\tildetau’ would pro-
duce ‘7.

(See pages 66 and 82 of the TEXbook for more information.)

1 See chapter 11 and page 77 of the TEXbook for more infor-
mation about the ‘\hbox’ command.

81

Zar Limited Day Five TEX Made Easy
Character Duties

Here is the table of all character duties and category codes:
\ (Category 0) The command character.
Category 1) The start group character.
Category 2) The end group character.
Category 3) The math shift character.
Category 4) The alignment tab character.
<CR> (Category 5) The end of line character.
Category 6) The parameter character.
Category 7) The superscript character.
Category 8) The subscript character.
<NULL> (Category 9) This character is ignored.
<SPACE> (Category 10) The space character.
letters (Category 11) Letters A...Z and a.
others (Category 12) All characters not found in other
categories.
~ (Category 13) The ‘active’ character.
% (Category 14) The comment character.

 (Category 15) Invalid character.

Suppose you don’t have a hat key on your keyboard (used
for superscripting in math or display mode). TgX has a method
of using another key for superscripting. To use the double quote
key for superscripting, type:

\catcode‘\"=7
This makes the double-quote key belong to category seven (su-
perscripting). This would not change the category of the hat
key. If you have a hat key, but you want to use the double
quote for superscripting, change the hat key to category twelve
so it can be used in your document as follows:

\catcode‘\"=12

N A VAR I

(
(
(
(
(
(
(
(
(
(
(
(

(See pages 37 and 39 of the TEXbook for more information.)

82

TEX Made Easy Day Five Zar Limited

Boxes

If you want to enclose a word, phrase, or anything at all
inside a box, type the following at the top of your file to define
the command ‘\boxit’:

\def\boxit#1{\leavevmode\hbox{\vrule\vtop

{\vbox{\hrule\kernipt\hbox{\kernipt

\strut#1\kernipt}}\kernipt\hrule}\vrule}}
And you can box just about anything by typing:

\boxit{ whatever }

This |sentence| is using the ‘\boxit’ command to box the word
‘sentence’. Using ‘\boxit’ will not allow TEX to hyphenate a
word or break a line in the middle of a box containing multiple
words.

83

Zar Limited Day Five TEX Made Easy
Automatic Numbering

The following page contains a few commands and defini-
tions to generate automatic numbering for sections, references,
as well as other uses.

The package defines two new commands: ‘\sectno’ for the
counter we will use and automatically increment, and ‘\section’
to display the contents of ‘\sectno’.

‘“\sectno’ is merely a variable (like the ‘\pageno’ counter).
It will be initially set to the value one, but may be changed by
typing ‘\sectno=wvalue’. Here are the necessary commands:

1:\newcount\sectno \sectno=1
2:\def\section{\the\sectno
3:\globalladvance\sectno by 1}

And here is an example of its use:
1:\noindent Section \section\par
2:\noindent Section \section\par

3:\sectno=13
4:\noindent Section \section\par

84

TEX Made Easy Day Five Zar Limited
Automatic Table Of Contents Generator

The following pages contain a few commands and defini-
tions to automatically generate a table of contents.

The package defines four new commands: ‘\tocref’ to make
entries in the table of contents, ‘\tocline’ to put special lines in
the table of contents, ‘\tocgen’ to force the last table of contents
page to be printed, and ‘\tocpageno’ used as the independent
page number counter for our TOC.

“\tocref’ takes two text arguments: the text to be itemized
in the table of contents (this text will also be placed in your file
at the same location where ‘\tocref’ is found) and the optional
indentation for the table of contents line containing this entry.
For example, if you type:

\centerline{\tocref{\bf Chapter 1}{}}
the boldface text ‘Chapter 1’ will be both centered on the cur-
rent line and flush left in the table of contents. If you now type:

\noindent\tocref{Section 1}{\indent}
the text ‘Section 1’ will be located at the point where ‘\tocref’
was typed, as well as indented in the table of contents. When
using ‘\tocref’, the text arguments will be followed by dots and
a page number in the table of contents.

The command ‘\tocline{ tezt }’ will place ‘text’ on the next
line in the table of contents (without dots and a page number).

The ‘\tocgen’ command will save the current page number,
create a table of contents page with independent page num-
bering, restore the old page number, and remove all ‘\tocref’
entries from TEX’s memory. This command should always be
used before ‘\end’ to flush the last few TOC entries out of TEX’s
memory.

The ‘\tocpageno’ command is a counter variable that keeps
track of the current TOC page number independently of the
document’s page number. By default, TOC pages are numbered
with roman numerals. To change the current TOC page number,
simply type ‘\tocpageno=wvalue’.

85

Zar Limited Day Five TEX Made Easy
Automatic TOC Generator (Continued)

First, we select a non-letter to temporarily become a member
of the TEX letter family. Later, we will create variables and
macros that use this non-letter making it nearly impossible for
the end-user to accidentally redefine or reuse a macro or variable
essential to the operation of this TOC macro.

1:\catcode ‘\@=11
Next, we declare some new variables for our TOC macros. Vari-
able ‘t@cnew’ will determine if this is a new TOC (1), a new
page of the TOC (3), or in the midst of generating a TOC (2).
Variable ‘tQcopage’ will be used to save the current document’s
page number when a TOC page gets printed. Variable ‘toc-
pageno’ will be our TOC page number (as opposed to the cur-
rent document’s page number). Since ‘tocpageno’ doesn’t use
our special at-sign (@) letter in the variable name, the end-user
is allowed to alter this variable if desired. Variable ‘tQcbox’ is
the box that contains the lines of the current page of the TOC.
Variables ‘t@cboxtest’ and ‘tQctestsize’ are used to determine
when the TOC page, currently being generated, becomes full
(about to exceed \vsize).

2:\newcount\t@cnew\tQcnew=1

3:\newcount\t@copage\newbox\t@cbox

4:\newcount\tocpageno\tocpageno=-1

5:\newbox\t@cboxtest\newdimen\tQctestsize
Now we generate a ‘tQcstrut’ definition to give our TOC pages a
uniform line separation. The definition assumes you are using 10
point lettering and expands if you are using ‘\magnification’ at
the top of your file. The following setting makes the baselineskip
8.5 points in height and 3.5 points in depth (allowing for 2 points
of line spacing).

6:\def\t@cstrut{{\vrule height8.5pt depth3.5pt

7: widthOpt}}

86

TEX Made Easy Day Five Zar Limited
Automatic TOC Generator (Continued)

Since our TOC pages will be generated simultaneously with nor-
mal document pages, we need special macros for numbering our
TOC pages separately from the rest of our document. The next
macro, ‘tQcfolio’ is exactly the same as the normal definition of
‘folio’ (explained earlier) except that ‘t@cfolio’ will use our own
page number counter ‘tocpageno’.
8:\def\t@cfolio{\t@cstrut\ifnum\tocpageno<0
9: \romannumeral-\tocpageno\else
10: \number\tocpageno\fi}
Now that we have our own TOC page numbering, we must
provide a method for incrementing ‘tocpageno’ the same way
‘pageno’ is incremented.
11:\def\t@cadvpageno{\ifnum\tocpageno<0
12: \globalladvance\tocpageno by -1\else
13: \globalladvance\tocpageno by 1\fi}
Our definition of ‘tocref’ first writes text argument number one
at the current location in the document being prepared (not in
the TOC). Next, ‘tocref’ calls ‘t@ctest’ to check that adding
the next line in or TOC will not exceed a page worth of text.
If ‘tQctest’ determines that the current TOC page is full, the
TOC page is output and emptied. The argument for macro
‘tQctest’ is the content of the next line to be added to the cur-
rent TOC page (since ‘t@cstrut’ is known to be larger than
‘dotfill’ and ‘folio’, we exclude the latter two from the ‘t@Qctest’
argument). The next step is to call the definition ‘t@cbanner’
in case ‘tQctest’ just emptied the current TOC page and a TOC
banner is required. Finally, ‘tocref’ globally changes ‘tQcbox’
to be equal to ‘t@Qcbox’ plus the next line of the TOC.
14:\def\tocref#1#2{#1\t@ctest{\t@cstrut#2#1}

15: \t@cbanner\global\setbox\t@cbox=\vbox{
16: \box\t@cbox\vbox{
17: \line{\rm\tQ@cstrut{#2#1}~\dotfill~\folio}}}}

87

Zar Limited Day Five TEX Made Easy
Automatic TOC Generator (Continued)

To define ‘tocline’, we do everything we did for the definition of
‘tocref’ except double printing text argument one and format-
ting the new TOC line differently.
18:\def\tocline#1{\t@ctest{\t@cstrut#l}

19: \t@cbanner\global\setbox\t@cbox=\vbox{
20: \box\t@cbox\vbox{
21: \line{\rm\t@cstrut{#1}}}}}

The definition for ‘t@cbanner’ checks the value of ‘t@cnew’ to
determine if a page one TOC banner is needed or a continuation
banner is needed. If so, ‘t@cbanner’ calls ‘t@cstart’ or ‘t@cont’
to generate the desired TOC banner.
22:\def\t@cbanner{\ifnum\t@cnew=1\t0@cstart\fi

23: \ifnum\t@cnew=3\t@cont\fi}

To make the ‘tocstart’ and ‘tocont’ definitions, we simply change
the contents of ‘tocbox’ to be equal to the new banner and reset
‘tocnew’ to two (2).
24:\def\t@cstart{\global\setbox\t@cbox=\vbox{

25: \centerline{\t@cstrut\bf Table 0Of Contents}
26: \line{\t@cstrut\hfil} % blank line

27 : H\global\t@cnew=2}
28:\def\t@cont{\global\setbox\t@cbox=\vbox{

29: \centerline{\t@cstrut

30: Table Of Contents (Continued)}

31: H\global\t@cnew=2}

The ‘tQctest’ macro is used by ‘tocref’ and ‘tocline’ to check
if a new line of TOC text will cause the current TOC page to
become overfull. It does this by adding the height and depth
of the current ‘tQcbox’ page, the height and depth of the new
TOC line of text, and the additional height and depth of our
‘t@cstrut’ definition (used for the TOC page numbering) and
compares the total with ‘vsize’. If the current TOC page is
full, call definition ‘tocgen’ to output the page and set counter
‘t@cnew’ to equal three (used by ‘t@cbanner’).

88

TEX Made Easy Day Five Zar Limited
Automatic TOC Generator (Continued)

32:\def\t@ctest#1{\setbox\t@cboxtest=\vbox{

33: \line{#1\hss}}\t@ctestsize=\ht\t@cbox

34: \advance\tQ@ctestsize by\dp\tQ@cbox

35: \advance\tQctestsize by\ht\tQcboxtest

36: \advance\tQctestsize by\dp\t@cboxtest

37: \setbox\t@cboxtest=\vbox{\line{\t@cfolio\hss}}
38: \advance\tQctestsize by\ht\tQcboxtest

39: \advance\tQctestsize by\dp\tQ@cboxtest

40: \ifdim\t@ctestsize>\vsize

41: \tocgen\global\t@cnew=3\fi}

And last but not least, we must define ‘tocgen’. The definition
of ‘tocgen’ checks that a TOC exists, saves the current page
number, resets the page number to our TOC page number, adds
the TOC page number to the end of the current TOC page, ships
out the current TOC page, resets the current page number to
the old saved setting, and changes ‘t@Qcnew’ to equal one (1).
42:\def\tocgen{\ifnum\t@cnew=1

43: \message{No TOC entries found.}\else

44 : \t@copage=\pageno\pageno=\tocpageno

45: \global\setbox\t@cbox=\vbox to\vsize{

46: \box\t@cbox\vfil\vbox{

47: \centerline{\t@cfolio}}}

48: \message{ (TOC}\shipout\box\t@cbox\message{) }
49: \t@cadvpageno\pageno=\tocopage

50: \global\tocnew=1\fi}

The next line restores the original category code of the at-sign
changed back on line one.
51:\catcode ‘\@=12

89

Zar Limited Day Five TEX Made Easy
Automatic TOC Generator (Continued)

The following lines show how the previous TOC macro may be
used:

:\centerline{\bf\tocref{Chapter 1}{}}

:This is the first paragraph of Chapter 1.\par
:\noindent\tocref{\bf Section 1}{\indent}\par
:This is the first paragraph of

:Section 1 in Chapter 1.\par

:\tocline{\hfil (Cont.)}
:\noindent\tocref{Section 2}{\indent\bf }\par
:This is the first paragraph of

:Section 2 in Chapter 1.\par

:\tocgen\vfil\end

©O© 00N O WN -

[
(@

Rather than show the output produced by the above ten lines,
I suggest you try it yourself.

90

TEX Made Easy
Using TEX With The Plain Macro Package

Appendix A

Danziel M. Zirin Instructor

(©1993 Zar Limited

Zar Limited Appendix A TEX Made Easy
Math Mode Symbols

Greek Letters
For a list of Greek letters, see page 46. To generate slanted
uppercase Greek letters, use the “\mit” font command in the
following manner:

“$\mit\Omega$” creates “(2”

Calligraphic Capitals
To create any uppercase calligraphic letter, simply precede a
capital letter with the command “\cal” as in:

“$\cal D\cal E\cal K$” would generate “DEK”

Large Operators

N \bigcap U \bigcup (® \bigodot

@ \bigoplus Q) \bigotimes || \bigsqcup

¥ \biguplus \V \bigvee A\ \bigwedge

[T \coprod [\int § \oint

\prod >, \sum

The \sum, \prod, \coprod, and \int seen above in \textstyle
format have different spacing than the TEX commands \Sigma,
\Pi, \amalg, and \smallint, respectively.

—

Miscellaneous Symbols

N \aleph / \angle \ \backslash
1 \bot & \clubsuit { \diamondsuit
¢ \ell) \emptyset 1 \exists
b \flat VYV \forall h \hbar
@ \heartsuit S \Im ¢ \imath
oo \infty 7 \jmath V \nabla
1 \natural - \neg 0 \partial
/' \prime R \Re f \sharp
#® \spadesuit v \surd T \top
A\ \triangle o \wp |\

92

TEX Made Easy Appendix A Zar Limited

Math Mode Symbols

Relations

< < > > — =

~ \approx =< \asymp >~ \cong

= \equiv > \geq < \leq

< \prec < \preceq ~ \sim

~ \simeq C \sqgsubseteq 1 \sqgsupseteq
C \subset C \subseteq > \succ

> \succeq D \supset D \supseteq
< \bowtie - \dashv = \doteq

~ \frown > \gg € \in

< \11 | \mid = \models

5 \ni | \parallel L \perp

x \propto — \smile - \vdash

The first 21 relation commands above can be prefixed with the
“Nnot” command to create a negative relation. For example,
“N\not\succeq\not>” would produce “¥»3”.

Binary Operations

+ + - - IT \amalg
* \ast (O \bigcirc V \bigtriangledown
A \bigtriangleup e \bullet N \cap
- \cdot o \circ U \cup
T \dagger I \ddagger ¢ \diamond
+ \div F \mp ©® \odot
© \ominus @ \oplus @ \oslash
® \otimes + \pm \ \setminus
M \sqcap LI \sqcup * \star
X \times < \triangleleft o \triangleright
W \uplus V \vee A \wedge
! \wr

The difference between commands \backslash and \setminus
is the extra spacing used for the later.

93

Zar Limited Appendix A TEX Made Easy
Math Mode Symbols

Openings
For a list of delimiters and openings, see page 58.

Arrows

4 \downarrow / \Downarrow

< \hookleftarrow — \hookrightarrow
< \leftarrow < \Leftarrow

~— \leftharpoondown ~— \leftharpoonup
<+ \leftrightarrow & \Leftrightarrow
<— \longleftarrow <= \Longleftarrow
+— \longleftrightarrow <= \Longleftrightarrow
— \longmapsto — \mapsto

— \longrightarrow —> \Longrightarrow
/' \nearrow N \nwarrow

— \rightarrow = \Rightarrow

— \rightharpoondown — \rightharpoonup
+ \rightleftharpoons

N\, \searrow v \swarrow

T \uparrow {+ \Uparrow

I \updownarrow § \Updownarrow

To place symbols above a relation or arrow, use the “\buildrel”
command as follows:

${\buildrel dt\over\longrightarrow}$
In the above example, the text “dt” is placed on top of a long

right arrow and the result would look like:
dt

Warning: \over is not used to define a fraction when used with
the \buildrel command.

94

TEX Made Easy

Aliases

Appendix A

Math Mode Symbols

Zar Limited

The following table shows some commands that have aliases.

ﬂ:—_l <> W | —«~IVIA Y

\ne, \neq, and \not=
\le and \leq

\ge and \geq

\{ and \lbrace

\} and \rbrace
\rightarrow and \to
\ni and \owns

\land and \wedge
\lor and \vee

\lnot and \neg
\vert and |

\Vert and \|

\iff and \Longleftrightarrow

Non-Math Symbols

Oldstyle Numbers
In addition to the standard six font commands (\rm, \s1, \bf,
\it, \tt, and \mit) you may use the \oldstyle font command
for numbers only to generate “0123456789”.

Miscellaneous Symbols

§ \S
T \dag

q \p
I \ddag

95

Zar Limited Appendix A TEX Made Easy

96

TEX Made Easy
Using TEX With The Plain Macro Package

Appendix B

Daniel M. Zirin Instructor

(©1993 Zar Limited

Zar Limited Appendix B TEX Made Easy
TEX Command Reference Table

The following list of commands and a brief description of
their meaning have all be introduced in this document. The
page number following the description is the page where the
command is first referenced. For a list of other useful math
commands not referenced in this book, see appendix A.

\

M

Generate a left curly bracket character [8] {Math}.
\}

Generate a right curly bracket character [8] {Math}.
\$

Generate a dollar sign character [8].
\&

Generate an ampersand character [8].
\#

Generate a number sign character [8].
\ {3

Generate a hat character for use without accenting [8].
\-

Generate an underscore character [8].
\%

Generate a percent sign character [8].
V{3

Generate a snook character for use without accenting [8§].

(Backslash-space) Generate a white-space character [5].

\ 4

Generate a grave accent above the following character [9].
\)

Generate an acute accent above the following character [10].
\A

Generate a circumflex accent above the following character

[10].

98

TEX Made Easy Appendix B Zar Limited

\ll

\/

\+

\aa

Generate an umlaut accent above the following character
[10].

Generate a tilde accent above the following character [10].

Generate a macron accent above the following character
[10].

Generate a dot accent above the following character [10].

Generate a little extra white-space for separating a slanted
font from an unslanted font [11].

Allows the temporary automatic hyphenation for automatic
line breaking [41].

Allows the automatic line breakage of a math formula by
inserting a ‘times’ sign where one was implied [57] {Math}.

Generates ¢ of a \quad of horizontal white-space [57] {Math}.
Generates 2 of a \quad of horizontal white-space [57] {Math}.
Generates x of a \quad of horizontal white-space [57] {Math}.

Generates —3 of a \quad of horizontal white-space [57]
{Math}.

Defines the beginning of a tabular line [65].

Generate the lowercase Scandinavian A-with-circle charac-
ter [10].

99

Zar Limited Appendix B TEX Made Easy

\AA
Generate the uppercase Scandinavian A-with-circle charac-
ter [10].
\above
Generates a fraction with an arbitrary thickness for the
dividing line [49] {Math}.
\acute
Generate an acute accent above the following character [51]
{Math}.
\advance
Advances the following internal TEX variable by a specified
integer amount [87].
\ae
Generate the ‘@’ lowercase Latin ligature [10].
\AE
Generate the ‘&’ uppercase Latin ligature [10].
\alpha
Generates the lowercase Greek alpha character [46] {Math}.
\arccos
Generates the letters ‘arccos’ in roman font for use as a
function name [55] {Math}.
\arcsin
Generates the letters ‘arcsin’ in roman font for use as a
function name [55] {Math}.
\arctan
Generates the letters ‘arctan’ in roman font for use as a
function name [55] {Math}.
\arg
Generates the letters ‘arg’ in roman font for use as a func-
tion name [55] {Math}.
\atop
Generates a fraction excluding the dividing line [49] {Math}.
\b
Generate a bar-under accent below the following character

[10].

100

TEX Made Easy Appendix B Zar Limited

\backslash
Generate a backslash character [8] {Math}.

\bar
Generate a bar accent above the following character [51]
{Math}.

\baselineskip
Defines the uniform vertical line separation [38].

\beta
Generates the lowercase Greek beta character [46] {Math}.

\bf
Change the current font to boldface extended [11].

\big
Generates a larger version of the following math character
[58] {Math}.

\Big
Generates a larger version of the following math character
[58] {Math}.

\bigg
Generates a larger version of the following math character
[58] {Math}.

\Bigg
Generates a larger version of the following math character
[58] {Math}.

\biggl
Generates a larger version of the following opening math
delimiter symbol [58] {Math}.

\Biggl
Generates a larger version of the following opening math
delimiter symbol [58] {Math}.

\biggm
Generates a larger version of the following math character
[58] {Math}.

\Biggm
Generates a larger version of the following math character

(58] {Math}.

101

Zar Limited Appendix B TEX Made Easy

\biggr
Generates a larger version of the following closing math
delimiter symbol [58] {Math}.

\Biggr
Generates a larger version of the following closing math
delimiter symbol [58] {Math}.

\bigl
Generates a larger version of the following opening math
delimiter symbol [58] {Math}.

\Bigl
Generates a larger version of the following opening math
delimiter symbol [58] {Math}.

\bigm
Generates a larger version of the following math character
[58] {Math}.

\Bigm
Generates a larger version of the following math character
[58] {Math}.

\bigr
Generates a larger version of the following closing math
delimiter symbol [58] {Math}.

\Bigr
Generates a larger version of the following closing math
delimiter symbol [58] {Math}.

\bigskip
Generates 12 points of vertical white-space [25].

\bordermatrix
Generates a matrix for use in a displayed equation enclosed
with variably sized parentheses and an extra column and
row for border labels [74] {Math}.

\box
Identifies an internal box variable [90].

\boxit
Macro to generate a square box around arbitrary text [86].

102

TEX Made Easy Appendix B Zar Limited

\breve
Generate a breve accent above the following character [51]
{Math}.
\c
Generate a cedilla accent under the following character [9].
\cases
Generates a multi-lined case statement for use in a dis-
played equation with a variably sized open curly bracket
[75] {Math}.
\catcode
Defines or redefines a character to a TEX category or func-
tion [85].
\cdot
Generates a single vertically centered dot character [48]
{Math}.
\cdots
Generates a vertically centered ellipsis [48] {Math}.
\centerline
Generates a line of centered text [16].
\check
Generate a check accent above the following character [51]
{Math}.
\chi
Generates the lowercase Greek chi character [46] {Math}.
\choose
Generates a choose between function [49] {Math}.
\colon
Generates a colon for punctuation [50] {Math}.
\columns
Generates a number of equally wide columns for the tabular
environment defined by \settabs [65].
\cos

Generates the letters ‘cos’ in roman font for use as a func-
tion name [55] {Math}.

103

Zar Limited Appendix B TEX Made Easy

\cosh
Generates the letters ‘cosh’ in roman font for use as a func-
tion name [55] {Math}.

\cotcot
Generates the letters ¢’ in roman font for use as a function
name [55] {Math}.

\coth
Generates the letters ‘coth’ in roman font for use as a func-
tion name [55] {Math}.

\cr
Terminates the end of a table line or the end of one line in
a multi-lined displayed equation [60].

\csc

Generates the letters ‘csc’ in roman font for use as a func-
tion name [55] {Math}.

\d
Generate a dot-under accent below the following character
[10].
\dag
Generate a single crossed dagger character [10].
\ddag
Generate a double crossed dagger character [10].
\ddot
Generate a double dot accent above the following character
[51] {Math}.
\ddots
Generates a diagonal top-to-bottom ellipsis [74] {Math}.
\def
Generates a new macro or replaces an existing macro [39)].
\deg
Generates the letters ‘deg’ in roman font for use as a func-
tion name [55] {Math}.
\delta
Generates the lowercase Greek delta character [46] {Math}.

104

TEX Made Easy Appendix B Zar Limited

\Delta
Generates the uppercase Greek delta character [46] {Math}.
\det
Generates the letters ‘det’ in roman font for use as a func-
tion name [55] {Math}.
\dim
Generates the letters ‘dim’ in roman font for use as a func-
tion name [55] {Math}.
\displaylines
Generates a multi-lined displayed equation [60] {Math}.
\displaystyle
Changes the current font style size to displaystyle format
[49] {Math}.
\dot
Generate a dot accent above the following character [51]
{Math}.
\dotfill
Generates infinite horizontal dot filler [37].
\downarrow
Generates a down arrow symbol [58] {Math}.
\Downarrow
Generates a double down arrow symbol [58] {Math}.
\dp
Retrieves the depth dimension of the following internal box
variable [92].
\eject
Stops generating material for the current page and starts a
new page [34].
\else
When the first conditional evaluation is not true, \else
begins the alternate conditional block of commands [90].
\end
Terminates processing of a TEX input document [17].
\endinsert
Ends a floating insertion [82].

105

Zar Limited Appendix B TEX Made Easy

\epsilon
Generates the lowercase Greek epsilon character [46] {Math}.
\egalign
Generates an aligned multi-lined displayed equations [76]
{Math}.
\egalignno
Generates an aligned multi-lined displayed equations with
optional right-flush equation numbers [77] {Math}.
\egno
Generates an equation number vertically centered to the
right [54] {Math}.
\equiv
Generates an equivalence symbol [60] {Math}.
\eta
Generates the lowercase Greek eta character [46] {Math}.
\everydisplay
Defines a command or series of commands to automatically
execute upon entering display mode [62] {Math}.
\everymath
Defines a command or series of commands to automatically
execute upon entering math mode [62] {Math}.
\exp
Generates the letters ‘exp’ in roman font for use as a func-
tion name [55] {Math}.
\fi
Ends a conditional block of commands [90].
\folio
Generates a page number for the current page [35].
\font
Request to use a new font and define a command for using
the new font [12].
\footline
Sets the running line of material to appear at the bottom
of every page [35].

106

TEX Made Easy Appendix B Zar Limited

\footnote
Generates a footnote to appear at the bottom of the current
page [32].
\frenchspacing
Defines the spacing algorithm to be ‘frenchspacing’ [42].
\gamma
Generates the lowercase Greek gamma character [46] {Math}.
\Gamma
Generates the uppercase Greek gamma character [46] {Math}.
\gcd
Generates the letters ‘gecd’ in roman font for use as a func-
tion name [55] {Math}.
\ge
Generates a greater-than-or-equal sign symbol [75] {Math}.
\global
Causes the following expression to take affect globally through-
out the entire document regardless of the current group
level [87].
\goodbreak
Temporarily tricks TEX into thinking the current page is
longer to cause an early page eject [82].

\grave
Generate a grave accent above the following character [51]
{Math}.

\H

Generate the long Hungarian umlaut accent above the fol-
lowing character [10].

\halign
Generates a table [67].

\hangafter
Sets the line of the next paragraph to start hanging para-
graph indentation [29].

\hangindent
Sets the amount of horizontal paragraph hanging indenta-
tion for the next paragraph [29].

107

Zar Limited Appendix B TEX Made Easy

\hat
Generate a hat accent above the following character [51]
{Math}.
\hbox
Generates an arbitrary horizontal box of material with un-
defined depth and height [83].
\headline
Sets the running line of material to appear at the top of
every page [35].
\hfil
Generates infinite horizontal filler [34].
\hfill
Generates infinite horizontal filler [33].
\hfilll
Generates infinite horizontal filler [34].
\hfuzz
Defines the amount of tolerance for line justification [42].
\hoffset
Defines the document left margin [15].
\hom
Generates the letters ‘hom’ in roman font for use as a func-
tion name [55] {Math}.
\hrule
Generates a horizontal line or rule [71].
\hrulefill
Generates infinite horizontal rule filler (solid horizontal line)
[37].
\hsize
Defines the document printed width [15].
\hskip
Moves the point of reference for generating the next char-
acter horizontally across the page [25].
\hss
Generates infinite horizontal filler [34].

108

TEX Made Easy Appendix B Zar Limited

\ht
Retrieves the height dimension of the following
\hyphenation
Defines a new automatic hyphenation algorithm for one or
a series of words [41].
\i
Generate a dotless lowercase I [9].
\if
Begins a conditional block of commands [90].
\ifdim
Begins a conditional block of commands limiting the evalu-
ation to comparing dimensions or dimension variables [92].
\ifnum
Begins a conditional block of commands limiting the eval-
uation to comparing numbers or counter variables [92].
\imath
Generate a dotless lowercase I [51] {Math}.
\inf
Generates the letters ‘inf’ in roman font for use as a function
name [55] {Math}.
\infty
Generates an infinity character [47] {Math}.
\input
Suspends processing the current file and starts processing
an external file [18].
\int
Generates an integral sign character [47] {Math}.
\iota
Generates the lowercase Greek iota character [46] {Math}.
\it
Change the current font to italics [11].
\it\$
Generate an English pounds sign character [10].
\item
Starts generating a first-level enumerated paragraph [28].

109

Zar Limited Appendix B TEX Made Easy

\itemitem
Starts generating a second-level enumerated paragraph [28].
\Jj
Generate a dotless lowercase J [9].
\jmath
Generate a dotless lowercase J [51] {Math}.
\kappa
Generates the lowercase Greek kappa character [46] {Math}.
\ker
Generates the letters ‘ker’ in roman font for use as a func-
tion name [55] {Math}.
\1
Generate the lowercase Polish suppressed L character [10].
\L
Generate the uppercase Polish suppressed L character [10].
\lambda
Generates the lowercase Greek lambda character [46] {Math}.
\Lambda
Generates the uppercase Greek lambda character [46] {Math}.
\langle
Generates a tall left less-than symbol [58] {Math}.
\1lbrace
Generates a normal sized left curly bracket symbol [58]
{Math}.
\1lbrack
Generates a normal sized left square bracket symbol [58]
{Math}.
\1lceil
Generates the upper half of a double height left square
bracket symbol [58] {Math}.
\1ldots
Generates an ellipsis [48] {Math}.
\1le
Generates a less-than-or-equal sign symbol [75] {Math}.

110

TEX Made Easy Appendix B Zar Limited

\leaders
Generates a repeat sequence for a specified horizontal width
[83].

\left
Generates a larger version of the following opening math
delimiter symbol and starts an implied group [59] {Math}.

\leftskip
Defines the extra amount of left margin white-space [31].

\legalignno
Generates an aligned multi-lined displayed equations with
optional left-flush equation numbers [77] {Math}.

\leqgno
Generates an equation number vertically centered to the
left [54] {Math}.

\1floor
Generates the lower half of a double height left square
bracket symbol [58] {Math}.

\1g
Generates the letters ‘Ig’ in roman font for use as a function
name [55] {Math}.

\1lim
Generates the letters ‘lim’ in roman font for use as a func-
tion name [55] {Math}.

\liminf
Generates the letters ‘liminf’ in roman font for use as a
function name [55] {Math}.

\limits
Forces superscripts and subscripts to appear above and be-
low the preceding symbol [54] {Math}.

\limsup
Generates the letters ‘limsup’ in roman font for use as a
function name [55] {Math}.

\line
Generates material restricted to a line box of undefined
height and depth [33].

111

Zar Limited Appendix B TEX Made Easy

\lineskip
Defines the amount of extra vertical line spacing used when
lines are separated by \lineskiplimit vertical space or
less [38].
\lineskiplimit
Defines when backup vertical line spacing is used [38].
\1llap

Overlaps the specified text on top of the preceding equally
wide text [84].

\1ln
Generates the letters ‘In’ in roman font for use as a function
name [55] {Math}.

\log
Generates the letters ‘log’ in roman font for use as a func-
tion name [55] {Math}.

\lower
Temporarily adjusts the current baseline lower on the cur-
rent page [84].
\magnification
Cause the entire document to magnify or enlarge (must be
used at line one of the document) [12].
\magstep
Defines the amount to magnify an object [12].
\magstephalf
Defines the magnification of an object to be 9.5% [12].
\matrix
Generates a matrix for use in a displayed equation [74]
{Math}.
\max

Generates the letters ‘max’ in roman font for use as a func-
tion name [55] {Math}.

\medskip
Generates 6 points of vertical white-space [25].

112

TEX Made Easy Appendix B Zar Limited

\message
Generates a interactive message displayed at the users ter-
minal or logfile while processing the document with the TEX
program [92].
\midinsert
Begins a floating insertion to be placed at the current loca-
tion if possible or move to the top of the next page [82].
\min
Generates the letters ‘min’ in roman font for use as a func-
tion name [55] {Math}.
\mit
Change the current font to math italics [45].
\mu
Generates the lowercase Greek mu character [46] {Math}.
\multiply
Multiplies a times b and stores result in a [36].
\multispan
Temporarily merges one or more columns of an aligned ta-
ble into a single column for the current row and removes
the automatic formatting for all merged columns [70].
\narrower
Increases the left and right margins for a quoted passage
[30].
\newbox
Generates a new internal TEX box variable [89)].
\newcount
Generates a new internal TEX counter variable [87].
\newdimen
Generates a new internal TEX dimension variable [89)].
\noalign
Generates material that will be unaffected by the environ-
ment of a table or an aligned displayed equation [69].
\noindent
Supresses automatic paragraph indentation [25].

113

Zar Limited Appendix B TEX Made Easy

\nolimits

Forces superscripts and subscripts to appear offset to the

right on the preceding symbol [54] {Math}.
\nonfrenchspacing

Defines the spacing algorithm not to be ‘frenchspacing’ [42].
\nopagenumbers

Sets the running line of material at the bottom of the page

to be blank [35].
\nu

Generates the lowercase Greek nu character [46] {Math}.
\null

Generates a zero-width white-space character [26].
\number

Generates a visual representation of the value of an internal

counter variable [90].

\o
Generate the lowercase Scandinavian O-with-slash charac-
ter [10].

\0
Generate the uppercase Scandinavian O-with-slash charac-
ter [10].

\oe

Generate the ‘e’ lowercase French ligature [10].
\OE

Generate the ‘(E’ uppercase French ligature [10].
\offinterlineskip

Disables uniform line spacing possibly allowing vertically

adjacent lines to connect [71].
\omega

Generates the lowercase Greek omega character [46] {Math}.
\Omega

Generates the uppercase Greek omega character [46] {Math}.
\omit

Temporarily removes the automatic formatting for the cur-

rent column in the current row of an aligned table [70].

114

TEX Made Easy Appendix B Zar Limited

\over
Generates a standard fraction [49] {Math}.
\overfullrule
Defines the width of the square box placed on lines the
protrude into the right margin [42].

\P
Generate a paragraph sign character [10].
\pageno
The variable containing the current page number [35].
\par
Terminates a paragraph [26].
\parindent
Sets the amount of automatic horizontal paragraph inden-
tation [28].
\parskip
Sets the amount of vertical white-space to separate para-
graphs [27].
\phantom

Generates white-space equal in horizontal width to a spec-

ified character [31] {Math}.
\phi

Generates the lowercase Greek phi character [46] {Math}.
\Phi

Generates the uppercase Greek phi character [46] {Math}.
\pi

Generates the lowercase Greek pi character [46] {Math}.
\Pi

Generates the uppercase Greek pi character [46] {Math}.
\pmatrix

Generates a matrix for use in a displayed equation enclosed

with variably sized parentheses [74] {Math}.
\Pr

Generates the letters ‘Pr’ in roman font for use as a function

name [55] {Math}.

115

Zar Limited Appendix B TEX Made Easy

\pretolerance

Defines the tolerance for automatic word hyphenation [41].
\psi

Generates the lowercase Greek psi character [46] {Math}.
\Psi

Generates the uppercase Greek psi character [46] {Math}.
\qquad

Generates a horizontal white-space the width of two \quad
commands [56].

\quad

Generates a horizontal white-space the width of a capital
‘M’ when using the CMR font (differs by font) [56].
\raggedright
Disables automatic line justification [42].
\raise
Temporarily adjusts the current baseline higher on the cur-
rent page [84].
\rangle
Generates a tall right greater-than symbol [58] {Math}.
\rbrace
Generates a normal sized right curly bracket symbol [58]
{Math}.
\rbrack
Generates a normal sized right square bracket symbol [58]
{Math}.
\rceil

Generates the upper half of a double height right square
bracket symbol [58] {Math}.

\rfloor

Generates the lower half of a double height right square
bracket symbol [58] {Math}.

\rho
Generates the lowercase Greek rho character [46] {Math}.

116

TEX Made Easy Appendix B Zar Limited

\right
Generates a larger version of the following closing math
delimiter symbol and ends an implied group [59] {Math}.
\rightskip
Defines the extra amount of right margin white-space [31].
\rlap
Overlaps the specified text on top of the following equally
wide text [84].
\rm
Change the current font to roman (the default) [11].
\romannumeral

Generates a visual representation of the value of an internal
counter variable in roman numeral form [90].

\S
Generate a section number sign character [10].
\scriptfont

Defines the fonts to use for script style symbols and lettering
for math and display modes [61] {Math}.

\scriptscriptfont
Defines the fonts to use for scriptscript style symbols and
lettering for math and display modes [61] {Math}.
\scriptstyle
Changes the current font style size to scriptstyle format [49]
{Math}.
\scriptscriptstyle
Changes the current font style size to scriptscriptstyle for-
mat [49] {Math}.
\sec

Generates the letters ‘sec’ in roman font for use as a func-
tion name [55] {Math}.

\setbox

Causes the following internal box variable to be replaced
with the new specified box material [90].

117

Zar Limited Appendix B TEX Made Easy

\settabs

Defines the number of equally wide columns to be used in
a tabular environment [65].

\shipout
Causes the following box material to be ejected as a new
page [92].
\sigma
Generates the lowercase Greek sigma character [46] {Math}.
\Sigma
Generates the uppercase Greek sigma character [46] {Math}.
\sin
Generates the letters ‘sin’ in roman font for use as a function
name [55] {Math}.
\sinh
Generates the letters ‘sinh’ in roman font for use as a func-
tion name [55] {Math}.
\sl
Change the current font to slanted roman [11].
\smallskip
Generates 3 points of vertical white-space [25].
\span
Temporarily merges two columns of an aligned table into a
single column for the current row [70].
\sqrt
Generates a square root [48] {Math}.
\ss
Generate the German ‘es-zet’ character [10].
\strut
Generates a zero-width character 8.5 points high and 3.5
points deep (used for line spacing and in math equations)
[52] {Math}.
\'sum
Generates a summation sign character [47] {Math}.

118

TEX Made Easy Appendix B Zar Limited

\sup
Generates the letters ‘sup’ in roman font for use as a func-
tion name [55] {Math}.
\t
Generate a tie accent above the following two characters
[10].
\tan
Generates the letters ‘tan’ in roman font for use as a func-
tion name [55] {Math}.
\tanh
Generates the letters ‘tanh’ in roman font for use as a func-
tion name [55] {Math}.
\tau
Generates the lowercase Greek tau character [46] {Math}.
\textfont
Defines the fonts to use for text and display style symbols
and lettering for math and display modes [61] {Math}.
\textstyle
Changes the current font style size to textstyle format [49]
{Math}.
\theta
Generates the lowercase Greek theta character [46] {Math}.
\Theta
Generates the uppercase Greek theta character [46] {Math}.
\thinspace
Generate a small amount of white-space [5].
\tilde
Generate a tilde accent above the following character [51]
{Math}.
\topinsert
Begins a floating insertion to be placed at the top of the
current page if possible or move to the top of the following
page [82].
\tt
Change the current font to typewriter roman [11].

119

Zar Limited Appendix B TEX Made Easy

\u
Generate a breve accent above the following character [10].
\underline
Generates underlined material [50] {Math}.
\uparrow
Generates an up arrow symbol [58] {Math}.
\Uparrow
Generates a double up arrow symbol [58] {Math}.
\updownarrow
Generates an up and down arrow symbol [58] {Math}.
\Updownarrow
Generates a double up and down arrow symbol [58] {Math}.
\upsilon
Generates the lowercase Greek upsilon character [46] {Math}.
\Upsilon
Generates the uppercase Greek upsilon character [46] {Math}.
\v
Generate a check accent above the following character [10].
\varepsilon
Generates a variant of the lowercase Greek epsilon character
[46] {Math}.
\varphi
Generates a variant of the lowercase Greek phi character
[46] {Math}.
\varpi
Generates a variant of the lowercase Greek pi character [46]
{Math}.
\varrho
Generates a variant of the lowercase Greek rho character
[46] {Math}.
\varsigma

Generates a variant of the lowercase Greek sigma character
[46] {Math}.

120

TEX Made Easy Appendix B Zar Limited

\vartheta
Generates a variant of the lowercase Greek theta character
[46] {Math}.
\vbox
Generates an arbitrary vertical box of material with unde-
fined width [81].
\vec
Generate a vector symbol above the following character [51]
{Math}.
\vdots
Generates a horizontally centered ellipsis [74] {Math}.
\vert
Generates a normal sized single vertical bar symbol [58]
{Math}.
\Vert
Generates a normal sized double vertical bar symbol [58]
{Math}.
\vfil
Generates infinite vertical filler [34].
\vfill
Generates infinite vertical filler [33].
\voffset
Defines the document top margin [15].
\vrule
Generates a vertical line or rule [53] {Math}.
\vsize
Defines the document printed depth [15].
\vskip
Moves the point of reference for generating the next char-
acter vertically down the page [25].
\vss
Generates infinite vertical filler [34].
\xi
Generates the lowercase Greek xi character [46] {Math}.

121

Zar Limited Appendix B TEX Made Easy

\Xi

Generates the uppercase Greek xi character [46] {Math}.
\zeta

Generates the lowercase Greek zeta character [46] {Math}.

122

Table Of Contents (Continued)

More About Math, 47
Making Fractions i, 48
Math Punctuation 49
Math Accent Commands 50
How To Strut Your Stuff 51
Math Limits And Equation Numbers 53
Math Functions i, 54
Fine Points Of Mathematics Typing 55
All Delimiters Great And Small 57
Multiple Line Displayed Equations 59
Math Mode Fonts 60
More Math Fonts And Setup Instructions 61
Using Tabs To Make A Table 64
Making Tables With Alignment 66
Making Tables With Line Borders 70
Making Matrices In Displayed Equations 73
Aligning Displayed Equations 75
Centering An Aligned Table 78
Leaving Room To Insert Figures 79
Making Your Own Filler Commands 80
Character Overstriking 81
Character Duties 82
BoOXeS| i e 83
Automatic Numbering 84
Automatic Table Of Contents Generator 85

Contents-ii

