MORE EXERCISES FOR SECTIONS II. 1 AND II. 2

B1. Let L be a line in \mathbb{R}^{3}, and let \mathbf{x} be a point which does not lie on L. Using the Incidence Axioms, prove that there is a unique plane P such that $\mathbf{x} \in P$ and $L \subset P$.

B2. Suppose that we are given three distinct lines L, M, N in \mathbb{R}^{3} such that (i) the lines all contain some point $X,(i i)$ each of the lines has a point in common with a fourth line K which does not contain X. Prove that there is a plane containing all four lines.

B3. Suppose that we are given points A, B, C and X, Y, Z such that $A * B * C$ and $X * Y * Z$ both hold, and in addition we have $d(A, C)=d(X, Z)$ and $d(B, C)=d(Y, Z)$. Prove that $d(A, B)=$ $d(X, Y)$. [If equals are subtracted from equals, the differences are equal.]

B4. Suppose that we are given points A, B, C such that $A * B * C$. Prove that $(A B)$ is a proper subset of $(A C)$.

B5. Suppose that $A \neq B$; if $A B$ is the line joining A to B, prove that $A B=[A B \cup[B A$.
B6. Suppose that $A * B * C$; prove that $[A B=[A B] \cup[B C$.
B7. Suppose that we are given distinct points A, B in \mathbb{R}^{2}, and suppose also that C and D lie on opposite sides of the line $A B$. Prove that $[A C$ and $[B D$ have no points in common.

B8. (i) Suppose that we are given three noncollinear points A, B, C in \mathbb{R}^{2}. Prove that $\triangle A B C \cap A B=[A B]$. [Hint: If X is a point on $[B C]$ or $[A C]$ other than A or B, explain why X cannot lie on $A B$.]

B9. Let L be a line in \mathbb{R}^{2}, and let M be a second line in \mathbb{R}^{2} such that L and M meet at the point A.
(a) If X and Y are points of M such that $A * X * Y$ is true, prove that X and Y lie on the same side of L.
(b) If X and Y are points of M such that $X * A * Y$, prove that X and Y lie on opposite sides of L. [Hint: For both parts of this problem, show that the alternatives are impossible.]

B10. For each of the choices below, determine whether X and Y lie on the same side as the line L defined by the corresponding equation.
(a) $X=(3,5), Y=(1,7)$, and L is defined by the equation $9 x-4 y=7$.
(b) $X=(8,5), Y=(-2,4)$, and L is defined by the equation $y=3 x-7$.
(c) $X=(7,-6), Y=(4,-8)$, and L is defined by the equation $2 x+3 y+5=0$.
(d) $X=(0,1), Y=(-2,6)$, and L is defined by the equation $3 y=2-7 x$.

