
Differentiation theorems for multiple integrals

We begin with a result which is closely related to the Fundamental Theorem of Cal-
culus.

THEOREM 1. Suppose that f(x) is a continuous function defined on an open interval

J , and let x0 ∈ J be arbitrary. Then there is some r1 > 0 such that (x0 − r, x0 + r) is

contained in J for 0 < r ≤ r1, and

lim
r→0

1

2r
·

∫ x0+r

x0−r

f(t) dt = f(x0) .

Derivation of Theorem 1. Define the antiderivative function to f by

g(x) =

∫ x

x0

f(t) dt

if x ≥ x0 and by

g(x) = −

∫ x0

x

f(t) dt

if x ≤ x0; both definitions yield g(x0) = 0, so the functions fit together to form a differen-
tiable function on the interval (x0−r1, x0 +r1). By the Fundamental Theorem of Calculus
we also know that g′(t) = f(t) for all t in the given interval.

Now let 0 < r < r1. Then by the Mean Value Theorem there is some Yr in (x0 −
r, x0 + r) such that

g(x0 + r) − g(x0 − r)

2r
= f(Yr)

and the identities g(x0 + r) =
∫ x0+r

x0

f(t) dt, g(x0 − r) = −
∫ x0

x0−r
f(t) dt allow us to

rewrite this as follows:

1

2r
·

∫ x0+r

x0−r

f(t) dt =
1

2r
·

(
∫ x0+r

x0

f(t) dt +

∫ x0

x0−r

f(t) dt

)

=

g(x0 + r) − g(x0 − r)

2r
= f(Yr)

Since f is continuous and |Yr − x0| < r, it follows that the limit of the right hand side as
r → 0 is equal to f(x0), and therefore the limit of the left hand side as r → 0 is also equal
to f(x0).



It turns out that Theorem 1 extends to functions of two, three, and even more real
variables; we shall only consider the cases with two and three variables since these are the
central objects in the first seven chapters of the course text. In order to state these results,
we need one piece of notation.

Definition. Let x be a point in coordinate n-space (where we may restrict to n = 2, 3 if
we wish), and let r > 0. The closed disk of radius r with center x, written Dr(x), is the
set of all y in coordinate n-space such that |y − x| ≤ r.

We shall state the 2-dimensional and 3-dimensional versions of the Multivariable Dif-
ferentiation Theorem separately. It is possible to state all the higher dimensional versions
of this theorem in a unified fashion, but we shall pass on doing so here (details can be
found in graduate level courses on integration theory).

THEOREM 2. Suppose that f(x) is a continuous function defined on an open region U

in the coordinate plane, let x0 ∈ U be arbitrary, and let A(r) = πr2. Then there is some

r1 > 0 such that Dr(x0) is contained in U for 0 < r ≤ r1, and

lim
r→0

1

A(r)
·

∫ ∫

Dr(x0)

f(u) dA = f(x0) .

THEOREM 3. Suppose that f(x) is a continuous function defined on an open region

U in coordinate 3-space, let x0 ∈ U be arbitrary, and let V (r) = 4
3πr3. Then there is some

r1 > 0 such that Dr(x0) is contained in U for 0 < r ≤ r1, and

lim
r→0

1

V (r)
·

∫ ∫ ∫

Dr(x0)

f(u) dV = f(x0) .

Both of these results can be established using mean value theorems for multiple inte-
grals like those formulated for double and triple integrals on pages 473 and 445 (respec-
tively) of the course text. However, we shall use a different and more direct (but also more
abstract) approach, which uses the classical definition of continuity:

WEIERSTRASS DEFINITION OF CONTINUITY. A real valued function f is continuous
at a point x if and only if for each ε > 0 there is some δ > 0 such that |f(y) − f(x)| < ε

provided |y − x| < δ.

We shall also need the following standard upper estimates for integrals:



Let f be a continuous function defined on the closed region Dr(x0) in the coordinate plane

or coordinate 3-space. Then there is a positive constant M > 0 such that |f(y)| < M for

all y in the given region, and the associated double or triple integral satisfies the respective

inequality

∣

∣

∣

∣

∣

∫ ∫

Dr(x0)

f(x) dA

∣

∣

∣

∣

∣

< M · A(r) ,

∣

∣

∣

∣

∣

∫ ∫ ∫

Dr(x0)

f(x) dV

∣

∣

∣

∣

∣

< M · V (r)

where A(r) and V (r) are defined as before.

The 2-dimensional version of this inequality is mentioned in one of the commentaries
on Chapter 5 in this directory.

Proof of Theorem 2. This argument is at the level of an introductory real variables
course such as Mathematics 151A.

Let ε > 0. We need to find some δ > 0 such that
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1

A(r)
·

∫ ∫

Dr(x0)

f(u) dA − f(x0)

∣

∣

∣

∣

∣

ε

provided r < δ. We can rewrite the expression inside the absolute value sign as

1

A(r)
·

∫ ∫

Dr(x0)

f(u) dA −
1

A(r)
·

∫ ∫

Dr(x0)

f(x0) dA =

1

A(r)
·

∫ ∫

Dr(x0)

(

f(u) − f(x0)
)

dA .

Since f is continuous and ε > 0, we know that there is some δ > 0 such that |f(y)−f(x0)| <

ε provided |y − x| < δ. Therefore if r < δ then we have

∣

∣

∣

∣

∣

1

A(r)
·

∫ ∫

Dr(x0)

(

f(u) − f(x0)
)

dA

∣

∣

∣

∣

∣

<
1

A(r)
· ε · A(r) = ε

and therefore we have the desired limit formula.

Proof of Theorem 3. This argument is a fairly straightforward modification of the
previous one.

Let ε > 0. We need to find some δ > 0 such that
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V (r)
·

∫ ∫ ∫

Dr(x0)

f(u) dA − f(x0)
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ε



provided r < δ. We can rewrite the expression inside the absolute value sign as

1

V (r)
·

∫ ∫ ∫

Dr(x0)

f(u) dV −
1

V (r)
·

∫ ∫ ∫

Dr(x0)

f(x0) dV =

1

V (r)
·

∫ ∫ ∫

Dr(x0)

(

f(u)− f(x0)
)

dV .

Since f is continuous and ε > 0, we know that there is some δ > 0 such that |f(y)−f(x0)| <

ε provided |y − x| < δ. Therefore if r < δ then we have
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∫ ∫ ∫

Dr(x0)

(

f(u) − f(x0)
)

dV
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<
1

V (r)
· ε · V (r) = ε

and therefore we have the desired limit formula.

A related result for vector fields

In certain contexts (like the derivations of Faraday’s Law and Ampère’s Law) one
needs a version of the Multidifferentiation Theorem for 3-dimensional vector fields instead
of scalar valued functions. We shall foormulate the statement of such a result and make a
few comments on how it can be recovered from Theorem 2.

Let F be a vector field defined in a region of 3-dimensional coordinate space (as usual,
the coordinate functions are assumed to have continuous partial derivatives). Given a
point p = (c1, c2, c3) in the region, a typical plane through p has a parametrization of the
form

X(u, v) = (a1u + b1v + c1, a2u + b2v + c2, a3u + b3v + c3)

where the vectors X1 = (a1, a2, a3) and X2 = (b1, b2, b3) are linearly independent; the
latter is equivalent to assuming that their cross product X1×X2, which is just the normal
vector N to the plane, is nonzero.

We shall be interested in parametrized pieces of the plane which are obtained by
restricting X to disks of the form u2 + v2 ≤ r2 for r sufficiently close to zero (specifically,
we want r so small that the image of this piece of the plane will lie inside the region on
which the vector field F is defined). The parametrized surface obtained in this manner,
with its usual cross product orientation, will be denoted by Sr(p;X).

If we combine the preceding discussion with Theorem 2 and the usual formulas for
surface integrals in terms of ordinary double integrals, we obtain the following result:

THEOREM 4. Suppose that F(x) is a smooth vector field defined on an open region

U in coordinate 3-space, and let p ∈ U be arbitrary. Assume further that we are given a



plane through p parametrized linearly by some function —bf X as above. Then there is

some r1 > 0 such that Sr(p;X) is contained in U for 0 < r ≤ r1, and

lim
r→0

1

area(Sr(p;X)
·

∫ ∫

Sr(p;X)

F(u) · dS = F(p) · N .


