
SOLUTIONS TO EXERCISES FOR

MATHEMATICS 205A — Part 5

Fall 2008

VI. Spaces with additional properties

VI.1 : Second countable spaces

Problems from Munkres, § 30, pp. 194 − 195

9. [First part only] Let X be a Lindelöf space, and suppose that A is a closed subset of
X. Prove that A is Lindelöf.

SOLUTION.

The statement and proof are parallel to a result about compact spaces in the course notes, the
only change being that “compact” is replaced by “Lindelöf.”

10. Show that if X is a countable product of spaces having countable dense subsets, then X
also has a countable dense subset.

SOLUTION.

Suppose first that X is a finite product of spaces Yi such that each Yi has a countable dense
subset Di. Then

∏
i Di is countable and

X =
∏

i

Yi =
∏

i

Di =
∏

α

Di .

Suppose now that X is countably infinite. The same formula holds, but the product of the Di’s
is not necessarily countable. To adjust for this, pick some point δj ∈ Dj for each j and consider
the set E of all points (a0, a1, · · · ) in

∏
j Dj such that aj = δj for all but at most finitely many

values of j. This set is countable, and we claim it is dense. It suffices to show that every basic open
subset contains at least one point of E. But suppose we are given such a set V =

∏
j Vj where Vj

is open in Xj and Vj = Xj for all but finitely many j; for the sake of definiteness, suppose this
happens for j > M . For j ≤ M , let bj ∈ Dj ∩ Vj ; such a point can be found since Dj is dense in
Xj . Set bj = δj for j > M . If we let b = (b0, b1, · · · ), then it then follows that b ∈ E ∩ V , and this
implies E is dense in the product.

13. Show that if X has a countable dense subset, then every collection of disjoint open subsets
in X is countable.

SOLUTION.

This is similar to the proof that an open subset of Rn has only countably many components.
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14. Show that if X is compact and Y is Lindelöf, then X × Y is Lindelöf.

SOLUTION.

This is essentially the same argument as the one showing that a product of two compact spaces
is compact. The only difference is that after one constructs an open covering of Y at one step in
the proof, then one only has a countable subcovering and this leads to the existence of a countable
subcovering of the product. Details are left to the reader.

Additional exercises

1. If (X,T) is a second countable Hausdorff space, prove that the cardinalities of both X
and T are less than or equal to 2ℵ0 . (Using the formulas for cardinal numbers in Section I.3 of the
course notes and the separability of X one can prove a similar inequality for BC(X).)

SOLUTION.

List the basic open subsets in B as a sequence U0, U1, U2, · · · If W is an open subset of U
define a function ψW : N → {0, 1} by ψW (i) = 1 if Ui ⊂ W and 0 otherwise. Since B is a basis,
every open set W is the union of the sets Ui for which ψW (i) = 1. In particular, the latter implies
that if ψV = ψW then V = W and hence we have a 1–1 map from the set of all open subsets to
the set of functions from N to {0, 1}. Therefore the cardinality of the family of open subsets is at
most the cardinality of the set of functions, which is 2ℵ0 .

If X is Hausdorff, or even if we only know that every one point subset of X is closed in X,
then we may associate to each x ∈ X the open subset X − {x}. If x 6= y then X − {x} 6= X − {y}
and therefore the map C : X → T defined in this fashion is 1–1. Therefore we have |X| ≤ |T|, and
therefore by the preceding paragraph we know that |X| ≤ 2ℵ0 .

A somewhat more complicated argument yields similar conclusions for spaces satisfying the
weaker T0 condition stated in Section VI.3.

2. Separability and subspaces. The following example shows that a closed subspace of a
separable Hausdorff space is not necessarily separable.

(a) Let X be the upper half plane R× [0,∞) and take the topology generated by the usual metric
topology plus the following sets:

Tε(x) = { (x, 0) } ∪ Nε ( (x, ε) ) , where x ∈ R and ε > 0 }

Geometrically, one takes the interior region of the circle in the upper half plane that is tangent to the
x-axis at (x, 0) and adds the point of tangency. — Show that the x-axis is a closed subset and has the
discrete topology.

SOLUTION.

The x-axis is closed because it is closed in the ordinary Euclidean topology and the “new”
topology contains the Euclidean topology; therefore the x-axis is closed in the “new” topology. The
subspace topology on the x-axis is the discrete topology intersection of the open set Tε(x) with the
real axis is {x }.

(b) Explain why the space in question is Hausdorff. [Hint: The topology contains the metric
topology. If a topological space is Hausdorff and we take a larger topology, why is the new topology
Hausdorff?]
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SOLUTION.

In general if (X,T) is Hausdorff and T ⊂ T∗ then (X,T∗) is also Hausdorff, for a pair of
disjoint T-open subsets containing distinct point u and v will also be a pair of T-open subsets with
the same properties.

(c) Show that the set of points (u, v) in X with v > 0 and u, v ∈ Q is dense. [Hint: Reduce
this to showing that one can find such a point in every set of the form Tε(x).]

SOLUTION.

To show that a subset D of a topological space X is dense, it suffices to show that the intersec-
tion of D with every nonempty open subset in some base B is nonempty (why?). Thus we need to
show that the generating set is a base for the topology and that every basic open subset contains
a point with rational coordinates.

The crucial point to showing that we have a base for the topology is to check that if U and
V are basic open subsets containing some point z = (x, y) then there is some open subset in the
generating collection that contains z and is contained in U ∩ V . If U and V are both basic open
subsets we already know this, while if z ∈ Tε(a)∩Tδ(b) there are two cases depending upon whether
or not z lies on the x-axis; denote the latter by A. If z 6∈ A then it lies in the metrically open subsets
Tε(a)−A and Tε(b)−A, and one can find a metrically open subset that contains z and is contained
in the intersection. On the other hand, if z ∈ A, then Tε(a) ∩A = {a} and Tδ(b) ∩ A = {b} imply
a = b, and the condition on intersections is immediate because the intersection of the subsets is
either Tε(a) or Tδ(a) depending upon whether δ ≤ ε or vice versa.

3. Let {Aα | α ∈ A} be a family of topological spaces, and let X =
∐

α Aα. Formulate and
prove necessary and sufficient conditions on A and the sets Aα for the space X to be second countable,
separable or Lindelöf.

SOLUTION.

For each property P given in the exercise, the space X has property P if and only if each
Aα does and there are only finitely many α for which Aα is nonempty. The verifications for the
separate cases are different and will be given in reverse sequence.

The Lindelöf property.
The proof in this case is the same as the proof we gave for compactness in an earlier exercises

with “countable” replacing “finite” throughout.

Separability.
( =⇒ ) Let D be the countable dense subset. Each Aα must contain some point of D, and

by construction this point is not contained in any of the remaining sets Aβ . Thus we have a 1–1
function from A to D sending α to a point d(α) ∈ Aα ∩D. This implies that the cardinality of A
is at most |D| ≤ ℵ0.

( ⇐= ) If Dα is a dense subset of Aα and A is countable, then ∪α Dα is a countable dense
subset of A.

Second countability.
( =⇒ ) Since a subspace of a second countable space is second countable, each Aα must be

second countable. Since the latter condition implies both separability and the Lindelöf property,
the preceding arguments show that only countably many summands can be nontrivial.

( ⇐= ) If A is countable and Bα is a countable base for Aα then ∪α Bα determines a countable
base for X (work out the details!).
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VI.2 : Compact spaces – II

Problems from Munkres, § 28, pp. 181 − 182

6. Prove that if (X,d) is a metric space and f : X → X is a distance preserving map (an
isometry), then f is 1 − 1 onto and hence a homeomorphism. [Hint: If a 6∈ f(X) choose ε > 0 so
that the ε-neighborhood of a is disjoint from f(X). Set x0 = a and xn+1 = f(xn) in general. Show
that d(xn, xm) ≥ ε for n 6= m.]

SOLUTION.

Follow the hint to define a and the sequence. The existence of ε is guaranteed because a 6∈ f(X)
and the compactness of f(X) imply that the continuous function g(x) = d(a, f(x)) is positive
valued, and it is bounded away from 0 because it attains a minimum value. Since xk ∈ f(X) for
all k it follows that d(a, xk) > ε for all k. Given n 6= m write m = n+ k; reversing the roles of m
and n if necessary we can assume that k > 0. If f is distance preserving, then so is every n-fold
iterated composite ◦nf of f with itself. Therefore we have that

d(xn, xm) = d (◦nf(a), ◦nf(xk)) = d(a, xk) > ε

for all distinct nonnegative integers m and n. But this cannot happen if X is compact, because
the latter implies that {xn } has a convergent subsequence. This contradiction implies that our
original assumption about the existence of a point a 6∈ f(X) is false, so if is onto. On the other
hand x 6= y implies

0 < d(x, y) = d ( f(x), f(y) )

and thus that f is also 1–1. Previous results now also imply that f is a homeomorphism onto its
image.

FOOTNOTE.

To see the need for compactness rather than (say) completeness, consider the map f(x) = x+1
on the set [0,+∞) of nonnegative real numbers.

Additional exercises

1. Let X be a compact Hausdorff space, let Y be a Hausdorff space, and let f : X → Y be a
continuous map such that f is locally 1–1 (each point x has a neighborhood Ux such that f |Ux is 1–1)
and there is a closed subset A ⊂ X such that f |A is 1–1. Prove that there is an open neighborhood V
of A such that f |V is 1–1. [Hint: A map g is 1–1 on a subset B is and only if

B ×B ∩ (g × g)−1(∆Y ) = ∆B

where ∆S denotes the diagonal in S × S. In the setting of the exercise show that

(f × f)−1(∆Y ) = ∆X ∪D′,

where D′ is closed and disjoint from the diagonal. Also show that the subsets D ′ and A×A are disjoint,
and find a square neighborhood of A×A disjoint from D ′.]
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SOLUTION.

Follow the steps in the hint.

A map g is 1 − 1 on a subset B is and only if B × B ∩ (g × g)−1(∆Y ) = ∆B where ∆S

denotes the diagonal in S × S.

This is true because the set on the left hand side of the set-theoretic equation is the set of all
(b, b′) such that g(b) = g(b′). If there is a nondiagonal point in this set then the function is not
1–1, and conversely if the function is 1–1 then there cannot be any off-diagonal terms in the set.

Show that if D′ = (f × f)−1(∆Y )−∆X , then D′ is closed and disjoint from the diagonal.

Since f is locally 1–1, for each x ∈ X there is an open set Ux such that f |Ux is 1–1; by the
first step we have

Ux × Ux ∩ (f × f)−1(∆Y ) = ∆Ux
.

If we set W = ∩x Ux × Ux then W is an open neighborhood of ∆X and by construction we have

(f × f)−1(∆Y ) ∩W = ∆X

which shows that ∆X is open in (f × f)−1(∆Y ) and thus its relative complement in the latter —
which is D′ — must be closed.

Show that the subsets D′ and A×A are disjoint, and find a square neighborhood of A×A
disjoint from D′.

Since f |A is 1–1 we have A×A∩(f×f)−1(∆Y ) = ∆A, which lies in ∆X = (f×f)−1(∆Y )−D′.
Since A is a compact subset of the open set X ×X −D ′, by Wallace’s Theorem there is an open
set U such that

A×A ⊂ U × U ⊂ X ×X −D′ .

The first part of the proof now implies that f |U is 1–1.

2. Let U be open in Rn, and let f : U → Rn be a C1 map such that Df(x) is invertible for
all x ∈ U and there is a compact subset A ⊂ U such that f |A is 1 − 1. Prove that there is an open
neighborhood V of A such that f |V is a homeomorphism onto its image.

SOLUTION.

By the Inverse Function Theorem we know that f is locally 1–1, and therefore by the previous
exercise we know that f is 1–1 on an open set V such that A ⊂ V ⊂ U . But the Inverse Function
Theorem also implies that f locally has a C1 inverse on U . Since f has a global set-theoretic inverse
from f(V ) back to V , it follows that this global inverse is also C1.

3. Let dp be the metric on the integers constructed in Exercise I.1.1, and let Ẑp be the

completion of this metric space. Prove that Ẑp is (sequentially) compact. [Hint: For each integer
r > 0 show that every integer is within p−r of one of the first pr+1 nonnegative integers. Furthermore,
each open neighborhood of radius p−r centered at one of these integers a is a union of p neighborhoods
of radius p−(r+1) over all of the first pr+2 integers b such that b ≡ a mod pr+1. Now let { an } be an
infinite sequence of integers, and assume the sequence takes infinitely many distinct values (otherwise
the sequence obviously has a convergent subsequence). Find a sequence of positive integers { br } such
that the open neighborhood of radius p−r centered at br contains infinitely many points in the sequence
and br+1 ≡ br mod pr+1. Form a subsequence of { an } by choosing distinct points an(k) recursively
such that n(k) > n(k − 1) and an(k) ∈ Np−k (bk). Prove that this subsequence is a Cauchy sequence
and hence converges.]
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SOLUTION.

As usual, we follow the steps in the hint.

For each integer r > 0 show that every integer is within p−r of one of the first pr+1

nonnegative integers.

If n is an integer, use the long division property to write n = pr+1a where 0 ≤ a < pr+1. We
then have dp(n, a) ≤ p−(r+1) < pr.

Furthermore, each open neighborhood of radius p−r centered at one of these integers a is
a union of p neighborhoods of radius p−(r+1) over all of the first pr+2 integers b such that
b ≡ a mod pr+1.

Suppose we do long division by pr+2 rather than pr+1 and get a new remainder a′. How is it
related to a? Very simply, a′ must be one of the p nonnegative integers b such that 0 ≤ b < pr+2

and b ≡ a mod pr+1. Since d(u, v) < p−r if and only if dp(u, v, ) ≤ p−(r+1), it follows that Np−r (a)
is a union of p open subsets of the form Np−(r+1)(b) as claimed (with the numbers b satisfying the
asserted conditions).

Find a sequence of nonnegative integers { br } such that the open neighborhood of radius
p−r centered at br contains infinitely many terms in the sequence and br+1 ≡ br mod pr+1.

This is very similar to a standard proof of the Bolzano-Weierstrass Theorem in real variables.
Infinitely many terms of the original sequence must lie in one of the sets N1(b0) where 1 ≤ b < p.
Using the second step we know there is some b1 such that b1 ≡ b0 mod p and infinitely many terms
of the sequence lie in Np−1(b1), and one can continue by induction (fill in the details!).

Form a subsequence of { an } by choosing distinct points an(k) recursively such that n(k) >
n(k − 1) and an(k) ∈ Np−k (bk). Prove that this subsequence is a Cauchy sequence and
hence converges.]

We know that the neighborhoods in question contain infinitely many values of the sequence,
and this allows us to find n(k) recursively. It remains to show that the construction yields a Cauchy
sequence. The key to this is to observe that an(k) ≡ bk mod pk+1 and thus we also have

dp

(
an(k+1), an(k)

)
<

1

pk
.

Similarly, if ` > k then we have

dp

(
an(`), an(k)

)
<

1

p`−1
+ · · · +

1

pk
.

Since the geometric seris
∑

k p
−k converges, for every ε > 0 there is an M such that `, k ≥ M

implies the right had side of the displayed inequality is less than ε, and therefore it follows that the
constructed subsequence is indeed a Cauchy sequence. By completeness (of the completion) this

sequence converges. Therefore Ẑp is (sequentially) compact.
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VI.3 : Separation axioms

Problem from Munkres, § 26, pp. 170 − 172

11. Let X be a compact Hausdorff space, and let {Aα } be a family of nonempty closed
connected subsets ordered by inclusion. Prove that Y = ∩α Aα is connected. [Hint: If C ∪D is a
separation of Y , choose disjoint open sets U and V of X containing C and D respectively and show
that

B =
⋂

α

(Aα − (U ∪ V ))

is nonempty.]

SOLUTION.

Follow the suggestion of the hint to define C, D and to find U, V . There are disjoint open
subset sets U, V ⊂ X containing C and D respectively because a compact Hausdorff space is T4.

For each α the set Bα = Aα − (U ∪ V ) is a closed and hence compact subset of X. If each
of these subsets is nonempty, then the linear ordering condition implies that the family of closed
compact subsets Bα has the finite intersection property; specifically, the intersection

Bα(1) ∩ ... ∩Bα(k)

is equal to Bα(j) where Aα(j) is the smallest subset in the linearly ordered collection

{Aα(1), ... , Aα(k)} .

Therefore by compactness it will follow that the intersection

⋂

α

Bα =

(⋂

α

Aα

)
− (U ∪ V )

is nonempty. But this contradicts the conditions ∩α Aα = C ∪ D ⊂ U ∪ V . Therefore it
follows that the ∩αAα must be connected.

Therefore we only need to answer the following question: Why should the sets Aα − (U ∪ V )
be nonempty? If the intersection is empty then Aα ⊂ U ∪V . By construction we have C ⊂ Aα ∩U
and D ⊂ Aα ∩ V , and therefore we can write Aα as a union of two nonempty disjoint open
subsets. However, this contradicts our assumption that Aα is connected and therefore we must
have Aα − (U ∪ V ) 6= ∅.

Problems from Munkres, § 33, pp. 212 − 214

2. (a) [For metric spaces.] Show that a connected metric space having more than one point
is uncountable.

SOLUTION.

The proof is based upon Urysohn’s Lemma and therefore is valid in arbitrary T4 spaces; we
have stated it only for metric spaces because we have only established Urysohn’s Lemma in that
case.

7



Let X be the ambient topological space and suppose that u and v are distinct points of X.
Then {u} and {v} are disjoint closed subsets and therefore there is a continuous function f : X → R

such that f(u) = 0 and f(v) = 1. Since f(X) is connected, for each t ∈ [0, 1] there is a point xt ∈ X
such that f(xt) = t. Since s 6= t implies f(xs) 6= f(xt), it follows that the map x : [0, 1] → X
sending t to xt is 1–1. Therefore we have 2ℵ0 ≤ |X|, and hence X is uncountable.

6. A space X is said to be perfectly normal if every closed set in X is a Gδ subset of X.
[Note: The latter are defined in Exercise 1 on page 194 of Munkres and the reason for the terminology
is also discussed at the same time.]

(a) Show that every metric space is perfectly normal.

SOLUTION.

Let (X,d) be a metric space, let A ⊂ X be closed and let f(x) = d(x,A). Then

A = f−1 ({0}) =
⋂

n

f−1
( (

− 1
n
, 1

n

) )

presents A as a countable intersection of open subsets.

8. Let X be a completely regular space, and let A and B be disjoint closed subsets such that
A is compact. Prove that there is a continuous function f : X → [0, 1] that is 0 on A and 1 on B.

SOLUTION.

For each a ∈ A there is a continuous function fa : X → [−1, 1] that is −1 at a and 0 on B.
Let Ua = f−1

a ([−1, 0) ). Then the sets Ua define an open covering of A and hence there is a finite
subcovering corresponding to Ua(1), · · · , Ua(k). Let fi be the function associated to a(i), let gi be
the maximum of fi and 0 (so gi is continuous by a previous exercise), and define

f =

k∏

i=1

gk .

By construction the value of f is 1 on B because each factor is 1 on B, and f = 0 on ∪i Ua(i)

because gj = 0 on Ua(j); since the union contains A, it follows that f = 0 on A.

Additional exercises

1. If (X,T) is compact Hausdorff and T∗ is strictly contained in T, prove that (X,T∗) is
compact but not Hausdorff.

SOLUTION.

The strict containment condition implies that the identity map from (X,T) to (X,T∗) is
continuous but not a homeomorphis. Since the image of a compact set is compact, it follows
that (X,T∗) is compact. If it were Hausdorff, the identity map would be closed and thus a
homeomorphism. Therefore (X,T∗) is not Hausdorff.

2. (a) Prove that a topological space is T3 if and only if it is T1 and there is a basis B such
that for every x ∈ X and every open set V ∈ B containing x, there is an open subset W ∈ B such that
x ∈W ⊂W ⊂ V .
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SOLUTION.

( =⇒ ) Suppose that X is T3, let x ∈ X and let V be a basic open subset containing x. Then
there is an open set U in X such that x ∈ U ⊂ U ⊂ V . Sinc B is a basis for the topology, one can
find a basic open subset W in B such that x ∈W ⊂ U , and thus we have x ∈W ⊂W ⊂ U ⊂ V .

( ⇐= ) Suppose that X is T1 and satisfies the condition in the exercise. If U is an open
subset and x ∈ U , let V be a basic open set from B such that x ∈ V ⊂ U , and let W be the basic
open set that exists by the hypothesis in the exercise. Then we have x ∈ W ⊂ W ⊂ V ⊂ U and
therefore X is regular.

(b) Prove that the space constructed in Exercise VI.1.2 is T3. [Hint: Remember that the “new”
topology contains the usual metric topology.]

SOLUTION.

By the first part of the exercise we only need to show this for points in basic open subsets.
If the basic open subset comes from the metric topology, this follows because the metric topology
is T3; note that the closure in the new topology might be smaller than the closure in the metric
topology, but if a metrically open set contains the metric closure it also contains the “new” closure.
If the basic open subset has the form Tε(a) for some a and z belongs to this set, there are two
cases depending upon whether or not z lies on the x-axis, which we again call A. If z 6∈ A, then z
lies in the metrically open subset Tε(a) −A, and one gets a subneighborhood whose closure lies in
the latter exactly as before. On the other hand, if z ∈ A then z = (a, 0) and the closure of the set
Tδ(a) in either topology is contained in the set Tε(a).

3. If X is a topological space and A ⊂ X is nonempty then X/A (in words, “X mod A” or
“X modulo A collapsed to a point”) is the quotient space whose equivalence classes are A and all one
point subsets {x} such that x 6∈ A. Geometrically, one is collapsing A to a single point.

(a) Suppose that A is closed in X. Prove that X/A is Hausdorff if either X is compact Hausdorff
or X is metric (in fact, if X is T3).

SOLUTION.

If X is T3, then for each point x 6∈ A there are disjoint open subsets U and V such that x ∈ U
and A ⊂ V . Let π : X → X/A be the quotient projection; we claim that π(U) and π(V ) are open
disjoint subsets of X/A. Disjointness follows immediately from the definition of the equivalence
relation, and the sets are open because their inverse images are the open sets U = π−1 (π(U) ) and
V = π−1 (π(V ) ) respectively.

(b) Still assuming A is closed but not making any assumptions on X (except that it be nonempty),
show that the quotient map X → X/A is always closed but not necessarily open. [Note: For reasons
that we shall not discuss, it is appropriate to define X/∅ to be the disjoint union X t {∅}.]

SOLUTION.

Suppose that F ⊂ X is closed; we need to show that π−1 (π(F ) ) is also closed. There are two
cases depending upon whether or not A∩F = ∅. If the two sets are disjoint, then π−1 (π(F ) ) = F
, and if the intersection is nonempty then π−1 (π(F ) ) = F ∪A. In either case the inverse image is
closed, and therefore the image of F is always closed in the quotient space.

We claim that π is not necessarily open if A has a nonempty interior. Suppose that both of the
statements in the previous sentence are true for a specific example, and let v be a nonempty open
subset of X that is contained in A. If π is open then π(V ) = π(A) = {A} ∈ X/A is an open set.
Therefore its inverse image, which is A, must be open in X. But it is also closed in X. Therefore
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we have the following conclusion: If A is a nonempty proper closed subset of the connected space

X with a nonempty interior, then π : X → X/A is not an open mapping.
(c) Suppose that we are given a continuous map of topological spaces f : X → Y , and that

A ⊂ X and B ⊂ Y are nonempty closed subsets satisfying f [A] ⊂ B. Prove that there is a unique
continuous map F : X/A → Y/B such that for all c ∈ X/A, if c is the equivalence class of x ∈ X,
then F (c) is the equivalence class of f(x).

SOLUTION.

Let p : X → X/A and q : Y → Y/B be the projection maps, and consider the composite q of .
Then the condition f [A] ⊂ B implies that q of sends each equivalence class for the relation defining
X/A to a point in Y/B, and thus by the basic properties of quotient maps it follows that there is a
unique continuous map F : X/A→ Y/B such that q of = F op; this is equivalent to the conclusion
stated in this part of the problem.
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VI.4 : Local compactness and compactifications

Problems from Munkres, § 38, pp. 241 − 242

2. Show that the bounded continuous function g : (0, 1) → [−1, 1] defined by g(x) = cos(1/x)
cannot be extended continuously to the compactification in Example 3 [on page 238 of Munkres]. Define
an embedding h : (0, 1) → [−1, 1]3 such that the functions x, sin(1/x) and cos(1/x) are all extendible
to the compactifcation given by the closure of the image of h.

SOLUTION.

We need to begin by describing the compactification mentioned in the exercise. It is given by
taking the closure of the embedding (homeomorphism onto its image) g : (0, 1) → [−1, 1]2 that is
inclusion on the first coordinate and sin(1/x) on the second.

Why is it impossible to extend cos(1/x) to the closure of the image? Look at the points in
the image with coordinates (1/kπ, sin kπ) where k is a positive integer. The second coordinates of
these points are always 0, so this sequence converges to the origin. If there is a continuous extension
F , it will follow that

F (0, 0) = lim
k→∞

cos

(
1

1/kπ

)
= cos kπ .

But the terms on the right hand side are equal to (−1)k and therefore do not have a limit as k → ∞.
Therefore no continuous extension to the compactification exists.

One can construct a compactification on which x, sin(1/x) and cos(1/x) extend by taking the
closure of the image of the embedding h : (0, 1) → [−1, 1]3 defined by

h(x) = (x, sin(1/x), cos(1/x) ) .

The continuous extensions are given by restricting the projections onto the first, second and third
coordinates.

3. [Just give a necessary condition on the topology of the space.] Under what conditions
does a metrizable space have a metrizable compactification?

SOLUTION.

If A is a dense subset of a compact metric space, then A must be second countable because a
compact metric space is second countable and a subspace of a second countable space is also second
countable.

This condition is also sufficient, but the sufficiency part was not assigned because it requires
the Urysohn Metrization Theorem. The latter says that a T3 and second countable topological
space is homeomorphic to a product of a countably infinite product of copies of [0, 1]; this space is
compact by Tychonoff’s Theorem, and another basic result not covered in the course states that a
countable product of metrizable spaces is metrizable in the product topology (see Munkres, Exercise
3 on pages 133–134). So if X is metrizable and second countable, the Urysohn Theorem maps it
homeomorphically to a subspace of a compact metrizable space, and the closure of its image will
be a metrizable compactification of X.

Additional exercises

Definition. If f : X → Y is continuous, then f is proper (or perfect) if for each compact subset
K ⊂ Y the inverse image f−1(K) is a compact subset of X.
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1. Suppose that f : X → Y is a continuous map of noncompact locally compact T2 spaces. Let
f• : X• → Y • be the map of one point comapactifications defined by f •|X = f and f•(∞X) = (∞Y ).
Prove that f is proper if and only if f • is continuous.

SOLUTION.

( =⇒ ) Suppose that f is proper and U is open in Y •. There are two cases depending upon
whether ∞Y ∈ U . If not, then U ⊂ Y and thus [f •]−1(U) = f−1(U) is an open subset of X; since
X is open in X• it follows that f−1(U) is open in X•. On the other hand, if ∞Y ∈ U then Y − U
is compact, and since f is proper it follows that

C = f−1(Y − U) = X − f−1 (U − {∞Y })

is a compact, hence closed, subset of X and X•. Therefore

[f•]−1(U) = f−1(U) ∪ {∞X} = X• − C

is an open subset of X•.
( ⇐= ) Suppose that f • is continuous and A ⊂ Y is compact. Then

f−1(A) = [f•]−1(A)

is a closed, hence compact subset of X• and likewise it is a compact subset of X.

2. Prove that a proper map of noncompact locally compact Hausdorff spaces is closed.

SOLUTION.

Let f : X → Y be a proper map of noncompact locally compact Hausdorff spaces, and let f •

be its continuous extension to a map of one point compactifications. Since the latter are compact
Hausdorff it follows that f • is closed. Suppose now that F ⊂ X is closed. If F is compact, then
so is f(F ) and hence the latter is closed in Y . Suppose now that F is not compact, and consider
the closure E of F in X•. This set is either F itself or F ∪ {∞X} (since F is its own closure in
X it follows that E ∩ X = F ). Since the closed subset E ⊂ X• is compact, clearly E 6= F , so
this implies the second alternative. Once again we can use the fact that f • is closed to show that
f•(E) = f(F ) ∪ {∞Y } is closed in Y •. But the latter equation implies that f(F ) = f •(F ) ∩ Y is
closed in Y .

3. If F is the reals or complex numbers, prove that every polynomial map p : F → F is proper.
[Hint: Show that

lim
|z|→∞

∣∣p(z)
∣∣ = ∞

and use the characterization of compact subsets as closed and bounded subsets of F.]

SOLUTION.

Write the polynomial as

p(z) =
n∑

k=0

ak z
k

where an 6= 0 and n > 0, and rewrite it in the following form:

anz
n ·

(
1 +

n−1∑

k=1

ak

an

1

zn−k

)
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The expression inside the parentheses goes to 1 as n→ ∞, so we can find N0 > 0 such that |z| ≥ N0

implies that the abolute value (or modulus) of this expression is at least 1
2 .

Let M > 0 be arbitrary, and define

N1 =

(
2M0

|a|n

)1/n

.

Then |z| > max(N0. N1) implies |p(z)| > M . This proves the limit formula.
To see that p is proper, suppose that K is a compact subset of F, and choose M > 0 such that

w ∈ K implies |w| ≤M . Let N be the maximum of N1 and N2, where these are defined as in the
preceding paragraph. We then have that the closed set p−1(K) lies in the bounded set of points
satisfying |z| ≤ N , and therefore p−1(K) is a compact subset of F.

4. Let `2 be the complete metric space described above, and view Rn as the subspace of all
sequences with xk = 0 for k > n. Let An ⊂ `2 × R be the set of all ordered pairs (x, t) with x ∈ Rn

and 0 < t ≤ 2−n. Show that A =
⋃

nAn is locally compact but its closure is not. Explain why this
shows that the completion of a locally compact metric space is not necessarily locally compact. [Hint:
The family {An } is a locally finite family of closed locally compact subspaces in A. Use this to show
that the union is locally compact, and show that the closure of A contains all of `2 ×{0}. Explain why
`2 is not locally compact.]

SOLUTION.

As usual, we follow the hints.

[Show that] the family {An } is a locally finite family of closed locally compact subspaces
in A.

If (x, t) ∈ `2×(0,+∞) and U is the open set `2×(t/2, +∞), then x ∈ U and An∩U = ∅ unless
2−n ≥ t/2, and therefore the family is locally finite. Furthermore, each set is closed in `2 × (0,+∞)
and therefore also closed in A =

⋃
nAn.

Use this to show that the union is locally compact.

We shall show that if A is a T3 space that is a union of a locally finite family of closed locally

compact subsets Aα, then A is locally compact. Let x ∈ A, and let U be an open subset of A
containing x such that U ∩Aα = ∅ unless α = α1 · · · , αk. Let V0 be an open subset of A such that
x ∈ V0 ⊂ V0 ⊂ U , for each i choose an open set Wi ∈ Aαi

such that the closure of Wi is compact,
express Wi as an intersection Vi ∩ Aαi

where Vi is open in A, and finally let V = ∩i Vi. Then we
have

V =

k⋃

i=1

(
V ∩Aαi

)
⊂

k⋃

i=1

(
Vi ∩Aαi

)
=

k⋃

i=1

Closure (Wi in Aαi
) .

Since the set on the right hand side is compact, the same is true for V . Therefore we have shown
that A is locally compact.

Show that the closure of A contains all of `2×{0}. Explain why `2 is not locally compact.

Let x ∈ `2, and for each positive integer k let Pk(x) ∈ Ak be the point (Hk(x), 2−(k+1) ), where
Hk(x) is the point whose first k coordinates are those of x and whose remaining coordinates are 0.
It is an elementary exercise to verify that (x, 0) = limk→∞ Pk(x). To conlclude we need to show
that `2 is not locally compact. If it were, then there would be some ε > 0 such that the set of all
y ∈ `2 satisfying every |y| ≤ ε would be compact, and consequently infinite sequence { yn } in `2
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with |yn| ≤ ε (for all n) would have a convergent subsequence. To see this does not happen, let
yk = 1

2ε ek, where ek is the kth standard unit vector in `2. This sequence satifies the boundedness
condition but does not have a convergent subsequence. Therefore `2 is not locally compact.

FOOTNOTE.

Basic theorems from functional analysis imply that a normed vector space is locally compact
if and only if it is finite-dimensional.

5. Let X be a compact Hausdorff space, and let U ⊂ X be open and noncompact. Prove that
the collapsing map c : X → U • such that c|U = idU and c = ∞U on X − U is continuous. Show also
that c is not necessarily open.

SOLUTION.

Suppose that V is open in U •. If ∞U 6∈ V then V ⊂ U and c−1(V ) = V , so the set on the
left hand side of the equation is open. Suppose now that ∞U ∈ V ; then A = U• − V is a compact
subset of U and c−1(V ) = X − c−1(A) = X −A, which is open because the compact set A is also
closed in X.

There are many examples for which c is not open. For example, let X = [0, 5] and A = [1, 3];
in this example the image J of the open set (2, 4) is not open because the inverse image of J is
[1, 4), which is not open. More generally, if X is connected and X − U has a nonempty interior,
then X → U• is not open (try to prove this!).

FOOTNOTE.

In fact, if F = X − U then U • is homeomorphic to the space X/F described in a previous
exercise. This is true because the collapse map passes to a continuous map from X/F to U • that
is 1–1 onto, and this map is a homeomorphism because X/F is compact and U • is Hausdorff.

6. (a) Explain why a compact Hausdorff space has no nontrivial Hausdorff abstract closures.

SOLUTION.

If X is compact Hausdorff and f : X → Y is a continuous map into a Hausdorff space, then
f(X) is closed. Therefore f(X) = Y if the image of f is dense, and in fact f is a homeomorphism.

(b) Prove that a Hausdorff space X has a maximal abstract Hausdorff closure that is unique up
to equivalence. [Hint: Consider the identity map.]

SOLUTION.

This exercise shows that a formal analog of an important concept (the Stone-Čech compact-
ification) is not necessarily as useful as the original concept itself; of course, there are also many
situations in mathematics where the exact opposite happens. In any case, given an abstract clo-
sure (Y, f) we must have (X, idX) ≥ (Y, f) because f : X → Y trivially satisfies the condition
f = f o idX .

7. Suppose that X is compact Hausdorff and A is a closed subset of X. Prove that X/A is
homeomorphic to the one point compactification of X −A.

SOLUTION.

See the footnote to Exercise 5 above.

8. Suppose that X is a metric space that is uniformly locally compact in the sense that there is
some δ > 0 such that for each x ∈ X the neighborhood Nδ(x) has compact closure. Prove that X is
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complete. Explain why the conclusion fails if one only assumes that for each x there is some δ(x) > 0
with the given property (give an example).

SOLUTION.

Suppose that X is uniformly locally compact as above and {xn} is a Cauchy sequence in X.
Choose M such that m,n ≥ M implies d(xm, xn) < δ, where δ is as in the problem. If we define
a new sequence by yk = xk−M , then {yk} is a Cauchy sequence whose values lie in the (compact)
closure of Nδ(xM ), and thus {yk} has some limit z. Since {yk} is just {xk−M}, it follows that the
sequence {xk−M}, and hence also the sequence {xn} must converge to the same limit z.

One of the simplest examples of a noncomplete metric space with the weaker property is the
half-open interval (0,∞). In this case, if we are given x we can take δx = x/2.

9. Suppose that X is a noncompact locally compact T2 space and A is a noncompact closed
subset of X. Prove that the one point compactification A• is homeomorphic to a subset of the one
point compactification X•.

SOLUTION.

Let B = A ∪ {∞X}, and consider the function g : A• → X such that g is the inclusion on A
and g sends ∞A to ∞X . By construction this map is continuous at all ordinary points of A, and if
g is also continuous at ∞A then g will define a 1–1 continuous map from A• onto B, and this map
will be a homeomorphism.

Suppose now that V is an open neighborhood of ∞X in X•. By definition we know that
K = X − V is compact. But now we have

g−1[V ] = A• − g−1[X − V ] = A• − A ∩K .

Now A∩K is compact because both A and X − V are closed X and K is a compact subset of the
Hausdorff space XC, and therefore it follows that the set g−1[V ] = A• − A ∩K is open in A,
so that g is continuous everywhere.

15



VI.5 : Metrization theorems

Problems from Munkres, § 40, p. 252

2. A subset W of X is said to be an Fσ set in X if W is a countable union of closet subsets
of X. Show that W is an Fσ set in X if and only if X −W is a Gδ set in X. [The reason for the
terminology is discussed immediately following this exercise on page 252 of Munkres.]

SOLUTION.

If W is an Fσ set then W = ∪n Fn where n ranges over the nonnegative integers and Fn is
closed in X. Therefore

X −W =
⋂

n

X − Fn

is a countable intersection of the open subsets X − Fn and accordingly is a Gδ set.
Conversely, if V = X −W is a Gδ set, then V = ∩n Un where n ranges over the nonnegative

integers and Un is open in X. Therefore

W = X − V =
⋃

n

X − Un

is a countable union of the closed subsets X − Un and accordingly is an Fσ set.

FOOTNOTE.

We have already shown that a closed subset of a metrizable space is a Gδ set, and it follows
that every open subset of a metrizable space is an Fσ set.

3. Many spaces have countable bases, but no T1 space has a locally finite basis unless it is
discrete. Prove this fact.

SOLUTION.

Suppose that X is T1 and has a locally finite base B. Then for each x ∈ X there is an open set
Wx containing x such that Wx ∩Vβ = ∅ for all β except β(1), · · · , β(k). Let V ∗ be the intersection
of all sets in the finite subcollection that contain x. Since B is a base for this topology it follows
that some Vβ(J) contains x and is contained in this intersection, But this means that Vβ(J) must be
contained in all the other open subsets in B that contain x and is therefore a minimal open subset
containing x. Suppose this minimal open set has more than one point; let y be another point in the
set. Since X is T1 it will follow that Vβ(J) −{y} is also an open subset containing x. However, this
contradicts the minimality of Vβ(J) and shows that the latter consists only of the point {x}. Since
x was arbitrary, this shows that every one point subset of X is open and thus that X is discrete.

Additional exercises

1. A pseudometric space is a pair (X,d) consisting of a nonempty set X and a function
dX ×X → R that has all the properties of a metric except possibly the property that d(u, v) = 0.

(a) If ε-neighborhoods and open sets are defined as for metric spaces, explain why one still obtains
a topology for pseudometric spaces.
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SOLUTION.

None of the arguments verifying the axioms for open sets in metric spaces rely on the assump-
tion d(x, y) = 0 =⇒ x = y.

(b) Given a pseudometric space, define a binary relation x ∼ y if and only if d(x, y) = 0. Show
that this defines an equivalence relation and that d(x, y) only depends upon the equivalence classes of
x and y.

SOLUTION.

The relation is clearly reflexive and symmetric. To see that it is transitive, note that d(x, y) =
d(y, z) = 0 and the Triangle Inequality imply

d(x, z) ≤ d(x, y) + d(y, z) = 0 + 0 = 0 .

Likewise, if x ∼ x′ and y ∼ y′ then

d(x′, y′) ≤ d(x′, x) + d(x, y) + d(y, y′) = 0 + d(x, y) + 0 = d(x, y)

and therefore the distance between two points only depends upon their equivalence classes with
respect to the given relation.

(c) Given a sequence of pseudometrics dn on a set X, let T∞ be the topology generated by the
union of the sequence of topologies associated to these pseudometrics, and suppose that for each pair
of distinct points u v ∈ X there is some n such that dn(u, v) > 0. Prove that (X,T∞) is metrizable
and that

d∞ =

∞∑

n=1

dn

2n(1 + dn)

defines a metric whose underlying topology is T∞.

SOLUTION.

First of all we verify that d∞ defines a metric. In order to do this we must use some basic
properties of the function

ϕ(x) =
x

1 + x
.

This is a continuous and strictly increasing function defined on [0, +∞) and taking values in [0, 1)
and it has the additional property ϕ(x + y) ≤ ϕ(x) + ϕ(y). The continuity and monotonicity
properties of ϕ follow immediately from a computation of its derivative, the statement about its
image follows because x ≥ 0 implies 0 ≤ ϕ(x) < 1 and limx→+∞ ϕ(x) = 1 (both calculations are
elementary exercises that are left to the reader).

The inequality ϕ(x + y) ≤ ϕ(x) + ϕ(y) is established by direct computation of the difference
ϕ(x) + ϕ(y) − ϕ(x+ y):

x

1 + x
+

y

1 + y
−

x+ y

1 + x+ y
=

x2y + 2xy + xy2

(1 + x) (1 + y) (1 + x+ y)

This expression is nonnegative if x and y are nonnegative, and therefore one has the desired in-
equality for ϕ. Another elementary but useful inequality is ϕ(x) ≤ x if x ≥ 0 (this is true because
1 ≤ 1 + x). Finally, we note that the inverse to the continuous strictly monotonic function ϕ is
given by

ϕ−1(y) =
y

1 − y
.
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It follows that if d is a pseudometric then so is ϕ od with the additional property that ϕ od ≤ 1.
More generally, if { an } is a convergent sequence of nonnegative real numbers and {dn } is a
sequence of pseudometrics on a set X, then

d∞ =

∞∑

n=1

an · ϕ odn <

∞∑

n=1

an <∞

also defines a pseudometric on X (write out the details of this!). In our situation an = 2−n.
Therefore the only thing left to prove about d∞ is that it is positive when x 6= y. But in our
situation if x 6= y then there is some n such that dn(x, y) > 0, and the latter in turn implies that

2−nϕ
(
dn(x, y)

)
> 0

and since the latter is one summand in the infinite sum of nonnegative real numbers given by
d∞(x, y) it follows that the latter is also positive. Therefore d∞ defines a metric on X.

To prove that the topology M defined by this metric and the topology T∞ determined by the
sequence of pseudometrics are the same. Let Nα denote an α-neighborhood with respect to the

d∞ metric, and for each n let N
〈n〉
β denote a β-neighborhood with respect to the pseudometric dn.

Suppose that Nε is a basic open subset for M where ε > 0 and x ∈ X. Choose A so large that
n ≥ A implies

∞∑

k=A

2−k <
ε

2

Let Wx be the set of all z such that dk(x, z) < ε/2 for 1 ≤ k < A. Then Wx is the finite intersection
of the T∞-open subsets

W 〈k〉(x) = { z ∈ X | dk(x, z) < ε/2 }

and therefore Wk is also T∞-open. Direct computation shows that if y ∈Wk then

d∞(x, y) =

∞∑

n=1

2−n ϕ (dn(x, y) ) =

A−1∑

n=1

2−n ϕ (dn(x, y) ) +

∞∑

n=A

2−n ϕ (dn(x, y) ) <

(
A−1∑

n=1

2−n ϕ (dn(x, y) )

)
+

ε

2
<

(
A−1∑

n=1

2−n ε

2

)
+

ε

2
<

ε

2
+

ε

2
< ε

so that Wx ⊂ Nε(x). Therefore, if U is open with respect to d∞ we have

U =
⋃

x∈U

{x} ⊂
⋃

x∈U

Wx ⊂
⋃

x∈U

Nε(x) ⊂ U

which shows that U is a union of T∞-open subsets and therefore is T∞-open. Thus M is contained
in T∞.

To show the reverse inclusion, consider an subbasic T∞-open subset of the form N
〈n〉
ε (x). If y

belongs to the latter then there is a δ > 0 such that N
〈n〉
δ (y) ⊂ N

〈n〉
ε (x); without loss of generality

we may as well assume that δ < 2−k. If we set

η(y) = 2−k ϕ
(
δ(y)

)
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then d∞(z, y) < η(y) and
2−k ϕ odk ≤ d∞

imply that 2−k ϕ odk(z, y) < η(y) so that ϕ odk(z, y) < 2k η(y) and

dk(z, y) < ϕ−1
(
2k δ(y)

)

and by the definition of η(y) the right hand side of this equation is equal to δ(y). Therefore if we

set W = N
〈k〉
ε (x) then we have

W = N 〈k〉
ε (x) =

⋃

y∈W

{y} ⊂
⋃

y∈W

Nη(y)(y) ⊂
⋃

y∈W

N
〈k〉
δ(y)(y) ⊂ N 〈k〉

ε (x)

which shows that N
〈k〉
ε (x) belongs to M. Therefore the topologies T∞ and M are equal.

(d) Let X be the set of all continuous real valued functions on the real line R. Prove that X is
metrizable such that the restriction maps from X to BC( [−n, n] ) are uniformly continuous for all n.
[Hint: Let dn(f, g) be the maximum value of |f(x) − g(x)| for |x| ≤ n.]

SOLUTION.

Take the pseudometrics dn as in the hint, and given h ∈ X let J 〈n〉(h) be its restriction to
[−n, n]. Furthermore, let ‖...‖n be the uniform metric on BC ( [−n, n] ), so that

dn(f, g) = ‖ J 〈n〉(f) − J 〈n〉(g) ‖n .

Given ε > 0 such that ε < 1, let δ = 2−n ϕ(ε). Then d∞(f, g) < δ implies 2−n ϕ odn(f, g) < δ,
which in turn implies dn(f, g) < ϕ−1(2n δ) = ε.

(e) Given X and the metric constructed in the previous part of the problem, prove that a sequence
of functions { fn } converges to f if and only if for each compact subsetK ⊂ R the sequence of restricted
functions { fn|K } converges to f |K.

SOLUTION.

We first claim that limn→∞ d∞(fn, f) = 0 if and only if limn→∞ dk(fn, f) = 0 for all k.

( =⇒ ) Let ε > 0 and fix k. Since limn→∞ d∞(fn, f) = 0 there is a positive integer M such
that n ≥M implies d∞(fn, f) < 2k ϕ(ε). Since

2−kϕ odk ≤ d∞

it follows that dk ≤ ϕ−1(2−k d∞) and hence that dk(fn, f) < ε if n ≥M .

( ⇐= ) Let ε > 0 and choose A such that

∞∑

k=n

2−k <
ε

2
.

Now choose B so that n ≥ B implies that

dk(fn, f) <
ε

2A
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for all k < A. Then if n ≥ A+B we have

d∞(fn, f) =

∞∑

k=1

2−k ϕ odk(fn, f) =

A∑

k=1

2−k ϕ odk(fn, f) +

∞∑

k=A

2−k ϕ odk(fn, f) <

A∑

k=1

2−k ϕ odk(fn, f) +
ε

2
<

(
A∑

k=1

2−k ε

2A

)
+

ε

2
= ε

so that limn→∞ d∞(fn, f) = 0.
Now suppose that K is a compact subset of R, and let ‖...‖K be the uniform norm on BC(K).

Then K ⊂ [−n, n] for some n and thus for all g ∈ X we have ‖g‖K ≤ dn(g, 0). Therefore if
{ fn } converges to f then the sequence of restricted functions { fn|K } converges uniformly to f |K.
Conversely, if for each compact subsetK ⊂ R the sequence of restricted functions { fn|K } converges
to f |K, then this is true in particular for K = [−L,L] and accordingly limn→∞ dL(fn, f) = 0 for
all L. However, as noted above this implies that limn→∞ d∞(fn, f) = 0 and hence that { fn }
converges to f .

(f) IsX complete with respect to the metric described above? Prove this or give a counterexample.

SOLUTION.

The answer is YES, and here is a proof: Let { fn } be a Cauchy sequence in X. Then if
Km = [−m,m] the sequence of restricted functions { fn|Km } is a Cauchy sequence in BC(Km)
and therefore converges to a limit function gm ∈ BC(Km). Since limn→∞ fn|Km(x) = gm(x) for
all x ∈ Km it follows that p ≤ m implies gm|Kp = gp for all such m and p. Therefore if we
define g(x) = gm(x) if |x| < m then the definition does not depend upon the choice of m and the
continuity of gm for each m implies the continuity of g. Furthermore, by construction it follows
that

lim
n→∞

dm(fn, g) = lim
n→∞

‖ (fn|Km) − gm ‖ = 0

for all m and hence that limn→∞ d∞(fn, f) = 0 by part (e) above.

(g) Explain how the preceding can be generalized from continuous functions on R to continuous
functions on an arbitrary open subset U ⊂ Rn.

SOLUTION.

The key idea is to express U as an increasing union of bounded open subsets Vn such that
Vn ⊂ Vn+1 for all n. If U is a proper open subset of Rn let F = Rn − U (hence F is closed), and
let Vm be the set of all points x such that |x| < m and d[2](x, Fm) > 1/m, where d[2] denotes the
usual Euclidean metric; if U = Rn let Vm be the set of all points x such that |x| < m. Since y ∈ U
if and only if d[2](y, F ) = 0, it follows that U = ∪m Vm. Furthermore, since y ∈ Vm implies |x| ≤ m

and d[2](x, Fn) ≥ 1/n (why?), we have Vm ⊂ Vm+1. Since Vm is bounded it is compact.
If f and g are continuous real valued functions on U , define dn(f, g) to be the maximum value

of |f(x) − g(x)| on Vm. In this setting the conclusions of parts (d) through (f) go through with
only one significant modification; namely, one needs to check that every compact subset of U is
contained in some Vm. To see this, note that K is a compact subset that is disjoint from the closed
subset F , and therefore the continuous function d[2](y, F ) assumes a positive minimum value c1 on
K and that there is a positive constant c2 such that y ∈ K implies |y| ≤ c2. If we choose m such
that m > 1/c1 and m > c2, then K will be contained in Vm as required.
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FOOTNOTE.

Here is another situation where one encounters metrics defined by an infinite sequence of
pseudometrics. Let Y be the set of all infinitely differentiable functions on [0, 1], let Dk denote the
operation of taking the kth derivative, and let dk(f, g) be the maximum value of |Dkf − Dkg|,
where 0 ≤ k <∞. One can also mix this sort of example with the one studied in the exercise; for
instance, one can consider the topology on the set of infinitely differentiable functions on R defined
by the countable family of pseudometrics dk,n where dk,n(f, g) is the maximum of |Dkf − Dkg|
on the closed interval [−n, n].

2. (a) Let U be an open subset of Rn, and let f : U → Rn be a continuous function such that
f−1({0}) is contained in an open subset V such that V ⊂ V ⊂ U . Prove that there is a continuous
function g from Sn ∼= (Rn)• to itself such that g|V = f |V and f−1({0}) = g−1({0}). [Hint: Note
that

(Rn)• − {0} ∼= Rn

and consider the continuous function on
(
V − V

)
t {∞} ⊂ (Rn)• − {0}

defined on the respective pieces by the restriction of f and ∞. Why can this be extended to a continuous
function on (Rn)• − V with the same codomain? What happens if we try to piece this together with
the original function f defined on U?]

SOLUTION.

We shall follow the steps indicated in the hint(s).

Note that
(Rn)• − {0} ∼= Rn

This is true because the left hand side is homeomorphic to the complement of a point in Sn,
and such a complement is homeomorphic to Rn via stereographic projection (which may be taken
with respect to an arbitrary unit vector on the sphere).

Consider the continuous function on
(
V − V

)
t {∞} ⊂ (Rn)• − {0}

defined on the respective pieces by the restriction of f and ∞. Why can this be extended to a
continuous function on (Rn)• − V with the same codomain?

In the first step we noted that the codomain was homeomorphic to Rn, and the Tietze Extension
Theorem implies that a continuous function from a closed subset A of a metric space X into Rn

extends to all of X.

What happens if we try to piece this together with the original function f defined on U?

If h is the function defined above, then we can piece h and f |V together and obtain a continuous
function on all of (Rn)• if and only if the given functions agree on the intersection of the two closed
subsets. This intersection is equal to V − V , and by construction the restriction of h to this subset
is equal to the restriction of f to this subset.

(b) Suppose that we are given two continuous functions g and g ′ satisfying the conditions of the
first part of this exercise. Prove that there is a continuous funtion

G : Sn × [0, 1] −→ Sn

21



such that G(x, 0) = g(x) for all x ∈ Sn and G(x, 1) = g′(x) for all x ∈ Sn (i.e., the mappings g and
g′ are homotopic).

SOLUTION.

Let h and h′ denote the associated maps from (Rn)• − V to (Rn)• − {0} ∼= Rn that are
essentially given by the restrictions of g and g ′. Each of these maps has the same restriction to(
V − V

)
t{∞}. Define a continuous mapping H : ((Rn)• − V )× [0, 1] −→ (Rn)• − {0} ∼= Rn by

H(x, t) = t h′(x)+ (1− t)h(x), and define F ′ on V × [0, 1] by F (x, t) = f(x). As in the first part of
this exercise, the mappings H and F ′ agree on the intersection of their domains and therefore they
define a continuous map G on all of Sn× [0, 1]. Verification that G(x, 0) = g(x) and G(x, 1) = g ′(x)
is an elementary exercise.

3. Let X be compact, and let F be a family of continuous real valued functions on X that
is closed under multiplication and such that for each x ∈ X there is a neighborhood U of X and a
function f ∈ F that vanishes identically on U . Prove that F contains the zero function.

SOLUTION.

For each x let ϕx be a continuous real valued function in F such that ϕx = 0 on some open set
Ux containing x. The family of open sets {Ux } is an open covering of X and therefore has a finite
subcovering by sets Ux(i) for 1 ≤ i ≤ k. The product of the functions

∏
i fx(i) belongs to F and is

zero on each Ux(i); since the latter sets cover X it follows that the product is the zero function and
therefore the latter belongs to F .

4. Let X be a compact metric space, and let J be a nonempty subset of the ring BC(X)
of (bounded) continuous functions on X such that J is closed under addition and subtraction, it is an
ideal in the sense that f ∈ J and g ∈ BC(X) =⇒ f · g ∈ J , and for each x ∈ X there is a function
f ∈ J such that f(x) 6= 0. Prove that J = BC(X). [Hints: This requires the existence of partitions
of unity as established in Theorem 36.1 on pages 225–226 of Munkres; as noted there, the result works
for arbitrary compact Hausdorff spaces, but we restrict to metric spaces because the course does not
cover Urysohn’s Lemma in that generality. Construct a finite open covering of X, say U , such that
for each Ui ∈ U there is a function fi ∈ J such that fi > 0 on Ui. Let {ϕi } be a partition of unity
dominated by U , and form h =

∑
i ϕi · fi. Note that h ∈ J and h > 0 everywhere so that h has a

reciprocal k = 1/h in BC(X). Why does this imply that the constant function 1 lies in J , and why
does the latter imply that everything lies in J?]

REMINDER.

If X is a topological space and U = {U1, · · · , Un} is a finite indexed open covering of X, then
a partition of unity subordinate to U is an indexed family of continuous functions ϕi : X → [0, 1] for
1 ≤ i ≤ n such that for each i the zero set of the function ϕi contains contains X − Ui in its interior
and

n∑

i=1

ϕi = 1 .

Theorem 36.1 on pages 225–226 of Munkres states that for each finite indexed open covering U of a
T4 space (hence for each such covering of a compact Hausdorff space), there is a partition of unity
subordinate to U . The proof of this is based upon Urysohn’s Lemma, so the methods in Munkres can
be combined with our proof of the result for metric space to prove the existence of partitions of unity
for indexed finite open coverings of compact metric spaces.
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SOLUTION.

For each x ∈ X we are assuming the existence of a continuous bounded function fx such that
fx(x) 6= 0. Since J is closed under multiplication, we may replace this function by it square if
necessary to obtain a function gx ∈ J such that gx(x) > 0. Let Ux be the open set where gx is
nonzero, and choose an open subset Vx such that Vx ⊂ Ux. The sets Vx determine an open covering
of X; this open covering has a finite subcovering that we index and write as V = {V1, · · · , Vn}. For
each i let gi ∈ J be the previously chosen function that is positive on Vi, and consider the function

g =
k∑

i=0

ϕi · gi .

This function belongs to J , and we claim that g(y) > 0 for all y ∈ X. Since
∑

i ϕi = 1 there is some
index value m such that ϕm(y) > 0; by definition of a partition of unity this means that y ∈ Vm.
But y ∈ Vm implies gm(y) > 0 too and therefore we have g(y) ≥ ϕm(y) gm(y) > 0. Since the
reciprocal of a nowhere vanishing continuous real valued function on a compact space is continuous
(and bounded!), we know that 1/g lies in BC(X). Since g ∈ J it follows that 1 = g · (1/g) also lies
in J , and this in turn implies that h = h · 1 lies in J for all h ∈ BC(X). Therefore J = BC(X) as
claimed.

5. In the notation of the preceding exercise, an ideal M in BC(X) is said to be a maximal

ideal if it is a proper ideal and there are no ideals A such that M is properly contained in A and A is
properly contained in in BC(X). Prove that there is a 1–1 correspondence between the maximal ideals
of BC(X) and the points of X such that the ideal Mx corresponding to X is the set of all continuous
functions g : X → R such that g(x) = 0. [Hint: Use the preceding exercise.]

SOLUTION.

Let M be the set of all maximal ideals. For each point x ∈ X we need to show that Mx ∈ M.
First of all, verification that Mx is an ideal is a sequence of elementary computations (which the
reader should verify). To see that the ideal is maximal, consider the function x̂ : BC(X) → R by
the formula x̂(f) = f(x). This mapping is a ring homomorphism, it is onto, and x̂(f) = 0 if and
only if f ∈ Mx. Suppose that the ideal is not maximal, and let A be an ideal such that Mx is
properly contained in A. Let a ∈ A be an element that is not in Mx. Then a(x) = α 6= 0 and it
follows that a(x)−α1 lies in Mx. It follows that α1 ∈ A, and since A is an ideal we also have that
1 = α−1(α1) lies in A; the latter in turn implies that every element f = f · 1 of BC(X) lies in A.

We claim that the map from X to M sending x to Mx is 1–1 and onto. Given distinct points
x and y there is a bounded continuous function f such that f(x) = 0 and f(y) = 1, and therefore
it follows that Mx 6= My. To see that the map is onto, let M be a maximal ideal, and note that
the preceding exercise implies the existence of some point p ∈ X such that f(p) = 0 for all f ∈ M.
This immediately implies that M ⊂ Mp, and since both are maximal (proper) ideals it follows that
they must be equal. Therefore the map from X to M is a 1–1 correspondence.

FOOTNOTES.

(1) One can use techniques from functional analysis and Tychonoff’s Theorem to put a natural
topology on M (depending only on the structure of BC(X) as a BAnach space and an algebra
over the reals) such that the correspondence above is a homeomorphism; see page 283 of Rudin,
Functional Analysis, for more information about this..

(2) The preceding results are the first steps in the proof of an important result due to I.
Gelfand and M. Naimark that give a complete set of abstract conditions under which a Banach
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algebra is isomorphic to the algebra of continuous complex valued functions on a compact Hausdorff
space. A Banach algebra is a combination of Banach space and associative algebra (over the real
or complex numbers) such that the multiplication and norm satisfy the compatibility relation
|xy| ≤ |x| · |y|. The additional conditions required to prove that a Banach algebra over the complex
numbers is isomorphic to the complex version of BC(X) are commutativity, the existence of a unit
element, and the existence of an conjugation-like map (formally, an involution) a→ a∗ satisfying
the additional condition |aa∗| = |a|2. Details appear in Rudin’s book on functional analysis, and a
reference for the Gelfand-Naimark Theorem is is Theorem 11.18 on page 289. A classic reference on
Banach algebras (definitely not up-to-date in terms of current knowledge but an excellent source
for the material it covers) is the book by Rickart in the bibliographic section of the course notes.
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