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To Terry, with admiration and thanks

The computation of the classical knot concordance groups Cyop (topological)
and Cgmooth (Smooth) remains, despite some 50 years of activity [5], one of the
central problems in low-dimensional topology. The work of Levine [14] gave
a complete calculation of the knot concordance group in high dimensions,
via an isomorphism ® : C — Z* @© Z3° ® Z3°. (Except for a minor issue
in ambient dimension 5, there isn’t any difference between Cyop and Csmooth
in high dimensions.) Subsequently, Casson and Gordon [1, 2] showed that
while @ is onto in the classical dimension, it is not injective.

In addition to their intrinsic interest, questions about concordance are
intimately related to surgery theory and other questions about 4-manifolds.
Indeed, the original paper of Fox and Milnor [6] explains that the problem of
representing a 2-dimensional homology class in a 4-manifold by an embedded
sphere often reduces to asking if some knot is slice. Conversely, the ability to
represent certain homology classes by topologically embedded spheres means
that methods of surgery theory will show certain knots to be topologically
slice. The most famous instance of this is Freedman’s proof that Alexander-
polynomial 1 knots are slice; there are more recent results along these lines
by Friedl-Teichner [7].

More recently, gauge theory has provided very strong obstructions to a
homology class in a 4-manifold being represented by an embedded sphere,
or more generally by a surface of low genus. Terry was an early contributor
to this study—see [11] and the wonderful survey articles [12, 13]. The most
recent ‘gauge-theoretic’ tool, the Heegaard-Floer homology of Ozsvath and
Szabd is no exception: many of the genus bounds proved via Donaldson
and Seiberg-Witten theory have new (and in some sense easier) proofs via
the new theory. These results can be translated into new obstructions to
knots being slice, but the Ozsvath-Szabé theory provides a more direct route
to such obstructions. They [21, 20], simultaneously with Rasmussen [22],
introduced ‘knot Floer homology’ groups HFK (K) for a knot K C S3,
from which they derived a numerical invariant 7(K) € Z.

The invariant 7(K) in fact vanishes on slice knots, and provides a homo-
morphism Cymooth — Z that is distinct from all classical invariants, including
the signature. It has a nice property that is, on the other hand, reminiscent

My talk at Tulane, and this note on which it was based, represent joint work with Eli
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of signature invariants of knots: the 7 invariant can in fact be defined for a
null-homologous knot in a rational homology sphere Y; in the case at hand
Y will be the 2-fold branched cover of a knot K in S, and we will consider
7(Y,K) of the branch set K C Y. As we will explain below, 7(Y, K) is a
function from H?(Y') — Z, where H?(Y) parameterizes the spin® structures
on Y. Our idea was that 7 could be considered as analogous to the Casson-
Gordon invariant 7(K,x) which is a function of x € Hom(H,(Y),Q/Z).
The main theorem says that if K is slice, then 7(Y, K, s) vanishes for appro-
priately chosen s € Spin®(Y’), much as 7(K, x) must vanish for appropriate
characters .

To give a precise statement, we need to quickly review some notions from
the realm of Heegaard-Floer theory. Let Y be a rational homology sphere,
and let s € Spin“(Y') be a spin® structure. A Heegaard decomposition of Y’
(or equivalently, a Morse function) defines a chain complex CF (Y, s) whose
homology is the Heegaard-Floer group }/If‘(Y, s). Because we are working
on a rational homgl\ogy sphere, there is a rational-valued ‘Maslov /g\rading’,
ie a function gr : HF(Y,s) — Q. There is a canonical summand HF (Y s)
of Pﬁ‘(Y, s), and the correction term for a spin® structure s, denoted d(Y, s),
is the absolute Q homological grading, gr, of ﬁf‘U (Y, s).

The d-invariant has the important property that d(Y,s) = 0 whenever
Y = OW where W is a rational homology ball and the spin® structure s
extends over W. Because the 2-fold cover of S? branched along a slice knot
bounds a rational homology ball (the branched cover of the 4-ball over the
slicing disk) the d-invariant gives a new obstruction to a knot being slice.
This has been investigated by Manolescu-Owens [17] and Jabuka-Naik [10]).
One point about the use of the d-invariant that is common with the original
Casson-Gordon invariants is that one does not know a priori which spin®
structures on Y extend over W, so that in applying this obstruction one
may have to do a great deal of computation.

Our idea was to strengthen the application of Heegaard-Floer homology
by using observation that (with notation as in the last paragraph) not only
does Y = OW, but the preimage of K in Y is slice in W. So we can use
another concordance invariant: the 7 invariant, which arises from the knot
homology theory HF K(K). Very briefly, a null-homologous knot K gives
rise to a Z-grading on the Heegaard-Floer chain complex CF (Y, s). The min-
imal gr@c\iing of an element that projects non-trivially to the aforementioned
group HF (Y, s) is by definition 7(Y, K,s). When Y is the 3-sphere, 7(K)
is a concordance invariant, and in fact gives a lower bound for the genus of
an oriented surface bounded by K in the 4-ball. Our main technical result

states something similar for all of the spin® structures on Y that extend over
w.

Theorem 1. Let K be a knot in S3, and Y the 2-fold cover of S* branched
along K. Denote by K the preimage of K in Y. If K 1is slice, then there
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exists a subgroup G < H?(Y;Z) with |G|?> = |H?(Y; Z)| such that d(Y,s) =0
and 7(Y,K,s) =0 for all s € sy + G, where s is the unique spin structure
onY.

An only slightly more elaborate statement holds with 2 replaced by p” for
any prime p.

Having been raised to believe that a theorem is not worth much unless
it can be applied to some interesting examples, we went looking for knots
for which we could compute the invariants 7(Y, K, s). There have been im-
portant recent advances [18] in the computation of Heegaard-Floer groups,
and these have brought the computation of 7(Y, K, s) within reach for at
least one class of knots, the 2-bridge knots. Recall that these are knots
K, , whose double branched cover is the lens space L(p,q). Eli Grigsby [9]

showed how to compute the groups ITFT((L(p, q), Ep,q) purely combinatori-
ally, and with some extra work one can extract combinatorial calculations
of the corresponding 7 invariants. The question of which 2-bridge knots are
smoothly slice has been definitively answered by Paolo Lisca [16]. However,
there remain further questions about this category of knots, in particular
the question of showing that a particular 2-bridge knot has infinite order in
the concordance group.

One issue that arises in the Casson-Gordon invariants, and indeed in
all concordance obstructions based on branched covers, is that one does not
know a priori the restriction map H?(W;Z) — H?(Y;Z) where W and Y are
as above the branched covers of the 4-ball and 3-sphere respectively. In the
original setting and also in the initial gauge-theoretic extensions [4, 19, 23],
this comes out as a lack of information about which cyclic covers of Y
extend over W, whereas in the Seiberg-Witten and Heegaard-Floer setting,
it is a question about extension of spin€ structures. In principle, to use an
obstruction such as that in Theorem 1 to show that some knot isn’t slice, one
might have to test whether the conclusions fail for every G < H?(Y;Z) with
|G|? = |H*(Y;Z)|! This clearly gets out of hand when the order of H2(Y;Z)
is large. For example, to use the theorem as stated to determine if the sum
of 4 copies of the 2-bridge knot 45/17 is slice would require examination of
9,745, 346 such subgroups. As it turns out, there are subgroups on which the
d-invariant vanishes, so that invariant alone would not suffice to determine
the concordance order of 45/17.

To get around this problem, we developed a way to package the functions
d(-) : Spin“(Y) — Q and 7(Y, K,-) : Spin“(Y) — Z that does not require
examination of subgroups. It is easiest to explain in the case that H?(Y;Z)
is cyclic, which we now assume. We define two invariants 7, (resp. D)) to
be the absolute value of

Z 75(K) (resp. ds(Y)).
{s€Spin¢(Y)|s has order p}

We then showed



4 DANIEL RUBERMAN

Theorem 2. Let K C S® be a knot and p € Z. prime or 1. If there exists
a positive n € Z such that #,K is smoothly slice, then T,(K) = Dy(K) = 0.

To finish the discussion of the example for K the 2-bridge knot 45/17, the
invariants D3(K) and D5(K) both vanish, but 73(K) = 75(K) = —1. Hence
we conclude that this knot has infinite order in the smooth concordance
group. It would of course be of great interest to know if it has finite order
in the topological concordance group.

Postscript: There have been some interesting recent developments in ap-
plying gauge theory to knot concordance since we posted the preprint on
which this talk was based. Lisca [15] showed how to apply Donaldson’s di-
agonalization theorem to deduce that every 2-bridge knot, other than those
already known to be ribbon [1, 2, 3] has infinite concordance order. Com-
bining this essentially algebraic technique with the d-invariant, Greene and
Jabuka [8] extended this result to pretzel knots all of whose twisting numbers
are odd. It seems likely that much more can be said with these techniques.
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