SOLUTIONS TO EXERCISES FOR

MATHEMATICS 144 — Part 4

Fall 2006

IV. Relations and functions

IV.4: Composite and inverse functions

FExercises to work

1. Suppose that X is linearly ordered and a,b € X are distinct. Then either a < b or
b < a, and since f is strictly increasing this means that f(a) < f(b) or f(b) < f(a). In both cases
we have f(a) # f(b), and therefore f is 1-1.

Here is a counterexample when X is not linearly ordered. Let X be the set of all subsets
of {0,1} ordered by inclusion, let Y be the nonnegative integers, and let f : X — Y denote the
number of elements in the subset A C {0,1}. Then f is strictly increasing, but f[{0}] = f[{1}].=

2. First of all, the problem should be corrected to read, “Given a set X, let Py(X) denote
the set of nonempty subsets of X, and define h : Py(A)x Py(B) — Py(AxB) by h(C,D) = CxD.”

[Otherwise the map is not 1-1 because, say, h(0, D) = (.]

If ho(C,D) = ho(C’,D’) then C x D = C" x D’. Suppose that z € C and y € D. Then
(x,y) € C x D =C"x D" implies that z € C' and y € D’, so that C C C’ and d C D’. Conversely,
if x € C" and y € D, then (z,y) € C' x D' = C x D implies that z € C’ and y € D', so that
C Cc ¢ and d C D'. Therefore C = C’ and D = D’. To see that hg is not onto, let A = B = {0,1}
and note that £ = A x B — {(1,1)} is not in the image of hg, which consists of the sets {z,y)},
{z} x B, Ax{y}, and A x B. Note that there are 9 sets in the image and 15 sets in the codomain.m

3. (a) This map is injective.n

(b) This map is not injective.m

(¢) This map is not injective.m

4. (a) This map is bijective.n

(b) This map is not bijective; it is neither injective nor surjective.m

(c) This map is not bijective from the reals to themselves, but it does define a bijection from
R—-{-2}toR—{1}.n

(d) This map is bijective.m

5. Suppose that f is a formal monomorphism; we need to show that f is also injective.
In other words, if x # y we need to prove that f(x) # f(y). Let X,Y : {1} — A be the functions
such that X(1) =z and Y(1) = y. Then f°X(1) = f(x) and f°Y (1) = f(y). It suffices to show
that feX # f°Y. Assume the contrary, so that f°X = f<Y. Since f is a formal monomorphism
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this would imply that X =Y, which would mean that z = y, a contradiction. Therefore a formal
monomorphism is injective.

Conversely, suppose that f is injective, and let g,h : C — A satisfy feg = feh. Then for all
z € C' we have f(g(z)) = f(h(2)), and since f is injective this means that g(z) = h(z) for all z.
Therefore g = h; since the latter were arbitrary pairs of functions satisfying feg = f°h, it follows
that f is a formal monomorphism.m

6. Suppose that f is surjective, and suppose that g,h : B — D satisfy gof = hef; we
want to show that g = h. Let b € B, and choose a € A such that f(a) =b. Then g(b) = g(f(a)) =
h(f(a)) = h(b), and since b was an arbitrary element of B it follows that g = h. Therefore f is a
formal epimorphism.

To prove the other implication, suppose that f is not surjective. Define g,h : B — {0,1} as
follows: Set g(b) =1 for all b, and set h(b) =1 if b = f(a) for some a and set h(b) = 0 otherwise.
Then g # h because f is not surjective, but for all a € A we have g(f(a)) = h(f(a)) = 1 so that
gef = hef, and hence f is not a formal epimorphism.m

7. (b) We always have f[AN B] C f[A] N f[B], so we really need to prove that f[AN B] D
fl[A]n f[B] for all A and B if and only if f is 1-1. (=) Let A = {a} and B = {b} where A # B.
Then AN B = (), so the condition on images implies

0 = flAnB] S fIAINfIBl = {f(a)}n{f(b)}

which can only happen if f(a) # f(b). Thus f is 1-1 if f[AN B] D f[A] N f[B] for all A and
B. (<=) Suppose now that f[AN B] 5 f[A] N f[B] for some A and B. Note first that both A
and B must be nonempty because f[A N B] = f[A] N f[B] if either A or B is empty. Then by
noncontainment there is some y € f[A] N f[B] such that y ¢ f[AN B]. This means there are a € A
and b € B such that y = f(a) = f(b), but a ¢ B and b ¢ A. The preceding conditions mean that
a # b, and since f(a) = f(b) it follows that f is not 1-1.m

(b) (=) Let A= {a} and let b # a. Then f(b) € f[ X —A] CY — f[A] =Y — {f(a)} implies
that f(b) # f(a), and therefore f is 1-1. (<=) Suppose now that there is a subset A C X such
that f[X — A] ¢ Y — f[A]. Note first that A # () because we do have set-theoretic containment (in
fact, equality!) if A = 0. It follows that there is some y such that y € f[X — A] but y € Y — f[A].
The second condition is equivalent to y € f[A]. We have thus shown that there are u,v € X such
that u € A and v € A but y = f(u) = f(v). Therefore f is not 1-1.m

(d) (=)Lety €Y. Ify € f[A] theny = f(a) for some a € A, whileify € Y — f[A] = f[X —A]
then y = f(b) for some b € X — A. In both cases y lies in the image of f. (<=) Suppose that f is
onto. If y € Y — f[A], then y = f(x) for some z, but since y & f(A) it follows that € X — A and
hence y €C f[X — A]. Therefore Y — f[A] C f[X — A].»

8. Follow the hint. Let z € A be arbitrary, and define g : B — A in cases: If b = f(a) for
some a € A, set g(b) = a; since f is 1-1 there is only one possible choice for a, so this defines the
function on all points of the given type. If b # f(a) for any choice of a, then set g(b) = z. Then
g(f(a)) = a by construction, so that gef =id4.m

9. Suppose we are given h, k : C — A such that feh = fek. Compose both sides with g:
gefeh = ida°h = h
g°efek = ida°k = k
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Since feh = f°k the expressions on the left hand sides of both lines are equal, and hence the same
is true for the expressions on the right hand sides. Hence h = k and f is a monomorphism.

To show that ¢ is an epimorphism, suppose we are given u,v : B — D such that u°cg = veg,
and compose both sides with f:

u°gef = w°idy = wu
vegef = weidy = w

As before the left hand sides of both lines are equal, so the right hand sides are too, and hence
u = v so that g is an epimorphism.=

10. This is really the same as the previous exercise if we interchange the roles of A and B
and of f and g. The whole point is that we have two maps whose composite QP is the identity,
and under these conditions P is a monomorphism and () is an epimorphism.s

11. The simplest example is the linear mapping L(t) sending ¢t € [0,1] to a + t(b—a). The
mapping is 1-1 because L(s) = L(t) implies a + s(b — a) = a + t(b — a) and since a # b one can
solve this equation to conclude that s = t. To see that the mapping is onto, one need only check
that if a < ¢ < b and

c—a

b—a
then 0 <t <1 and L(t) = ¢. The 1-1 correspondence L is definitely not unique. Let K be any 1-1
correspondence of [0, 1] with itself that is not the identity; for example, one could take K (t) = t2,
whose inverse is the square root function. Then L°K is a different 1-1 correspondence between
[0,1] and [a, b].m

12. Let N be the set of nonnegative integers, let f : N — N send x to x + 1, and let
g : N — N send z to |z — 1|. Then f is not surjective because 0 # f(x) for any x, and ¢ is not
injective because g(2) = ¢(0), but ge is the identity on N. This yields the example for the first
part of the problem.

t =

As noted there are four subcases to the second part of the problem:

Is f injective if g° f is bijective? YES. Suppose that z and y lie in the domain of f and
f(z) = f(y). Then g(f(z)) = g(f(y)), and since ge f is bijective it follows that z = y.

Is f surjective if g f is bijective? NOT NECESSARILY. Consider the example constructed
for the first part of the problem.

Is g surjective if ge f is bijective? YES. If z is in the codomain of g, then the bijectivity of
ge f implies that z = g(f(w)) for some w, and thus we know that ¢ maps f(w) to z.

Is g injective if g° f is bijective? NOT NECESSARILY. Consider the example constructed for
the first part of the problem.n

13. In both cases the idea is to write y = f(x) and solve for x in terms of y.

If f(z) =3z — 1, then y = 3z — 1 implies that z = %(1‘ + 1), so the right hand side gives the
inverse function.

If f(x) = /(1 + |z|), then solving for z in terms of y splits into two cases depending upon
whether > 0 or x < 0. Note that these are equivalent to y > 0 and y < 0 by the definition of f.
If x > 0 then we have

_ _ _Y
R -y
while if z < 0 we have
_ z _ Y
e 1+y



so in either case we have y

r = —
1 — |yl

as the formula for the inverse function.m

14. Let n = int(xz). There are two cases depending upon whether n < =z < n + % or
n+i<z<n+l

In the first case we have int(z) = int(z + 1) = n and since 2n < 2z < 2n + 1 we also have
int(2z) = 2n. Therefore int(2z) and int(z) + int(z + 1) are both equal to 2n in this case.

In the second case we have int(z) = n but int(z + ) =n+1and 2n+ 1 < 2z < 2n + 2.

Therefore int(2z) and int(z) + int(z + 1) are both equal to 2n + 1 in this case.m
15. Both statements are false, and this can be seen by taking x =y = % For these choices

we have
1 = int(24+2) # int(2) + int(3) = 0+0 = 0

and
2 = int(?) + int(3) #int(2) + int(2) + int($) = 04+ 0+ 1 = 1.

Therefore the have values of  and y for which int(x) + int(y) # int(z + y) and int(z) + int(y) +
int(z +y) # int(2z) + int(2y).=

16. Let n = int(z). There are three cases depending upon whether n < z < n + % or
n+§§x<n+%orn+%§x<n+l.

In the first case we have int(z) = int(z + 3) = int(z + 2) = n and since 3n < 3z < 3n+1 we
also have int(3z) = 3n. Therefore int(3z) and int(z) + int(z + §) + int(z + 2) are both equal to
3n in this case.

In the second case we have int(z) = n and int(z + £) = n but int(z + 2) = n+ 1 and
3n +1 < 3z < 3n + 2. Therefore int(3z) and int(z) + int(z + 1) + int(z + 2) are both equal to
3n + 1 in this case.

In the second case we have int(z) = n but int(z + 1) = int(z+ 2) =n+1and 3n+2 < 3z <
3n + 3. Therefore int(3z) and int(z) + int(z + 1) + int(z + £) are both equal to 3n + 2 in this
case.m

17.  The important point is that if @ and b are positive real numbers, then

1 1
a < b = - > —.

a b
Suppose now that f is strictly increasing. Then z < y implies f(x) < f(y), and by the preceding
line and g = 1/f we conclude that g(z) > g(y), so that g is strictly decreasing. Conversely, if g
is strictly decreasing and z < y, then we have g(z) > g(y). Now g = 1/f is true if and only if
f =1/g, and therefore we can use the displayed statement to conclude that f(z) < f(y) and hence
that f is strictly increasing.m

18. Follow the hints. Given y € Cy we would like to define H by choosing z € A so that
go(x) = y [such an x exists because qq is onto] and setting H(y) = q1(x).

In order to make such a definition it is necessary to show that the construction does not
depend upon the choice of z; in other words, if go(z) = qo(z) = vy, then ¢1(x) = ¢1(z). All
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we have at our disposal are the injectivity and surjectivity assumptions along with the identities
f =Jo°qo = j1°q1. Since j; is injective, if we can show that jiq1(2) = jogo(z), then we will have
q1(z) = q1(x) as desired. But

ji(z) = f(2) = Jog(z) = Joly) = Joq(r) = f(z) = hiqa()

so we do have the necessary identity ¢1(z) = ¢1(x). Therefore we have defined a mapping H : Cy —
C4 such that Heqy = q;.

We now need to show that H is bijective. Suppose that H(y) = H(y’) and choose z,z’ so that
y = qo(x) and y' = go(z’). We then have

Jo(y) = Jowo(z) = f(x) = jig(z) = H1H(y)

Joy) = Joq(a") = f(&") = ha@) = HH®Y)
and since H(y) = H(y’) it follows that the expressions on both lines are equal, so that jo(y) = jo(y').
Since jo is injective, this implies y = 3’ and hence H is injective. To show that H is surjective,
express a typical element z € C; as ¢i(z) for some z; then if y = go(x) we have z = H(y). This
completes the proof that H is bijective.
All that remains is to show that H is unique. Suppose that K : Cy — (4 also satisfies
Keqy=q. Then if y € Cy and y = qo(x) we have

K(y) = Keq(z) = q(z) = He°gl(z) = H(y)

and hence K = H, proving uniqueness.n



IV.5: Constructions involving functions

FExercises to work

1. Suppose that we are given an arbitrary function g : A — E x F such that

gla) = (u(a), v(a))

for some functions u: A — E and v: A — F. For each (e, f) € E x F we then have g(a) = (e, f)
if and only if u(a) = e and v(a) = f.

Let us apply this to the situation in the problem: Since p;(z) = d is equivalent to saying that
x lies in the equivalence class d, it follows that g(x) = (e, f) if and only if = € e and x € f, which
is equivalent to saying that x € e N f.m

2. Once again, follow the hints for each part.

The correspondence (B X C)A —— B4 x CA. As in the hint let p and ¢ be the coordinate
projections from B x C' to B and C respectively. Given f : A — B x C, one has the associated
pair (pef,q°f) € B4 x C4. This mapping is onto because one can use functions u : A — B and
v: A — C to define a function f(a) = (u(a), v(a)), and it is 1-1 because pf’ = pf and qf’ = qf
imply that the first and second coordinates of f(a) and f’(a) are equal for all am so that f and f’
are the same function.s

The correspondence (CB )A —— CB*A_ The hint outlines definitions of mappings
BxA B\4 B\4 BxA
. C — (C ) v (C ) - C

that will be repeated in the argument. Given f : B x A — C, let I be its graph viewed as a subset
of B x A x C, and for each a € A let Iy, be given by taking the intersection

I'NnBx{a} xC

and projecting it down to B x C under the standard projection map B x {a} x C'— B x C which
forgets the middle coordinate. We claim there is a unique function g, : B — C' whose graph is
equal to I'(a); this amounts to checking that I'(a) is actually the graph of a function from B to C.
Suppose we are given b € B. Then there is a unique ¢ € C, namely f(b,a), such that (b,a,c) € T,
and for this choice of ¢ we also have (b,c¢) € T'(a). Suppose now that (b,¢’) € I'(a). Then by
definition we have (b,a,c’) € T', which means that ¢ = ¢/ and hence yields the required uniqueness
statement. Therefore we have constructed a mapping ® of the type described above.

To construct a map in the opposite direction, if we are given g € (C’B )A, then for each a € A
we have a function g(a) : B — C. Let I'(a) be the graph of g(a), and I" be the set of all ordered
triples (b, a, ¢) such that (b, ¢) lies in I'(a). We claim that T is the graph of a function from B x A to
C'. Given (b,a) € B x A we need to show there is a unique ¢ such that (b, a,c) € T'. Existence follows
because we can take ¢ = [g(a)](b). To see uniqueness, note that (b, a,c’) € T implies (b,¢’) € Ty, so
that ¢’ = [g(a)](b). Thus we have the map ¥ as required.

Finally, to show there are 1-1 correspondences it is enough to verify that ¥ e®(f) = f for all
f and ®°¥(g) = g for all g. These follow because our constructions have the property that I is
the set of all (b, a,c) such that (b,c) € I'(a).n

IV.6: Order types
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FEzxercises to work

1. Define f : [0,1) U (2,3) — [0,2) by f(z) =z ifz < 1land f(z) =2 —1if 2 > 2. We
claim f is strictly increasing (hence is 1-1), and we shall do this by considering several . separate
cases. Suppose we have u < v. (1) If v < 1 then f(u) =u <v = f(v). (2) fu<1<2<wvthen
flwu=u<l<v—1=fw). 3) If2<wthen flu)=u—1<v—1= f(v).

To complete the proof it is enough to show f is onto. This is straightforward: If y < 1 then
y = f(y), while if y > 2 then f(y+1) =y.m=

2. The interval [0, 2] has the self-density property: If u < v then there is some w such that
u < w < v. On the other hand, [0, 1] U [2, 3] does not because there is no w in this set such that
1 < w < 2 (it lies in the reals, where such a w exists, but we are only interested in elements of the
given partially ordered set here and not in any larger partially ordered set that might contain it).
Since one partially ordered set has the self-density property but the other does not, they cannot
have the same order type.m

3. Write X = P(A), where A is an infinite set, and let « € A. Then X does not have the
self-density property because there is no subset B C A strictly between () and {a}.

Turning to Y, suppose we have polynomials f and g such that f < g. Before going further,
we should stress what this means: We have f(z) < g(z) for all real = and there is some ¢ such that
f(e) < g(c); in particular, it does NOT mean that f(z) < g(x) for all z.

In any case let D = g — f so that h > 0, and consider h = f + %D. Then direct computation
shows have f < h < g (i.e., f(x) < h(z) < g(z) for all z) and f(c) < h(c) < g(c), so that
f<h<gn

4. A positive integer d divides 28 if and only if it has the form d = 227® where a and b are
integers satisfying 0 < a <2 and 0 < b < 1, and likewise a positive integer e divides 45 if and only
if it has the form 3 = 395 where a and b are integers satsifying 0 < a <2 and 0 < b < 1. If we
define a mapping from D(28) to D(45) taking d = 27° to e = 3%5°, then this will be the required
order-isomorphism (we shall not check the details explicitly here),

On the other hand, in the notes we noted that D(15) is a partially ordered set with 4 elements
that is not linearly ordered, and the set D(8) is the linearly ordered set consisting of 1, 2, 4 and
8 (where the divisibility ordering agrees with the usual ordering!). In particular, D(8) also has
four elements. However, since D(8) is linearly ordered but D(15) is not, it follows that these two
partially ordered sets cannot have the same order type.m

5. As noted in the hint, for each x € N the set of all y such that y < x is finite, for it is
just {1,2,...,2 — 1}. On the other hand, the set of all elements of N x N (with the lexicographic
ordering) that precede (1,0) is the infinite set of all ordered pairs of the form (0, k) where k can be
any nonnegative integer. Thus one of the linearly ordered sets under consideration has the property

for each element a the set elements x for which © < a is finite

while the other does not, and consequently they cannot have the same order type.m



