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The purpose of this note is to describe a result from geometric topology which is well-known
to workers in the area but difficult to locate in the literature. Our discussion will be somewhat
informal, the goal being mainly to explain how the result can be extracted from the literature.

Question. Suppose we have a smooth manifold N n and a topological submanifold Mm ⊂ Nn,
where m < n. Can one describe necessary and sufficient conditions under which M m can be
approximated (within its homeomorphism type) by a smooth submanifold of N n?

The main result on this question is essentially answered by the work of R. Kirby and L. Sieben-
mann on triangulations and smoothings of topological manifolds [ks76]; a corresponding result
for piecewise smooth submanifolds, with no dimensional restrictions, is contained in earlier work
of R. Lashof and M. Rothenberg [LR], and the proof of the result for topological submanifolds
is similar to the argument in [LR]. A discussion of cases not covered by the main result appears
in Section 5.

To simplify the discussion we shall assume that the boundaries of M and N are empty; some
remarks about the bounded case appear at the end of this article.

1. The main result

If Nn is a smooth manifold and Mm is a smooth submanifold (both without boundary), then by
the (smooth) Tubular Neighborhood Theorem (see [Bredon], [Hirsch] or [Lang]), then M m

has a tubular neighborhood given by a vector bundle (i.e., a vector bundle neighborhood).
Specifically, there is an open neighborhood U of M m in Nn and an (n− m)-dimensional vector
bundle ξ over M with total space E(ξ) such that the pair (U,M) is homeomorphic — in fact,
diffeomorphic — to the pair

(

E(ξ), zero section
)

; the total space E(ξ) has a canonical smooth
structure which is determined up to a suitable notion of equivalence by the vector bundle ξ and
the smooth structure on M .

The existence of a topological vector bundle neighborhood implies that the embedding of M in
N is locally flat (see [rushing], p. 33). Since it is possible to construct uncountable families of
inequivalent manifold embeddings for almost all choices of m and n (compare [rushing], Chapter
2), it follows immediately that many topological submanifolds cannot be smoothable.

However, the condition of local flatness by itself is not enough to imply that a submanifold
is smoothable. For example, if Mm is a compact manifold (without boundary) which does not
admit a smooth structure (e.g., the 10-dimensional manifold constructed in [Kervaire]), then one
can construct a locally flat embedding of M n in R

n for n sufficiently large (see [microbundles]
for a strong global version of this result), but the results of [microbundles] show that M m cannot
have a vector bundle neighborhood.

The main result on the question about smoothable submanifolds is essentially a converse to the
smooth Tubular Neighborhood Theorem:
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Theorem 1. Let n,m ≥ 5, let Nn be a smooth n-manifold, and let Mm ⊂ Nn be a topological

m-manifold that is embedded in Nn. Then there is a smooth structure on Mm such that the

inclusion of M in N is isotopic to a smooth embedding if and only if M has a topological vector

bundle neighborhood.

We have already noted that the proof of this result is formally parallel to the earlier result of
Lashof and Rothenberg on smoothing piecewise smooth submanifolds [LR]; the main difference
is that the latter depends crucially on the Cairns-Hirsch smoothability theorem for piecewise
linear manifolds [Hirsch-Mazur], and in the proof of Theorem 1 we shall substitute the Product
Structure Theorem of Kirby and Siebenmann ([ks76], FILL IN) for the Cairns-Hirsch Theorem.

Although local flatness does not in general imply the existence of a vector bundle neighborhood,
such neighborhoods always exist for locally flat submanifolds if n−m ≤ 2 (e.g., see [ks73]), and
thus we have the following conclusion:

Theorem 2. Let k = 1 or 2, let m ≥ 5, let Nm+k be a smooth (n + k)-manifold, and let Mm

be a locally flat m-dimensional submanifold of N m+k. Then there is a smooth structure on Mm

such that the inclusion of M in N is isotopic to a smooth embedding.

In Section 5 we shall give examples to show that Theorem 2 does not extend to cases with
M ≤ 4.

2. Smoothing vector bundles

Although there are many treatments of vector bundles in textbooks andother publications,
such accounts usually emphasize one of two basic categories — the smooth and topological
categories — with very little (if anything) said about the relationship between smooth and
topological vector bundles. Since the proof of Theorem 1 requires an explicitunderstanding of
this relationship, we shall describe the necessary facts here. Unfortunately, even though the
proofs are not particularly difficult, finding them in the literature can be extremely challenging.
Therefore we shall limit ourselves to summarizing the crucial points.

In order to simpify the discussion we shall limit our attention to real vector bundles, but one can
also treat complex vector bundles similarly by substituting C for R (and “unitary” for “orthog-
onal”) throughout; everything also goes through for quaternionic vector bundles, but at some
points one must phrase things more carefully in order to compensate for the noncommutativity
of the quaternions.

COMPARING CATEGORIES OF VECTOR BUNDLES. The classical examples of vector bundles
in differential geometry are tangent bundles and various sorts of tensor bundles over a smooth
manifold, and these are smooth vector bundles, at least if the manifold is smooth of class C 2

(e.g., see [Lang]). Onthe other hand, for manypurposes in topology it is more convenient to
consider continuous and topological vector bundles as in M. F. Atiyah’s classic set of lecture
notes [atiyah]. It is straightforward to check that evey smooth vector bundle has an underlying
topological vector bundle, just as smooth manifolds have underlying topological manifolds. For
our purposes the following converse relationship is fundamentally important:

Theorem 3. Let M be a smooth manifold, and let q be a positive integer.

(i) If ξ is a continuous q-dimensional vector bundle over M , then there is a smooth q-dimensional

vector bundle ξ′ and a vector bundle isomorphism ϕ : ξ ′ → ξ; in other words, if E(ξ ′) and E(ξ)
are the total spaces and pand p′ are the projections, then there is a homeomorphism E(ϕ) :
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E(ξ′) → E(ξ) such that pϕ = p′, and for each x ∈ M the map ϕ defines a vector bundle

isomorphism from the vector space ξ ′x = p′−1[{x}] to ξx = p−1[{x}].
(ii) If ξ and ξ′ are smooth q-dimensional vector bundles over M and ϕ : ξ ′ → ξ is a continuous

vector bundle isomorphism, then ϕ is isotopic to a smooth vector bundle isomorphism; in other

words, there is a homotopy Φ : E(ξ ′)× [0, 1] → E(ξ) such that Φ|E ×{0} is given by ϕ, for each

{t} the map Φ|E × {t} is a vector bundle isomorphism, and Φ|E × {1} is a diffeomorphism.

VECTOR BUNDLES AND PRINCIPAL BUNDLES. In both the smooth and topological categories,
there is a 1–1 correspondence between isomorphism classes of q-dimensional (real) vector bundles
over a given base B and principal GL(q, R)-bundles over B. Given a vector bundle p : E → B,
the corresponding GL(q, R)-bundle is called the bundle of q-frames, and it consists of all
ordered q-tuples (v1, · · · ,vq) where vj ∈ E for all j such that the following hold:

(i) p(v1) = · · · p(vq) (call this common point b).
(ii) In the vector space p−1[{b}], the vectors v1, · · · ,vq are linearly independent and hence
form a basis for the given vector space.

Conversely, if we start with a principal GL(q, R)-bundle, then the corresponding vector bundle
is merely the associated fiber bundle with fiber R

q, where GL(q, R) acts on R
q in the usual

way by invertible linear transformations. Further details on this correspondence can be found
in Section 4.4 of [jiewu] (in particular, see Proposition 4.11 on page 31).

By the preceding discussion, the proof of Theorem 3 reduces to proving a similar result for
smooth and topological principal GL(n, R)-bundles over a smooth manifold. We shall analyze
this relationship between the two types of bundles using standard results from bundle theory.
The classical formulation of bundle theory in the 1949–1950 Séminaire Henri Cartan [hcartan]
is particularly useful for our purposes.

The next step in the process is to observe that isomorphism classes of principal GL(n, R)-
bundles correspond bijectively to isomorphism classes of principal Oq-bundles, where as usual
Oq ⊂ GL(q, R) is the orthogonal group. Furthermore, if we are given two principal Oq-bundles
and an isomorphism of their extensions to principal GL(q, R)-bundles, then this isomorphism can
be deformed to second isomorphism which is an extension of a principal Oq-bundle isomorphism.

By the discussion thus far, Theorem 3 will be true if we can prove the following more general
result:

Theorem 4. Let M be a smooth manifold, and let G be a compact Lie group.

(i) If ξ is a topological principal G-bundle over M , then there is a smooth principal G-bundle

bundle ξ′ and a principal bundle isomorphism ϕ : ξ ′ → ξ; in other words, if E(ξ ′) and E(ξ) are

the total spaces and pand p′ are the projections, then there is a homeomorphism E(ϕ) : E(ξ ′) →
E(ξ) such that pϕ = p′, and for each x ∈ M the map ϕ defines a G-equivariant bijection from

the fiber ξ′x = p′−1[{x}] to ξx = p−1[{x}].
(ii) If ξ and ξ′ are smooth principal G-bundles bundles over M and ϕ : ξ ′ → ξ is a continuous

principal bundle isomorphism, then ϕ is isotopic to a smooth principal bundle isomorphism;

in other words, there is a homotopy Φ : E(ξ ′) × [0, 1] → E(ξ) such that Φ|E × {0} is given

by ϕ, for each {t} the map Φ|E × {t} is a principal bundle isomorphism, and Φ|E × {1} is a

diffeomorphism.

Sketch of proof. Given a compact Lie group G and a positive integer n, one has the usual sort
of n-universal principal G-bundle pn : En → Bn such that if Mm is a manifold whose dimension
m is sufficiently small with respect to m, then principal G-bundles over M are classified up
to isomorphism by homotopy classes of maps from M into Bn. A closer examination of the
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construction in [hcartan] yields two stronger conclusions. First, an isomorphism of principal
G-bundles over M determines a homotopy of classifying maps. Second, an isotopy of principal
G-bundle isomorphisms determines a homotopy of homotopies of classifying maps.

The assertions in the previous paragraph are true for both the topological and smooth categories.
In order to check this for the smooth category, it is necessary to find an n-universal principal
G-bundle which is smooth. However, thes can be done fairly directly as in Steenrod’s book: For
each compact Lie group G there is a smooth injective homomorphism G → Op for some p > 0,
and one can then take the n-universal bundle to be the smooth principal bundle

G −→ On+p+1/On+1 −→ On+p+1/On+1 × G

where the first arrow represents the composite

G → Op → On+1 × Op → On+1+p → On+p+1/On+1 .

To prove the theorem, take a topological principal bundle ξ over M , and choose a continuous
mapping f from M to the base space of a smooth n-universal bundle Bn, where n > m such
that ξ is isomorphic to the pullback of the universal bundle γ via f . Standard results on smooth
approximations to continuous functions (e.g., see [munkresamstudy]) show that f is homotopic
to a smooth map f1. By construction the pullback bundle f ∗

1 γ is a smooth bundle, and as noted
before the homotopy from f to f1 defines a topological principal bundle isomorphism from
ξ ∼= f∗γ to f∗

1 γ. This proves the first part. To prove the second part, note that in this case the
topological isomorphism of smooth principal bundles from ξ1

∼= f∗

1 γ and and ξ2
∼= f∗

2 γ (where
fi is smooth) will determine a continuous homotopy H : M × [0, 1] → Bn from the smooth map
f1 to the smooth map f2. Constructing the desired isotopy amounts to constructing a relative
homotopy K : M × [0, 1] × [0, 1] from H to a smooth homotopy H ′ such that the homotopy
is fixed on M × {0, 1} × [0, 1]; such a relative homotopy will define a relative isotopy from the
original continuous isomorphism of principal bundles to a smooth isomorphism. In this case,
the existence of a suitable relative homotopy follows from a relative version of the results on
approximating continuous mappings by smooth ones.

This completes the proofs of Theorems 3 and 4. In particular, these results have the following
important consequence that we shall need n the next section:

Theorem 5. Let M be a smooth manifold, let q be a positive integer, and let ξ be a continuous

q-dimensional vector bundle over M . Then there is a canonical smooth structure on the total

space E(ξ) such that the embedding of the zero section is a smooth embedding.

3. Proof of the main results

We have noted that Theorem 2 follows from Theorem 1 and the result of Kirby-Siebenmann,
so we shall concentrate on the proof of Theorem 1. Furthermore, since we know the “only if”
implication is true, it will suffice to restrict our attention to the “if” implication.

Suppose now that we have n > m ≥ 5, and we are given a smooth manifold N n with an embedded
topological submanifold Mm such that M has a topological vector bundle neighborhood. Let ξ
be the vector bundle such that M has an open neighborhood U in N which is homeomorphic
to E(ξ) with M corresponding to the zero section. The smooth structure on N determines a
smooth structure on U and hence on E(ξ). Let p : E(ξ) → M be the projection map.



5

The next step in the proof is to show that M is smoothable, and the argument closely resembles
the corresponding part of [LR]. We know that for some positive integer p there is a p-dimensional
inverse vector bundle ωp over M such that the Whitney sum ξ ⊕ ω is a trivial vector bundle
and hence E(ξ ⊕ ω) ∼= M × R

q+p. For every vector bundle β over M there is a standard vector
bundle identity

E(p∗β) ∼= E(ξ ⊕ β)

and if we apply this to ω we see that E(p∗ω) is homeomorphic to M × R
q+p.

Since we have a smooth structure on E(ξ), the results of the preceding section imply that

E(p∗β) ∼= E(ξ ⊕ β) ∼= M × R
q+p

also has a smooth structure. Since m ≥ 5, we can apply the Product Structure Theorem in
[ks76] (see Theorem 5.1, ?????) to conclude that M is smoothable.


