
This is a draft of some sections for the paper on manifolds with different complete riemannian

metrics of nonnegative sectional curvature which have nondiffeomorphic codimension 2 souls. It is

mainly limited to the input from geometric topology. (RS)

Summary

In the study of existence and classification problems for manifolds generally known as surgery
theory (cf. [Wall book]), there is a fundamentally important fourfold periodicity which corresponds
geometrically to multiplication by the complex plane CP

2. More generally, if m is a positive integer,
then the m-fold iterate of this periodicity corresponds to multiplication by the 2m-dimensional
complex projective space CP

2m. Formally, one may view this as a cancellation principle; namely,
if certain types of objects become equivalent after taking products with CP

2m, then the objects
themselves are equivalent.

It is well known that such cancellation principles fail in many cases (cf. [Kwasik-Schultz 2002]);
in particular, there are manifolds N 7 which are homeomorphic but not diffeomorphic to S7 (i.e.,
exotic spheres) such that N 7×CP

2 is diffeomorphic to S7×CP
2 (for example, see [Browder 1968],

pp. 38–39), and a similar situation holds if 7 is replaced by most integers of the form 4k − 1 ≥ 11
(see the discussion following Corollary Y.2). On the other hand, if we take an exotic 7-sphere which
generates the Kervaire-Milnor group of exotic spheres Θ7

∼= Z28 (see [Kervaire-Milnor]), then we
shall prove the following cancellation theorem.

THEOREM S.1. Let Σ7 be an exotic 7-sphere which generates the Kervaire-Milnor group
Θ7

∼= Z28, and let m ≥ 1 be an arbitrary positive integer. Then Σ7 ×CP
2m is not diffeomorphic to

S7 × CP
2m.

In contrast, as noted in [Browder 1968, Thm. 1.6], if N 7 is an arbitrary exotic 7-sphere and
m is a nonnegative integer, then N 7 × CP

2m+1 is diffeomorphic to S7 × CP
2m+1.

Clearly there are several different choices for the generator of Θ7, but there is a standard
choice which we shall call the standard generator henceforth. Specifically, this exotic sphere
is describable as the boundary of a parallelizable manifold W 8 whose signature is equal to 8 (see
[Browder 1972, Chapter V]). As noted in [Grove-Ziller], this standard generator has a (complete)
riemannian metric with nonnegative sectional curvature. The examples of complete riemannian n-
manifolds which are diffeomorphic but have nondiffeomorphic (n− 2)-dimensional souls will follow
from Theorem 1 and the next result:

THEOREM S.2. Let ω be a nontrivial complex line bundle over CP
q, where q ≥ 1, let E(ω)

be its total space, and let N 7 be an arbitrary exotic 7-sphere. Then N 7 ×E(ω) is diffeomorphic to
S7 ×E(ω).
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If q is odd then this follows because the products of N 7 and S7 are diffeomorphic (see above),
so the main content of this result involves the cases where q is odd.

We shall prove Theorems 1 and 2 using surgery-theoretic methods, and the Sullivan-Wall
exact sequence for the set of homotopy structures Ss(S7 × CP

2m) (e.g., see Chapter 10 of [Wall
book]), will play a central role. If N 7 is a closed oriented smooth manifold and h : N 7 → S7

is an orientation-preserving homotopy equivalence, then the product map h × id(CP
2m) defines

a class in the structure set, and N 7 × CP
2m is diffeomorphic to S7 × CP

2m if and only if this
class is equal to a class determined by a homotopy self-equivalence of S7 × CP

2m (see Section
H). Therefore we need to analyze the group E(S7 × CP

2m) of homotopy classes of homotopy self-
equivalences of S7 × CP

2m and determine where such classes lie in the structure set. There is a
fundamentally important map on a structure set, known as the normal invariant, which takes values
in a homotopy-theoretic object, and in general this invariant partially measures the extent to which
a homotopy structure is nontrivial. For the manifolds S7 ×CP

2m, we shall prove that a homotopy
self-equivalence determines the trivial element of the structure set if and only if its normal invariant
is zero. The proof of Theorem S.1 will essentially follow from this and a result of L. Taylor [Taylor]
which gives a lower estimate on the number of homotopy structures whose normal invariants are
nontrivial. Theorem S.2 follows from a different sort of surgery-theoretic argument which involves
the Sullivan-Wall surgery exact sequence for manifolds with boundary.

If we specialize to the case m = 1 we can obtain more complete information. Following standard
notation, we shall say that two compact smooth manifolds M n and Nn are (stably) tangentially
homotopy equivalent if there is a homotopy equivalence h : M → N such that the tangent bundles
τM and τN satisfy the pullback condition h∗(τN⊕R

k) ∼= τM⊕R
k for some k ≥ 0. Similar definitions

can be formulated for piecewise linear and topological manifolds. The methods of surgery theory
are adapted to treat tangentially homotopically equivalent manifolds in [Madsen-Taylor-Williams]
(see Section A below).

PROPOSITION S.3. Let M 11 be a smooth manifold which is tangentially homotopy equivalent
to S7 × CP

2. Then M is diffeomorphic to exactly one of the manifolds S7 × CP
2, Σ7 × CP

2, or
(#2Σ7)×CP

2, where Σ7 is the exotic sphere described above and #2P denotes the connected sum
of a manifold P with itself.

The proof of Proposition S.3 is similar to the proof of Theorem S.1; one needs a refinement
of the main result in [Taylor] for S7 × CP

2, and we shall do this using the approach to proving
Taylor’s result in [RS 1987].

Proposition S.3 has a curious implication for the following problem:

Question. Suppose that E is a complete riemannian manifold with nonnegative sectional curvature
whose soul is diffeomorphic to M , and suppose that N is another compact manifold which can be
realized as the soul of such a riemannian metric on N . How are M and N related?

In general, it is clear that M and N must be homotopy equivalent, and if the codimension
dimE − dimM is equal to 2, then it is fairly straightforward to show that M and N must be
tangentially homotopy equivalent (see [Madsen-Taylor-Williams] and Section A for more on this
notion). On the other hand, this condition is far from sufficient, for it is not difficult to construct
examples of tangentially homotopically equivalent manifolds M = Sk × CP

q and N such that for
all complex line bundles α, β over these manifolds with corresponding Chern classes, the smooth
total spaces E(α ↓M) and E(β ↓N) are not diffeomorphic. It is not known when such manifolds
admit riemannian metrics with nonnegative sectional curvature, so these examples do not really
shed any light on positive sectional curvature questions in riemannian geometry. However, if we
combine our preceding results with the nonnegatively curved metrics on exotic spheres constructed
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by K. Grove and W. Ziller [Grove-Ziller], we obtain the following answer to the stated question
when M = S7 × CP

2:

THEOREM S.4. Let M 11 be a smooth manifold which is homotopy equivalent to S7 × CP
2,

let ω be a nontrivial complex line bundle over CP
2, and let E(ω) be its total space. Then M is

diffeomorphic to the soul of a complete nonnegatively curved riemannian metric on S 7 × E(ω) if
and only if M is tangentially homotopy equivalent to S7 × CP

2.

Theorem S.1 also yields the following extension of a main result in [RS 1987].

THEOREM S.5. Let Σ be the standard generator of Θ7, and let k ≥ 1 be odd. Then there is
no smooth semifree S1-action on a homotopy (2k+ 7)-sphere whose fixed point set is diffeomorphic
to Σ.

The corresponding result for k ≥ 5 is established in [RS 1987, Theorem III]; as noted in that
paper and [Browder 1968], one can always realize Σ as a fixed point set of a smooth semifree S 1-
action on a homotopy (2k + 7)-sphere if k ≥ 2 is even. When k = 1 the conclusion is a special case
of a result due to Wu-yi Hsiang [Hsiang].

Proof of Theorem S.5. As in [RS 1987] and [Browder 1968], the result will follow if we know
that Σ7×CP

k−1 is not diffeomorphic to S7×CP
k−1 for all odd integers k ≥ 3. But this is precisely

the conclusion of Theorem S.1.

REMARK. Since arbitrary products of suitable exotic 7-spheres and complex projective spaces
have metrics with nonnegative sectional curvature, it is natural to ask whether the products of
the total spaces E(ω) with nonnegatively curved exotic 7-spheres or even-dimensional complex
projective spaces yield further examples of complete nonnegatively curved manifolds with nondif-
feomorphic souls. The answer is negative if one takes a product with an exotic 7-sphere because it
is well-known that the product of two such manifolds is diffeomorphic to S7 × S7; more generally,
product formulas for surgery obstructions imply that if the exotic sphere Σ4r−1 bounds a paral-
lelizable manifold and W is an odd-dimensional closed simply connected manifold, then Σ4r−1×W
is diffeomorphic to S4r−1 ×W . However, if one take a product with an even-dimensional complex
projective space, it is not at all clear what happens. Attacking this problem would require an
analysis of the homotopy self-equivalences of S7 × CP

2m × CP
2n corresponding to the study of

homotopy self-equivalences of S7 × CP
2m in this paper.

On a more positive note, one can use the examples of this paper to obtain further examples by
taking products with the r-torus T r, where r ≥ 1 is arbitrary. This is true because the vanishing
of the Whitehead groups of Wh(Zr) implies the following fact: The products of two closed simply
connected manifolds Mn and Nn (n ≥ 5) with T r are diffeomorphic if and only if M and N are
diffeomorphic (see [RS 1971] for the case where M and N are homotopy spheres).
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Homotopy self-equivalences of products

Although surgery theory in principle yields a diffeomorphism classification for manifolds with
a fixed homotopy type, it does so in a slightly indirect manner which is often marginalized in
the literature. Since the explicit classification statements are indispensable for our purposes, we
shall summarize what is needed and discuss the importance of homotopy self-equivalences in the
classification theory. Background references are Wall’s book [Wall book] and the anthology of
papers on the Hauptvermutung [Ranicki 1995].

Suppose that Mn is a compact smooth manifold, with or without boundary, and assume both
M and ∂M are connected. A simple homotopy structure on M is a pair (N, f) consisting of
a compact smooth manifold N and a simple homotopy equivalence of manifolds with boundary (in
other words, a homotopy equivalence of pairs). Two such structures (N0, f0) and (N1, f1) are said
to be equivalent if and only if there is a diffeomorphism h : N0 → N1 such that f1

oh ' f0, where
again the homotopy is a homotopy of pairs. The set of all such equivalence classes is a pointed set
we shall denote by Ss(M). Its base point is the identity on M , and this pointed set fits into an
exact Sullivan-Wall surgery exact sequence

· · · → LsdimM+1

(
π1(M), π1(∂M), w

)
→ Ss(M) → [M,F/O] → LsdimM

(
π1(M), π1(∂M), w

)

which is described in the given references. Specifically, the map

∆ : LsdimM+1

(
π1(M), π1(∂M), w

)
−→ Ss(M)

comes from an action of the group on the left hand side on Ss(M), and it is called the action of the
Wall group on the base point, the map q from Ss(M) to [M,F/O] is called the normal invariant,
and the map σ from [M,F/O] to LsdimM

(
π1(M), π1(∂M), w

)
is called the surgery obstruction map.

It is important to recognize that σ is not necessarily a homomorphism with respect to the usual
abelian group structures on its domain and codomain.

In order to extract a diffeomorphism classification, we need to take the quotient of this structure
set by an action of the group Es(M,∂M) of simple homotopy self-equivalences of (M,∂M). Most
of the time we shall be working with simply connected objects, and in such cases all homotopy
equivalences are simple, and in such cases we shall write E instead of E s. If (N, f) represents a class
in Ss(M) and h ∈ Es(M,∂M), then the left action of E s(M,∂M) on Ss(M) is given by ordinary
composition of functions:

[h] · [N, f ] = [N,h of ]

For our purposes the crucial point is the need to analyze homotopy self-equivalences of a manifold
M in order to use surgery in determining whether a manifold homotopy equivalent to M is actually
diffeomorphic to M .

Self-equivalences of Sk × CP
q

We shall need some fairly detailed information about homotopy self-equivalences of S 7×CP
2m,

where m ≥ 1. The first few steps are fairly elementary:

PROPOSITION H.1. (i) Let f : Sk ×CP
q → Sk×CP

q be a homotopy self-equivalence, where
q ≥ 1 and k is odd. Then there is a diffeomorphism h : Sk × CP

q → Sk × CP
q such that f and h

induce the same automorphism of H∗(Sk × CP
q; Z).
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(ii) Let f be above, and assume that f induces the identity on H ∗(Sk × CP
q; Z). Let j(Sk) :

Sk → Sk × CP
q and j(CP

q) : CP
q → Sk × CP

q be slice inclusions whose images are subspaces
of the form Sk × {y0} and {x0} × CP

q respectively, and let let π(Sk) : Sk × CP
q → Sk and

π(CP
q) : Sk × CP

q → CP
q denote projections onto the respective factors. Then the composites

π(Sk) of oj(Sk) and π(CP
q) of oj(CP

q) are homotopic to the corresponding identity mappings.

Proof. (i) Cup product considerations imply that the induced cohomology automorphism f ∗ of
H∗(Sk × CP

q; Z) is completely determined by its behavior on the generators in dimensions 2 and
k, and it must be multiplication by ± 1 in each case. If χ is the conjugation involution on CP

q,
then id(Sk) × χ is multiplication by +1 on the k-dimensional generator and multiplication by −1
on the 2-dimensional generator, while if ϕ is reflection about a standard (k− 1)- sphere in S k then
ϕ × id(CP

q) is multiplication by −1 on the k-dimensional generator and multiplication by +1 on
the 2-dimensional generator. Finally, the product of these maps is multiplication by −1 on both
generators. Thus every automorphism of H∗(Sk×CP

q; Z) is in fact induced by a diffeomorphism.

Proof of (ii). The composite self-map of Sk induces the identity in cohomology and hence is
homotopic to the identity; similarly, the composite self-map of CP

q also induces the identity in
cohomology, and a simple obstruction-theoretic argument shows that this composite must also
be homotopic to the identity (the restrictions to CP

1 are homotopic by the cohomological condi-
tion, and the obstructions to extending this to a homotopy of the original maps lie in the groups
H2i

(
CP

q,CP
1;π2i(CP

q)
)
, which are all trivial).

The next step in analyzing the homotopy self-equivalences of S7 ×CP
q can be done in a fairly

general context. In the discussion below, X and Y will denote arcwise connected finite complexes
with base points x0 and y0 respectively. If T is an arbitrary compact T2 space, then E(T ) will
denote the group of all homotopy classes of homotopy self-equivalences of T , and E1(T ) will denote
the arc component of the identity in the topological monoid of all self-maps of T (with the compact-
open topology). If T is homeomorphic to a finite connected simplicial complex, then E1(T ) has
the homotopy type of a CW complex by a result of Milnor [Milnor 1959], and by a result of M.
Sugawara [Sugawara] there is an inverse-up-to-homotopy map ρ : E1(T ) → E1(T ) such that the
self-maps of E1(T ) given by c1(f) = ρ(f) of and c2(f) = f oρ(f) are homotopic to the constant
map on E1(T ) whose value is 1T .

As in Proposition 1, we define slice inclusions i(X), i(Y ) : X,Y → X × Y and projections
p(X), p(Y ) : X × Y → X,Y by the standard formulas.

A factorization principle

As suggested in the title of this section, we are interested in self-equivalence groups of the form
E(X×Y ), and especially in the subset E ′(X×Y ) of all classes [f ] such that p(X) of oj(X) ' id(X)
and p(Y ) of oj(Y ) ' id(Y ). If T = X and Y have torsion free integral cohomology and satisfy the
condition

if g is a continuous self-map of T such that the induced map g∗ in cohomology
is the identity, then g is homotopic to the identity,

then E ′(X×Y ) is the normal subgroup of E(X×Y ) of all homotopy self-equivalences which induce
the identity on integral cohomology; in particular, this holds if X is a sphere and Y is either a
sphere or a complex or quaternionic projective space, and therefore E ′(X×Y ) is a normal subgroup
in the cases of interest to us.
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Regardless of whether or not E ′(X × Y ) is a subgroup of E(X × Y ), there are two impor-
tant subsets of E ′(X × Y ) that are subgroups. One of these is the image of a homomorphism
[X,E1(Y )] → E ′(X × Y ) defined as follows: Given a class in [X,E1(Y )], choose a base point pre-
serving representative g : X → E1(Y ); then the adjoint or exponential isomorphism for function
spaces

F
(
A, (B,C)

)
∼= F

(
A×B,C)

(where denotes the continuous function space with the compact open topology and A,B,C are
compact T2 spaces) implies that g is adjoint to a continuous map g# : X×Y → Y whose restriction
to {x0} × Y is the identity; furthermore, if g′ is homotopic to g then g′# is homotopic to g#. The
class αX([g]) is defined to be the class of the homotopy self-equivalence G such that p(Y ) oG = g#
and p(X) oG = p(X). This class lies in E ′(X × Y ) because (i) the assumption that g is base point
preserving implies that p(Y ) oG oj(Y ) = g# oj(Y ) = id(Y ), (ii) we also have p(X) oG oj(X) =
p(X) oj(X) = id(X). Basic properties of adjoints imply that αX is a well-defined homomorphism,
and therefore its image is a subgroup of E ′(X × Y ). Similar considerations apply if we interchange
the roles of X and Y , and this yields a second homomorphism αY : [Y,E1(X)] → E ′(X × Y ).

PROPOSITION H.2. If E ′(X×Y ) is a subgroup of E(X×Y ), then every element in E ′(X×Y )
can be expressed as a product αY (v)αX(u) for suitable u ∈ [X,E1(Y )] and v ∈ [Y,E1(X)].

Since X×Y and Y ×X are canonically homeomorphic, it also follows that classes in E ′(X×Y )
can be expressed as composites of the form αX(u′)αY (v′) for suitable u′ and v′.

Special cases of Proposition 2 are well-documented in the literature (cf. [Levine 1969]).

Proof. Suppose that f represents an element of E ′(X ×Y ), and let g0 = p(Y ) of . By assumption
g0|{x0} × Y is homotopic to the identity, and therefore by the Homotopy Extension Property we
can deform g0 to a map g1 such that g1|{x0} × Y is the identity. Let g : X → F(Y, Y ) be adjoint
to g1; since g(x0) = idY and X is arcwise connected, it follows that the image of g is contained in
E1(Y ), and by an abuse of language we shall use g to denote the associated base point preserving
map from X to E1(Y ).

Let h = ρ(g), where ρ is an inverse-up-to-homotopy in E1(Y ), let h# : X × Y → Y be the
adjoint map, let H be the representative for αX

(
[h]

)
with p(Y ) oH = h# and p(X) oH = p(X).

Then the basic properties of the exponential/adjoint function space homeomorphism

F
(
X, F(Y, Y )

)
= F(X × Y, Y )

imply that g1 oH : X × Y → Y is adjoint to

µ
(
g, h

)
= µ

(
g, ρ(g)

)

where µ : F(Y, Y ) × F(Y, Y ) → F(Y, Y ) is the (continuous) composition mapping. Since the map
sending ϕ to ϕ oρ(ϕ) from E1(X) to itself is nullhomotopic, it follows that g1

oH is homotopic to
homotopic to the adjoint of the constant map with value idY . Now the adjoint of this constant
map is the coordinate projection p(Y ), and therefore we see that

p(Y ) of oH = g0 oH ' g1 oH ' p(Y ) .

This means that f oH is represented by a homotopy equivalence K in the image of αY , so that the
homotopy class [f ] of f satisfies [f ] = [K] o [H]−1, where [K] lies in the image of αY and [H]−1 lies
in the image of αX .
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Homotopy groups of equivariant function spaces

Let G be a compact Lie group which is either abelian or finite for the sake of simplicity, and
let V be a finite dimensional orthogonal representation of G such that G acts freely away from the
origin (i.e., a free G-module). Following [BeS], we shall denote the unit sphere of V by S(V ), and
we shall let FG(V ) denote the space of G-equivariant self-maps of S(V ) with the compact-open
topology; when it is necessary to take a basepoint, the default choice will be the identity. As noted
in [RS 1973] and [BeS], if W is another free G-module, then there is a stabilization homomorphism
from FG(V ) to FG(W ), and the infinite stabilization will be denoted by FG. The main results of
[BeS] yield an isomorphism from FG to the free infinite loop space Q

(
SdBG+

)
, where Q(X) is the

limit of the iterated loop spaces ΩkSk(X), the dimension of G is equal to d, the r-fold (reduced)
suspension functor is denoted by Sr, and X+ denotes the disjoint union of X and a point.

Results of I. M. James [James 1963] yield a close relationship between the homotopy groups
of the space E1(CP

q) which arose previously and the homotopy groups of FS1(Cq+1), where q ≥ 2.
There is an obvious continuous homomorphism from FS1(Cq+1) to E1(CP

q) given by passage
to quotients, and the results of [James 1963] show that this map induces isomorphisms from
πk

(
FS1(Cq+1)

)
to πk (E1(CP

q) ) for all k ≥ 2 (it is not difficult to compute the fundamental
groups in both cases, but this is not needed for our purposes). This will allow us to use the meth-
ods and results of [RS 1973] and [BeS] in studying πk (E1(CP

q) ) for k ≥ 2. The main tools will
be the homotopy spectral sequences described in [RS 1973, Sections 1 and 5] and the relations
among them. These spectral sequences arise from the long exact homotopy sequences associated to
standard filtrations of function spaces and certain classical Lie groups. In the case of FS1(Cq+1),

the filtration is given by the submonoids Filt(2p−1) = Filt(2p) of functions whose restrictions to the
standard subspheres S2q−2p+1 ⊂ S2q+1 are the standard inclusions, where 0 ≤ p ≤ q; by conven-
tion, the submonoid of filtration 2q + 1 is the entire space. For the group Uq+1, a similar filtration
is given by the standardly embedded unitary groups Up+1, where p runs through the same set of
values. There is an obvious inclusion of Uq+1 in FS1(Cq+1) which is compatible with these filtra-
tions, and the results of [RS 1973, Section 5] relate the spectral sequences for the homotopy groups
of these spaces. Other results in [RS 1973] describe spectral sequence mappings corresponding to
the stabilization maps FS1(Cq+1) ⊂ FS1(Cq+2) given by taking double suspensions. In all cases,

the terms E1
s,t are the relative homotopy groups πs+t(Filt(s),Filt(s−1)), and the latter turn out to

be canonically isomorphic to certain homotopy groups of spheres.

Some of our computations could be done more efficiently if we used relationships between these
spectral sequences and others which follow from [BeS], but we shall work entirely with the spectral
sequences of [RS 1973] to avoid additional digressions.

One important step in [RS 1987, Section 4] was the computation of π7

(
F 1
S(Cq)

)
where q ≥ 4.

This homotopy group was shown to be isomorphic to Z ⊕ Z2, where the infinite cyclic sum-
mand corresponds to the image of π7(Uq+1) ∼= Z. We shall need the corresponding description
of π7

(
F 1
S(C3)

)
; as we shall see, there are both similarities and differences between this group and

the stable groups where q ≥ 4.

NOTATION. The spectral sequences for the homotopy groups of the unitary group Uq+1 which
appear in [RS 1973, Theorem 5.2] will be denoted by Er

s,t(Uq+1), and the previously discussed

spectral sequences for the homotopy groups of the spaces FS1(Cq+1) (which are called GCq+1 in
[RS 1973]) will will be denoted by Ers,t(GCq+1); we are using the notation GCq+1 for the equivariant

function space instead of FS1(Cq+1) in order to simplify the notation in the next two results.
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We shall begin with a list of formulas for differentials in some of these spectral sequences. All
notation for elements in the homotopy groups of spheres is the same as in Toda’s book [Toda].

PROPOSITION C.1. In the preceding spectral sequences, one has the following differentials:

(1) The differential d2
5,0(U3) : π5(S5) = Z → π4(S3) = Z2 sends the generator of the domain

to the generator of the codomain (which is the Hopf map η4 : S4 → S3).

(2) The differential d2
5,0(GC3) : π5(S5) = Z → π6(S5) = Z2 sends the generator of the domain

to the generator of the codomain (which is the Hopf map η6 : S6 → S5).

(3) The differential d2
5,0(GC3) : π7(S5) = Z2 → π8(S5) = Z24 sends the generator of the

domain to the unique element in of the codomain of order 2. In particular, this differential
is injective.

(4) For each q ≥ 3, the generator of E2
1,6(GCq+1) = Z2 is a permanent cycle, and the associ-

ated class in π7 (FS1 ) is the unique element of order 2 in the latter.

Proof(s). The validity of (1) follows because this is the only choice of differential which is
compatible with the fact that π4(U3) = 0, and (2) then follows because the map from π4(S3) =
E2

3,1(U3) to π6(S5) = E2
3,1(GC3) is given by double suspension [RS 1973, Thm. 5.2, p. 70], and

this map is bijective [Toda, Proposition 5.1, p. 39]. Formula (3) now follows because π7(S5) is
generated by the square of the Hopf map from S7 to S5 [Toda, Proposition 5.2, p. 42]; this means
we can use the composition operations in the spectral sequence (see [RS 1973, Prop. 1.4, p. 54]
to show that the image of the generator in E2

5,2(GC3) = π7(S5) maps to the composition cube of
the Hopf map in E2

3,3(GC3) = π8(S5), and this maps onto the unique element of order two by the

Toda formula η3 = 4ν (see [Toda, formula (5.5), p. 42; here ν ∈ πS
3 is the stabilized Hopf map).

For the sake of brevity, we shall use some computations from [RS 1987, Section 4] to verify
(4). We start with the case q ≥ 3. First of all, the stabilization maps for spectral sequences from
[RS 1973, Theorem 3.2, p. 64] imply that all of the differentials d2

5,0(GCq) : π2q+1(S2q+1) =
Z → π2q+2(S2q+1) = Z2 must be nontrivial, and likewise for the differentials d2

5,0(GCq+1) :
π2q+3(S2q+1) = Z2 → π2q+4(S2q+1) = Z24. It follows that if q ≥ 4 then E∞

s,7−s(GCq+1) is triv-
ial unless s = 1 or s = 7, and the group E∞

7,0(GCq+1) = Z is isomorphic to E∞
7,0(Uq+1) = Z.

Furthermore, since E2
1,6 = Z2, it follows that if E∞

1,6 = 0 then the canonical map from π7(Uq) to

π7

(
FS1(Cq+1)

)
is an isomorphism; the results of [RS 1987] show this is false, and therefore we

must have E2
1,6 = E∞

1,6 = Z2. Furthermore, the nonzero class in the latter generates the torsion
subgroup. This completes the argument for q ≥ 3. To recover the case q = 2, it suffices to note that
the stabilization map from π11(S5) to πS

6 is bijective (see [Toda, Prop. 5.11, p. 46]), and therefore
the mapping properties of spectral sequences imply that E2

1,6 = E∞
1,6 also holds in this case.

Our computation for π7

(
FS1(C3)

)
is less complete than the result in the stable case, but it

will suffice for our purposes.

PROPOSITION C.2. The group π7

(
FS1(C3)

)
is finite, its image in π7(FS1) is the torsion

subgroup of the latter, and the kernel of the stabilization homomorphism from π7

(
FS1(C3)

)
to

π7(FS1) is of order at most 2.

Proof. We know that E∞
s,7−s(GC3) = 0 if s 6= 1, 3 and E∞

1,6 = Z2, where the latter maps stably
into π7(FS1). Therefore the only uncertainty involves the group E∞

3,4(GC3). The results of [Toda,
Prop. 5.8, p. 43] imply that the latter equals Z2 and that E∞

3,4(GCq+1) = 0 for q ≥ 3. This means
that any nonzero element of E∞

3,4(GC3) would correspond to an element of E∞
1,6(GCq+1) = Z2 for all

q ≥ 3. On the other hand, we know that the groups E∞
1,6(GCq+1) = Z2 map isomorphically under

stabilization for all q ≥ 2, and therefore it follows that if there is a nonzero class in E∞
3,4(GC3), then
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there is also a class of this type which represents a stably trivial element of π7

(
FS1(C3)

)
. The

bound on the order of the stabilization homomorphism now follows from the preceding estimates
for the groups E∞

s,t(GC3) when s > 1.
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Tangential structure sets

For our purposes it is useful to consider a well-known variant of the ordinary surgery exact
sequence for tangential homotopy equivalences [Madsen-Taylor-Williams]; a tangential homo-
topy structure on a manifold X is a triple (M,f,Φ) such that (M,f) is a homotopy struc-
ture in the previous sense and Φ is a map of the total spaces of the (stable) tangent bundles
E(τM ⊕ R

k) → E(τX ⊕ R
k) (for some k ≥ 0) such that the following diagram is commutative:

E(τM ⊕ R
k)

Φ
−−−−−→ E(τX ⊕ R

k)
y

y

M
f

−−−−−→ X

The correct equivalence relation for such structures (M,f,Φ) and (N, g,Ψ) is stated in [Madsen-
Taylor-Williams]; informally, one allows stabilization by taking direct sums with trivial bundles,
and one relates the stable tangent bundles of M and N using the vector bundle isomorphism of
tangent spaces T(h) : T(M) → T(N) associated to a diffeomorphism h by taking the derivative
on each fiber. We shall denote the set of equivalence classes of tangential homotopy structures on
M by Ss,t(M); there is a natural map from the latter to Ss(M) obtained by forgetting the bundle
data.

One then has an analog of the surgery exact sequence

· · · → LsdimX+1

(
π1(X), w

)
→ Ss,t(X) → [X,F ] → LsdimX

(
π1(X), w

)

(assuming here that X is has not boundary) in which F is the stabilized monoid limn→∞ Gn+1,
where Gn+1 maps to Gn+2 by taking unreduced suspensions. If M is connected, then by [Wh]
there is an isomorphism of sets

[M,F ] ∼= {M,S0}

where the right hand side is the stable homotopy classes of maps from M into S0, but it is important
to recognize that this map is usually not a homomorphism with respect to the standard algebraic
structures on the domain and codomain. We shall be particularly interested in the map qt :
Ss,t(X) → [X,F ], which is a refinement of the normal invariant and will be denoted by qt. Finally,
there is an expected sort of commutative diagram whose rows are the tangential and ordinary
structure sets, and whose vertical arrows are the corresponding forgetful maps or identities, and
this diagram fits into an interlocking exact sequence associated to homotopy classes of maps from
X to the spaces in the fibration sequence F → F/O → BO; for example, there is an associated
map from [X,O] to Ss,t(X) whose value is given by (X, 1X ,Φ), where Φ is a stable vector bundle
automorphism of X × R

k associated to a class in [X,Ok ] for k sufficiently large, and one has the
following exact sequence:

· · · −→ [M,O] −→ Ss,t(M) −→ Ss(M) −→ [M,BO] ∼= K̃O(M)

Up to a canonical choice of sign, the final map in this exact sequence takes the class represented by
(X, f) to the difference of the stable vector bundles τM and g∗τX , where g is a homotopy inverse
to f .

We shall need to take all of this one step further and consider tangential structure sets on
manifolds with boundary such that the associated map on the boundary is a diffeomorphism; in
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contrast to our default hypotheses, we do not necessarily assume that the boundary is connected.
The relative counterparts of ordinary structure sets are standard constructions, and the analog for
the tangential case fits into the following exact sequence:

· · · → LdimX+1

(
π1(X), w

)
→ Ss,t(X rel ∂X) → [(X/∂X), F ] → LdimX

(
π1(X), w

)

As before, there is an expected sort of commutative diagram whose rows are the tangential and
ordinary structure sets, and whose vertical arrows are the corresponding forgetful maps or identities.
In particular, if Y is a closed manifold then one can consider the bounded product manifolds
(Dk×Y, Sk−1×Y ), and familiar homotopy-theoretic considerations imply that the relative structure
sets

Ss,tk (Y ) := Ss,t(Dk × Y rel Sk−1 × Y )

have group structures (“track addition”), which are abelian if k ≥ 2, and in such cases all the maps
in the relative surgery sequences are group homomorphisms; in fact, one can use “spacification”
techniques as in [Rourke 1968] to show that the surgery sequence comes from the exact homotopy
sequence associated to some fibration.

The preceding machinery is useful in the study of normal invariants a homotopy self-equivalence
of Sk × CP

q which comes from a class α ∈ πk(FS1

(
C
q+1)

)
. Since the associated homotopy self-

equivalences of Sk×CP
q are orbit space maps arising from equivariant homotopy self-equivalences

of Sk×S2q+1, it follows that if f̃ is an equivariant self-map of representing α which projects to f on
Sk×CP

q , then the balanced product construction f̃×S1 id(C) defines a vector bundle isomorphism
of the canonical line bundle on Sk × CP

q which covers f , and since the stable tangent bundle of
CP

q is stably a direct sum of (q+1) copies of the canonical line bundle (e.g., see [Milnor-Stasheff]),
it follows that we obtain an explicit tangential homotopy structure on Sk ×CP

q which refines the
ordinary homotopy structure (Sk × CP

q, f). As in [RS 1978] this passes to a homomorphism

ψ : πk
(
FS1(Cq+1)

)
−→ Ss,tk (CP

q+1)

and we can compose this with the refined normal invariant mapping into

[
(Dk × CP

q/Sk−1 × CP
q, F

]
∼= {SkCP

q
+, S

0} ;

by standard homotopy-theoretic considerations, the displayed map is actually an isomorphism of
groups when k ≥ 1.

PROPOSITION A.1. In the preceding setting, suppose that k + 2q ≡ 3 mod 4 and we are
given a homotopy self-equivalence f of Sk × CP

q which comes from an equivariant homotopy self-
equivalence of Sk×S2q+1 defined by an element α of finite order in the group πk

(
FS1(Cq+1)

)
, and

assume that the refined normal invariant of f in {SkCP
q
+, S

0} is trivial. Then f is homotopic to a
diffeomorphism.

In general, if we are given a homotopy self-equivalence f of a manifold X which is normally
cobordant to the identity (compare [Cappell-Shaneson], [Kwasik-Schultz 1989, 1995], [Masuda-
Schultz]), it is very difficult to determine whether f is homotopic to a diffeomorphism, and the
preceding result gives a simple condition under which we can answer such a question affirmatively.
The assumption that α have finite order is far less restrictive than it might seem, for we know that
all elements of the homotopy group πk

(
FS1(Cq+1

)
can be expressed as the sum of an element of

finite order with an element in the image of πk(Uq+1) which is either zero or of infinite order (cf.
[BeS, Theorem 11.1] in the stable case; in the unstable case the homotopy groups are finite by [RS
1973]).
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Proof. Since the map from πk
(
FS1(Cq+1)

)
to Ss,tk (CP

q) is a homomorphism, it follows immedi-
ately that the image of α in the latter has finite order. On the other hand, consider the following
portion of the tangential surgery sequence:

{Sk+1
CP

q)+, S
0} → Lk+2q+1({1}) ∼= Z → Ss,tk (CP

q) → {SkCP
q
+, S

0}

We know that {X,S0} is finite if X is a connected finite complex, and therefore the map from Z

into the structure set must be a monomorphism. But this means that if an element in the tangential
structure set has a trivial refined normal invariant, then this element must be trivial. This applies
to the class α, and therefore it follows that the image of α in the ordinary relative structure set
Ssk(CP

q) must also be trivial.

For the final step of the proof, we shall need the standard decomposition of Sk as the union of
the upper and lower hemispheres UDk and LDk; by construction, their intersection is the equatorial
sphere Sk−1 ⊂ Sk. There is a canonical map Γ from

Ssk(CP
q) ∼= Ss(UDk × CP

q rel Sk−1 × CP
q)

to Ss(Sk×CP
q), which is obtained by attaching a copy of LDk×CP

q along the boundary. Explicitly,
if we are give a representative

f : (W,∂W ) −→ (UDk × CP
q , Sk−1 × CP

q)

of a relative structure, so that the boundary map ∂f is a diffeomorphism, then we take

V = W ∪∂f LDk × CP
q

and let g : V → Sk × CP
q be the well-defined map which is given by f on W and the identity on

LDk × CP
q. Since this construction sends the identity to itself and the original map α maps to

zero in the domain, it follows that Γ(α) in the codomain must be homotopic to a diffeomorphism.

COROLLARY A.2. Let α ∈ π7

(
FS1(C3)

)
be an element which determines a nontrivial class of

E∞
3,4 of the spectral sequence for the homotopy group in question and stabilizes to zero in π7(FS1).

Then the image of α in Ss(Sk × CP
2) is trivial.

Proof. As in [RS 1975] we have the following commutative diagram, in which the vertical arrow
on the left is induced by the stabilization map from FS1(C3) to FS1(Cq+1) for q ≥ 3 and the vertical
arrow on the right is induced by the inclusion map from CP

2 to CP
q:

πk
(
FS1(C3)

) refined
−−−−−−−→
normal invt.

{SkCP
2
+, S

0}
y

x

πk
(
FS1(Cq+1)

) refined
−−−−−−−→
normal invt.

{SkCP
q
+, S

0}

Since the image of α under stabilization is trivial. it follows that the top horizontal arrow maps α
to zero, so that α satisfies the condition in the preceding proposition.

An additivity formula

The following identity is fairly elementary, but it will be useful later in this paper.
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THEOREM A.3. Let X be a closed smooth manifold of dimension ≥ 3, let k ≥ 2 be an integer,
let Ssk(X) be the relative structure set for the manifold (Dk×X,Sk−1 ×X) as described above, let

Γ : Ssk(X) −→ Ss(Sk ×X)

be the canonical map defined as above by gluing on copies of LDk × X along the boundary, and
let ψ : πk

(
E1(X)

)
→ Ssk(X) be the map constructed as above. Then the following diagram is

commutative:

πk (E1(X) ) × Ssk(X)
ψ×id

−−−−−→ Ssk(X) × Ssk(X)
addition
−−−−−→ Ssk(X)

yα× Γ
yΓ

E(Sk ×X) × Ss(Sk ×X)
standard
−−−−−→

action
Ss(Sk ×X)

=
−−−−−→ Ss(Sk ×X)

The map “standard action” is given by the action of the self-equivalence group on the structure
set.

Proof. This will follow quickly if we choose representatives for classes in πk (E1(X) ) and Ssk(X)
carefully. The map from the first group to the second is defined by taking a base point preserving
representative Sk → E1(X) and composing it with the collapsing map from Dk to Dk/Sk−1 ∼= Sk.
In fact, we can choose this representative to be constant on the (image of) a small disk D∗ contained
in the interior of the annulus

A = {v ∈ Dk | 1
2 ≤ |v| ≤ 1 }

so assume we have done so. Next, we can choose the homotopy structure so that it induces a map
of triads

(M ;M0,M1) −→
(
Dk ×X; 1

2
Dk ×X,A×X)

so that the map on M1 is a diffeomorphism. For these choices one can check directly that the action
of the homotopy self-equivalence on a homotopy structure is given by the addition operation in the
structure set.
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Normal invariants

In a previous section we identified an exotic sphere Σ7 which can be viewed as a standard
generator for the Kervaire-Milnor group Θ7

∼= Z28. If we choose an orientation preserving homeo-
morphism h : Σ7 → S7, then h× id(CP

2m) defines an element σ of the structure set Ss(S7×CP
2m),

and since Σ7 bounds a parallelizable manifold by definition, it follows that the normal invariant of
this homotopy structure is trivial. If Σ7 × CP

2m is diffeomorphic to S7 × CP
2m, then σ and the

standard base point of the structure set (namely, the class of the identity on S 7 × CP
2m) both lie

in the same orbit of the action of E(S7 ×CP
2m), so we clearly need some information on the orbit

of the standard base point under the action of E(S7 × CP
2m). The main result can be stated very

simply:

THEOREM N.1. (Dichotomy Principle) Let f be a homotopy self-equivalence of S 7 × CP
2m;

then the image of (the homotopy class of) f in the structure set Ss(S7 × CP
2m) is trivial if and

only if its normal invariant is trivial.

In other words, either f is homotopic to a diffeomorphism or else f is not even normally
cobordant to the identity .

Note. The results in the final section of [Masuda-Schultz] illustrate the complexity of de-
termining the class of an arbitrary homotopy self-equivalence g : M → M in the corresponding
structure set Ss(M).

Dichotomy principles

Following James [James 1954], we shall use Gk+1 to denote F(Sk, Sk), and its identity com-
ponent will be denoted by SGk+1. Likewise, the submonoid of base point preserving self-maps of
degree 1 will be denoted by SFk. The results of [James 1954] and the existence of classifying spaces
for connected topological monoids then yields an exact sequence of spaces

Sk −→ BSFk −→ BSGk+1 .

Furthermore, results of G. Whitehead [Wh] imply that the space SFk has the homotopy type of the
component of the constant map in the iterated loop space ΩkSk, and therefore πn(SFk) ∼= πn+k(Sk)
for all n ≥ 1. Note that unreduced suspension defines continuous monoid homomorphisms Gk+1 →
Gk+2 and SGk+1 → SGk+2. Furthermore, the limiting object SF satisfies πn(SF ) ∼= πS

n , where
the codomain is the nth stable homotopy group of spheres, and the limiting object also fits into an
exact sequence of topological spaces

SF∞ −→ F/O −→ BSO .

In fact, this sequence is infinitely deloopable [Boardman-Vogt], but we shall not need this fact.

PROPOSITION N.2. (Dichotomy property) Let X be a closed connected smooth k-manifold,
let n ≥ 2 such that n+k ≥ 5, let u : X → SGn+1 be continuous, and let f : X×Sn → X×Sn denote
the homotopy self-equivalence of X which is determined by the adjoint map u# : X × Sn → Sn.
Then either f is homotopic to a diffeomorphism, or else f is not normally cobordant to the identity.
In the first case, the diffeomorphism extends to a diffeomorphism of X ×Dn+1.

Similar results hold in the piecewise linear and topological categories with the corresponding
notions of (piecewise linear and topological) homeomorphisms, bundle isomorphisms and normal
invariants; the proofs in all cases are formally analogous.
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Proof. The most important point is that every homotopy self-equivalence of Sn extends to
Dn+1 by the cone construction, which implies that f extends to a homotopy self-equivalence F of
X ×Dn+1 and hence yields a homotopy structure on X ×Dn+1. By Wall’s π − π Theorem [Wall
book, Chapter 3], the map F is homotopic to a diffeomorphism if and only if its normal invariant
is trivial. Since the restriction map from [X ×Dn+1, F/O] ∼= [X,F/O] to [X × Sn, F/O] is split
injective and the normal invariant of F maps to the normal invariant of f by restriction, it follows
that the normal invariant of f is trivial if and only if the normal invariant of F is trivial, and in
this case both F and f must be homotopic to diffeomorphisms.

One step in the preceding argument is important enough to be cited explicitly; we shall give a
strengthened form of this result.

COROLLARY N.3. In the setting above, the normal invariant of f lies in the image of [X,F/O]
in [X ×Sn, F/O]. Furthermore, if A is a closed subset of X and the restriction of the original class
is trivial in [A,SGn+1], then the restrictions of the normal invariant to A and A × Sn are also
trivial.

Proof. The first sentence is an immediate consequence of the proposition. To prove the second
part, recall that SGn+1 has the homotopy type of a CW complex, and therefore it follows that if
the restriction of u : X → SGn+1 to A is nullhomotopic, then the same is true if A is replaced by
an open neighborhood U (of A). General considerations imply that there is a closed neighborhood
B of A such that B ⊂ U and B is a manifold with boundary (which contains A in its interior); by
the Homotopy Extension Property we may replace u with some v in the same homotopy class such
that the restriction of v to B is constant (with value 1X). Let g be the homotopy self-equivalence
of X × Sn formed from the adjoint of g. Then g maps B × Sn to itself by the identity, and it
also maps X −B to itself. Standard restriction properties of normal invariants imply that the
restriction of the normal invariant of g to B × Sn is trivial, and this implies the same conclusion
for the restriction to A× Sn.

There is a similar result for homotopy self-equivalences of S7 × CP
2m which come from

π7

(
E1(CP

2)
)
∼= π7

(
FS1(C3)

)
.

PROPOSITION N.4. Let f be a homotopy self-equivalence of S7×CP
2m which comes from an

element of π7

(
FS1(C3)

)
. Then either f is homotopic to a diffeomorphism or else f has a nontrivial

normal invariant.

Proof. If m ≥ 2 then this is given by [RS 1987, Prop. 4.2]. Suppose now that m = 1. Then
by Proposition H.2 the map f is homotopic to f1

of2, where each factor has order at most 2, the
map f1 comes from an element of E∞

1,6 ⊂ π7

(
FS1(C3)

)
and f2 is stably trivial. In the preceding

section we saw that f2 is homotopic to a diffeomorphism, and the results of Section C and [RS
1987] show that either f1 is homotopic to the identity or else it maps to the element of order 2 in
π7(FS1

∼= Z ⊕ Z2) and its normal invariant is nontrivial.

Skeletal filtrations

Let T be a contravariant functor defined from the homotopy category of pointed finite cell
complexes to the category of abelian groups. If X is a pointed finite cell complex and u ∈ T (X),
then we shall say that u has skeletal filtration ≥ k if the restriction of u to the k-skeleton Xk is
trivial, and we shall say that the skeletal filtration of a class is equal to k if the class has skeletal
filtration ≥ k but does not have skeletal filtration ≥ k + 1; see [Mosher-Tangora] for more on this
concept.
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The standard Cellular Approximation Theorem for continuous maps of CW complexes implies
that the skeletal filtration of a class in T (X) does not depend upon the choice of cell decomposition;
in fact, it follows that the sets T 〈k〉(X) of elements with skeletal filtration ≥ k are subgroups and
define a filtration of T by subfunctors.

We are interested in the skeletal filtrations of normal invariants associated to homotopy self-
equivalences of S7 ×CP

q which come from the group [CP
q , SG8] = [CP

q, E1(S7)]. The first step is
fairly elementary:

LEMMA N.5. The group [CP
2, SG8] is trivial.

Proof. We know that [CP
2, S7] is trivial because the dimension of CP

2 is less than the connectivity
of S7, so by the exact sequence of spaces SF7 → SG8 → S7 and the isomorphism

[CP
2, SF7] ∼= [S7

CP
2, S7]

it will suffice to show that the latter vanishes. Now S7
CP

2 is the mapping cone of S5η2, where
η2 : S3 → S2 is the Hopf map, and therefore we have the following exact sequence:

π11(S7) −−−−−→ [S7
CP

2, S7] −−−−−→ π9(S7)
(S5η)∗

−−−−−→ π10(S7)

Fundamental results on the homotopy groups of spheres (from [Toda, Ch. V]) imply that π11(S7) =
0, π9(S7) ∼= Z2, and (S5η)∗ is injective; combining these, we see that [CP

2, SF7] must be trivial,
and as noted above the conclusion of the lemma follows from this.

COROLLARY N.6. Suppose that f is a homotopy self-equivalence of S7 × CP
q (q ≥ 2) which

comes from an element of [CP
q, SG8]. If the normal invariant of f is nontrivial, then its filtration

is an even number strictly greater than 4.

Proof. We might as well consider the normal invariant for the extended homotopy self-equivalence
of D8×CP

q. Since CP
q has cells only in even dimensions, it follows that the filtration of a nontrivial

element cannot be odd and hence must be even. Since [CP
2, SG8] is trivial, it follows that the

restriction of f to S7 ×CP
2 is the identity, and as in Corollary N.3 it follows that the restriction of

the normal invariant to [CP
2, F/O] is trivial, so that the skeletal filtration of the normal invariant

is at least 4.

Combining the preceding results with others from earlier sections, we obtain the following
strong conclusion about the homotopy structures of Ss(S7 × CP

2m) which come from elements of
E ′(S7 × CP

2m).

PROPOSITION N.7. Suppose that we are given a homotopy equivalence f of S7 × CP
2m

(where m ≥ 1) which represents an element of E ′(S7 ×CP
2m), and express f as a composite f1

of2,
where f2 comes from [CP

2m, SG8] and f1 comes from π7

(
FS1(C2m+1)

)
. Then the normal invariant

of f is trivial if and only if the normal invariants of f1 and f2 are trivial.

Proof. The starting point for this argument is the following standard formula for normal invariants
of composites (see [Ranicki 2009] or [RS 1971]).

q(g oh) = q(g) + (g∗)−1
q(h)

The sum is taken with respect to the usual direct sum operation on F/O. The “if” direction
follows immediately from this formula, so for the rest of this argument we shall look at the “only
if” direction.
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We begin with one simple consequence of the composition formula: If g oh has trivial normal
invariant, then either the normal invariants of g and h are both trivial or else these normal invariants
are both nontrivial.

The results of the previous section imply that q(f1) = 0 if and only if f1 is homotopic to a
diffeomorphism, and in fact the results of [RS 1987] imply that if q(f1) 6= 0 then its filtration is
equal to 9 (see the proof of Proposition 4.2 on p. 197). On the other hand, the results of this
section show that either q(f2) = 0 or else its filtration is even; general considerations then imply
the same conclusion for (f ∗

1 )−1q(f2). It follows that if q(f1) 6= 0 and q(f2) 6= 0, then q(f1
of2) is a

nonzero element whose skeletal filtration is equal to the smaller of 9 and the filtration of q(f2) 6= 0,
which is even and hence not equal to 9. Therefore, if the normal invariant of f1

of2 is trivial, then
the normal invariants of both f1 and f2 must be trivial.

Proof of Theorem N.1. Let g be a homotopy self-equivalence of S7 × CP
2. By Proposition

H.1 we know that g = f oh, where h is a self-diffeomorphism and f represents an element of
E ′(S7 × CP

2m). This means that (S7 × CP
2m, g) and (S7 × CP

2m, f) determine the same element
in Ss(S7 ×CP

2). By Proposition H.2 we know that f is homotopic to f1
of2, where f2 comes from

[CP
2m, SG8] and f1 comes from π7

(
FS1(C2m+1)

)
. We need to show that if f does not determine

the trivial element in the structure set, then q(f) is nontrivial. By the previous results of this
section, we know that the corresponding statement holds for both f1 and f2. Furthermore, we also
know that q(f) = q(f1

of2) is trivial if and only if q(f1) and q(f2) are trivial. Therefore, if q(f)
is trivial then both f1 and f2 must be homotopic to diffeomorphisms, and consequently we know
that f must also be homotopic to a diffeomorphism.

17



More surgery sequence computations

The Kervaire-Milnor groups Θn have important subgroups ∂Pn+1 consisting of all exotic
spheres which bound parallelizable manifolds. These groups are finite cyclic groups whose or-
ders are known in almost all cases; in particular, if n = 4r − 1 ≥ 7 is congruent to 3 mod 4, then
the order θr of ∂P4r is given by the formula

ar2
2r−2(22r−1 − 1) numerator(Br/4r)

where ar is 2 if r is odd and 1 if r is even, and Br is the corresponding Bernoulli number. Basic
results in number theory imply that the last factor is odd and is equal to a product of irregular
primes.

As noted in [Kervaire-Milnor] it is well known that Θ7 = ∂P8 and Θ11 = ∂P12; By the displayed
formula, the orders of these groups are 28 = 4 · 7 and 992 = 32 · 31 respectively.

Given an integer d, for each integer r ≥ 2 the results of [Kervaire-Milnor] show that there is a
unique oriented homotopy sphere Σ4r−1(d) which bounds a parallelizable manifold whose signature
is equal to 8d. In particular, Σ7(1) is the standard generator for Θ7 that we described earlier. It
also follows immediately that Σ2r−1(0) = S4r−1 and Σ2r−1(d1 + d2) ∼= Σ2r−1(d1)#Σ2r−1(d2).

IfM is a closed simply connected smooth manifold of dimension 4r−1 ≥ 5, then the exactness of
the surgery sequence implies that if the orientation-preserving homotopy equivalence f : N →M is
normally cobordant to the identity, then N is orientation-preservingly diffeomorphic to a connected
sum M#Σ4r−1(d) for some integer d. We shall need some refinements of this observation.

As in [RS 1987], much of the following discussion is based upon a well known consequence of
the product formula for surgery obstructions (cf. [Browder 1968]):

PROPOSITION Y.1. Given an oriented exotic sphere Σ, let h generically denote an orientation-
preserving homeomorphism from Σ to Sn with the standard orientation. Then for all integers d,r
andm such that d ≥ 2 andm ≥ 1 the homotopy structures h×id : Σ4r−1(d)×CP

2m → S4r−1×CP
2m

and id#h : S4r−1 × CP
2m#Σ4r+4m−1(d) → S4r−1 × CP

2m#S4r+4m−1 ∼= S4r−1 × CP
2m are the

image of d times the generator of L4r+4m({1}) = Z under the action map ∆ from the latter to
Ss(S4r−1 × CP

2m).

Surgery sequence inertia groups

The preceding result has a well-known curious implication (compare [Browder 1968]).

COROLLARY Y.2. The standard homotopy equivalence

id#h : S7 × CP
2#Σ11 −→ S7 × CP

2#S11 ∼= S7 × CP
2

is homotopic to a diffeomorphism.

This follows from simple numerical considerations; since the orders of ∂P8 and ∂P12 are 28 and
992 respectively, one knows that 28 and 992 times the generator of L12({1}) = Z map to the trivial
element of the structure set under ∆. Since the set of all elements d such that ∆(d) = [trivial]
is a subgroup, and we know in the given case this subgroup contains both 28 and 992 times the
generator, it follows that the subgroup must also contain 4 times the generator.
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In fact, using the displayed formula for θm+2 one can generalize this to products with CP
2m

such that m is not divisible by 3, for the formula shows that θm+2 is divisible by 7 if and only if
m ≡ 0 mod 3.

The preceding corollary can be rephrased to state that the exotic sphere lies in a subgroup
of Θ11 called the homotopy inertia group of S7 × CP

2; in particular, this terminology is used in
both [RS 1987] and [Masuda-Schultz]. It will be convenient to work with a variant of the homotopy
inertia group in this paper.

Definition. Let M be a closed smooth manifold of dimension n ≥ 5. The surgery sequence
inertia group of M , written I∆(M), is the set (subgroup) of all elements α ∈ Lsn+1(π1(M), w)
such that ∆(α) is the trivial element of Ss(M).

If M is a closed orientable manifold and n = dimM ≡ 3 mod 4, then I∆(M) is always an
infinite subgroup. Specifically, if n = 4r − 1 and

i∗ : Z = L4r({1}) −→ Ls4r(Z)

is the (split injective) map induced by the constant homomorphism, then I∆(M) contains the image
of θrZ. In contrast, if π = π1(M) is finite, then there is a body of results related to the so-called
oozing conjecture (see [Milgram] or [HMTW]) which imply that many classes in the groups Ln+1(π)
never lie in the subgroups I∆(M).

For the sake of completeness, here is the relationship between I∆(M) and the homotopy inertia
group Ih(M).

FACT Y.3. If M is an arbitrary closed oriented smooth manifold, then Ih(M) ∩ ∂Pn+1 is
contained in I∆(M), and if M is simply connected then equality holds.

We shall not need this result (see [Brumfiel] for the simply connected case), but we shall need
some to explain how some computations involving homotopy inertia groups from [RS 1987] can be
rephrased in our present setting. By the exactness of the surgery sequence, the group I∆(M) is
the image of the surgery obstruction map σ1 : [SM,F/O] → Lsn+1(π1(M)); we suppress w because
we are working with oriented manifolds. As before, we know that this mapping is additive. If n is
congruent to 3 mod 4 and we compose σ1 with the map of Wall groups

C∗ : Lsn+1(π1(M)) −→ Ln+1({1}) ∼= Z

then the value of the composite ϕ = C∗
oσ1 is essentially a signature difference and hence is

computable by means of characteristic classes. Specifically, if we take a representative (ξ, t) of
a class in [SM,F/O] where ξ is a vector bundle and t is a fiber homotopy trivialization of (the
associated sphere bundle of) ξ, then ϕ(ξ, t) is given by formula (2.2) in [RS 1987]; in this setting
one does not need to work modulo θn or to worry about how to define the top Pontryagin class
(the latter is already given). We then have the following basic result:

PROPOSITION Y.4. Let M be a closed smooth oriented manifold of dimension 4r−1 ≥ 7, and
let J ⊂ Ls4r(M) be the image of L4r({1}) under the map induced by the inclusion {1} → π1(M).
Then J ∩ I∆(M) ⊂ L4r({1}) is contained in the image of ϕ, and equality holds if M is simply
connected.

For the sake of comparing approaches, we note that the image of the subgroup J ∩ I∆(M)
under the natural surjection from L4r({1}) to ∂P4r is equal to Ih(M) ∩ ∂P4r.

In this setting, the result of L. Taylor on homotopy inertia groups [Taylor] can be reformulated
as follows; the proof of this result is essentially identical to the proof of Theorem 2.1 in [RS 1987]:
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THEOREM Y.5. If M is a closed oriented smooth manifold of dimension 4r − 1 ≥ 7, then the
image of ϕ is contained in 2Z ⊂ L4r({1}) = Z.

Theorem Y.5 is the best possible result on the index of the image of ϕ in L4r({1}) for general
choices of M ; as noted in many places (e.g., [RS 1987 Example 2, p. 190]), it is well-known that the
image is exactly equal to 2Z if M = S3 ×CP

2m−1 for all m ≥ 1. However, there are many cases in
which one can improve upon this result very substantially (for example, the main result of [Browder
1965] gives the optimally strong conclusion I∆(M) = θr  L4r({1}) if M is a simply connected spin
manifold of dimension 4r = 1 ≥ 7). In this paper we are interested in proving a slight improvement
of Theorem Y.5 for M = S7 × CP

2.

THEOREM Y.6. The subgroup I∆(S7 × CP
2) has index 4 in L12({1}) = Z.

Proof. We have already seen that I∆ contains 4Z, so we shall focus on proving the reverse
containment.

The following computational result, which is a strengthening of [RS 1987, Sublemma 2.3],
contains the crucial information needed to prove that I∆ ⊂ 4Z.

LEMMA Y.7. If ξ is a fiber homotopically trivial vector bundle over the suspension of S 7×CP
2,

then for each positive integer m the mth Pontryagin class pm(ξ) is divisible by 2j4m, where j4m is
the order of the image of the J -homomorphism in dimension 4m− 1.

If we combine this fact with the proof of Theorem 2.1 in [RS 1987], then the required divisibility
condition in Theorem Y.6 follows directly.

Proof of Lemma Y.7. Since the suspension of S7 × CP
2 splits homotopically into a wedge

S8 ∨SCP
2 ∨S8

CP
2 and K̃O(SCP

2) is trivial (because π3(BO) = π5(BO) = 0), it suffices to prove
that the conclusion holds if the suspension of S7×CP

2 is replaced by S8 and S8
CP

2. The argument
will use a classical result of Bott (see [Bott-Milnor]) on the divisibility of the image of the Hurewicz
map from π4m(BO) ∼= Z to H4m(BO; Z). Specifically, the image of a generator is divisible by
am · (2m− 1)!, where am = 2 if m is odd and 1 if m is even.

Suppose that ξ is a (stably) fiber homotopically trivial vector bundle over S 8. Then Bott’s
result implies that p2(ξ) is divisible by 6 · j8, so the conclusion of the proposition is true for vector
bundles over S8. Next, suppose that ξ is a (stably) fiber homotopically trivial vector bundle over

S8
CP

2. By Bott Periodicity and the results of [Adams-Walker], the group K̃O(S8
CP

2) is infinite
cyclic, and if z : S8

CP
2 → S12 is the collapsing map of degree 1, then the map

z∗ : Z ∼= K̃O(S12) −→ K̃O(S8CP 2) ∼= Z

is multiplication by ± 2. If Ω is a generator, then the Adams Conjecture impies that the stably
fiber homotopically trivial vector bundles are the elements of K̃O(S8

CP
2) which are divisible by

8t for some integer t for some integer t. Since 2Ω ∈ Image z∗, it follows from Bott’s result that
p3(8tΩ) is divisible by 1

2
· 2 · 5! · 8t = 64 (15t). Since j3 = 8v for some odd integer v, this means that

p3(8tΩ) is divisible by 8j3 times an odd integer.

Applications to classification problems

The following result integrates many of the different ideas and results in this and earlier
sections.

THEOREM Y.8. Let d and m be integers with m ≥ 1, and suppose that Σ7(d) × CP
2m is

diffeomorphic to S7 × CP
2m. Then d lies in the surgery sequence inertia group I∆(S7 × CP

2m).
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Proof. It will suffice to show that if Σ7(d) × CP
2m is diffeomorphic to S7 × CP

2m then ∆(d) is
the trivial element of Ss(S7 × CP

2m).

If the two manifolds in question are diffeomorphic, then ∆(d) is the homotopy structure asso-
ciated to some homotopy self-equivalence f of S7×CP

m. Since ∆(d) has a trivial normal invariant,
it follows that q(f) must also be trivial. However, by the results of the preceding section we know
that f is homotopic to a diffeomorphism if and only if q(f) = 0, and it follows that the class of [f ],
which equals ∆(d), must also be trivial.

Theorem Y.8 yields the main results on the diffeomorphism classification for products of exotic
spheres and complex projective spaces.

THEOREM Y.9. In the setting of the previous result, we have the following:

(i) For every m ≥ 1, the manifolds Σ7(1) × CP
2m and S7 × CP

2m are not diffeomorphic.

(ii) For all integers d, the manifolds Σ7(d) × CP
2 and Σ7(d′) × CP

2 are diffeomorphic if and
only if d ≡ ± d′ mod 4.

Note that this result includes the conclusions of both Theorem S.1 and Proposition S.3.

Proof. The first statement follows from Theorem Y.5 because the generator of L4m+8({1}) = Z

does not lie in I∆(S7 × CP
2m). To prove the second statement, observe that the two manifolds

in question are diffeomorphic if d ≡ d′ mod 4 by Theorem Y.6, and since Σ7(d) is orientation-
reversingly diffeomorphic to Σ7(−d) it also follows that Σ7(d) × CP

2m and Σ7(−d) × CP
2m are

orientation-reversingly diffeomorphic.

Conversely, suppose that Σ7(d) ×CP
2 and Σ7(d′)×CP

2 are diffeomorphic by some diffeomor-
phism ϕ. If this diffeomorphism is orientation-reversing, then there is an orientation-preserving
diffeomorphism from Σ7(d) × CP

2 to Σ7(−d′) × CP
2, and therefore it will suffice to show that if

Σ7(d) × CP
2 and Σ7(d′) × CP

2 are orientation- reversingly diffeomorphic then d ≡ d′ mod 4.

Let h and h′ be orientation-preserving homeomorphisms from Σ7(d) and Σ7(d′) to S7. Then
the two homotopy structures

(
Σ7(d) × CP

2, h× id
)
,

(
Σ7(d′) × CP

2, h′ × id
)

are related by the action of the orientation-preserving homotopy self-equivalence

(h′ × id) oϕ o(h−1 × id) .

We first note that if there is such a an orientation-preserving homotopy self-equivalence, then
we can also find a homotopy self-equivalence of S7 × CP

2 which is the identity on cohomology
and also sends ∆(d) to ∆(d′). Every orientation-preserving homotopy self-equivalence of S7 ×CP

2

induces the same map in cohomology as either the identity or id(S7)×χ, where χ is the conjugation
diffeomorphism of CP

2. Clearly the maps id(Σ7) × χ are self-diffeomorphisms of id(Σ7) ×CP
2 for

all exotic spheres Σ, and therefore h× id and h× χ determine the same class in the structure set.
It follows that if f is an orientation-preserving self-equivalence of S7 × CP

2 which sends ∆(d) to
∆(d′), then f o(id × χ) also has this property. One of these self-equivalences induces the identity
on cohomology, so pick the one that does.

The results of Sections H and N show that if f is a homotopy self-equivalence of S 7 × CP
2

which induces the identity on cohomology, then f must come from an element of π7(E1(CP
2) ) ∼=

π7

(
FS1(C3)

)
. Thus all the relevant data lift back to the relative structure set Ss7(CP

2), so that
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we can use Theorem A.3 to analyze the action of f on classes in the structure set. We first claim
that the class of f in π7

(
FS1(C3)

)
must stabilize to zero in π7(FS1); if it did not, then its normal

invariant would be nontrivial, and hence it would follow that the normal invariant of ∆(d ′) —
which is obtained by the action of f on ∆(d) would be nonzero (since the normal invariant of ∆(d)
is trivial. However, we know that the normal invariant of ∆(d′) is trivial, so this cannot happen.
Thus we are left with the possibility that f might be nontrivial but stably trivial. We can combine
Theorem A.3 and C.2 to show that the image of f in the relative structure set is trivial and that
its action on ∆(d) is to send the latter to itself. Putting this all together, we have seen that if the
two products are orientation-preservingly diffeomorphic, then ∆(d) and ∆(d′) must determine the
same element in the structure set, and by Theorem Y.6 this means that d ≡ d′ mod 4.

Proof of Proposition S.3

We already know that Σ7(d)×CP
2 and Σ7(d′)×CP

2 are diffeomorphic if and only if d ≡ ± d′

mod 4, so each such product is diffeomorphic to exactly one of the manifolds S7×CP
2, Σ7(1)×CP

2 or
Σ7(2)×CP

2. Therefore it is only necessary to prove that if M 11 is tangentially homotopy equivalent
to S7 × CP

2 then M is diffeomorphic to one of these products.

If h : M11 → S7 ×CP
2 is a tangential homotopy equivalence, then its refined normal invariant

is an element of
{S7 × CP

2, S0} ∼= πS

7 ⊕ {CP
2, S0} ⊕ {S7

CP
2, S0} .

We know that CP
2 is the mapping cone of the Hopf map η3 : S3 → S2, and hence the second and

third factors fit into the following exact sequences, in which the maps at the far right are given by
composition with η or one of its suspensions:

πS

4 → {CP
2, S0} → πS

2 → πS

3 , πS

11 → {S7
CP

2, S0} → πS

9 → πS

10

These are easily computed using [Toda]. Since πS
4 = 0 and compositon with η induces a monomor-

phism from πS
2 to πS

3 (by the identity η3 = 4ν), it follows that {CP
2, S0} = 0. Also, we know that

πS
11 is generated by the image of the J -homomorphism from π11(O) to πS

11, while πS
9
∼= Z

3
2 such

that the kernel of η∗πS
9 → πS

10 is the third summand and the image of the J -homomorphism is the
first summand. Therefore the image of {S7 ×CP

2, S0} in [S7 ×CP
2, F/O] is isomorphic to Z2, and

in fact it corresponds to the second summand of πS
9 .

In fact, the nonzero class is the normal invariant for the homotopy self-equivalence f of S 7×CP
2

which comes from a stably nontrivial element of π7

(
FS1(C3)

)
; this follows directly from the formula

for the normal invariant. Therefore we have shown that the homotopy structures on S 7×CP
2 which

come from tangential homotopy equivalences all have the form [f0]e ·∆(d), where f0 is the previously
described homotopy equivalence, e = 0 or 1, and d is some integer. Since the underlying manifold
for such a structure is Σ7(d) ×CP

2 for some d, we know that M 11 must be diffeomorphic to one of
these examples.
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Diffeomorphisms of total spaces

If Mk and Nk are closed smooth simply connected manifolds and k ≥ 5, then a well known
argument shows that Mk × R

2 and Nk × R
2 are diffeomorphic if and only if M k and Nk are

diffeomorphic (Proof: If such a diffeomorphism exists, then the image of M × D2 is contained
in some subset of the form N × rD2, where rD2 is a disk of sufficiently large radius r about the
origin, and N × rD2 − Int M ×D2 is an h-cobordism between M × S1 and N × S1; since Wh(Z)
is trivial, it follows that these two manifolds must be diffeomorphic, and as before this conclusion
implies that M and N must also be diffeomorphic.). In contrast, the main result of this section is
the following:

THEOREM T.1. Suppose that k ≥ 2, q ≥ 1, let Σ4k−1 is a homotopy sphere bounding a
parallelizable manifold, and let ω be a nontrivial complex line bundle over CP

q. If E(ω) denotes
the total space of ω, then Σ4k−1 ×E(ω) is diffeomorphic to S4k−1 ×E(ω).

Throughout the discussion below, D(ω) will denote the associated unit disk bundle (with
respect to some Hermitian metric) and S(ω) will denote the sphere bundle, which is just ∂D(ω).

Proof. Since the proof is simpler when the Chern class of ω is a generator of H 2(CP
q; Z), we shall

first prove the result in these cases. In this case S(ω) ∼= S2q+1, so that both S(ω) and D(ω) are
simply connected and the inclusion S(ω) ⊂ D(ω) defines an isomrophism of fundamental groups.
Therefore we can apply Wall’s π − π Theorem to conclude that the normal invariant mapping

q : Ss
(
S4k−1 ×D(ω)

)
−→ [S4k−1 ×D(ω), F/O] ∼= [S4k−1 × CP

q, F/O]

is bijective. Consider the structure given by the product of an orientation-preserving homeomor-
phism Σ4k−1 → S4k−1 with the identity on D(ω). Since Σ bounds a parallelizable manifold, the
normal invariant of this structure is trivial, and therefore it follows that the associated homotopy
equivalence of pairs must be homotopic to a diffeomorphism.

Assume now that the Chern class of ω is ± d times the generator of H 2(CP
q; Z), where d > 1

is an integer. In this case S(ω) is a lens space with fundamental group Zd, so that the map

π1

(
S(ω)

)
−→ π1

(
D(ω)

)

is just the constant homomorphism Zd → {1}. In this case the appropriate surgery exact sequence
is given by the first line in the diagram below; the maps from the first to the second line are given
by passing to boundaries, and for all the surgery obstruction groups the orientation map from π1

to Z2 is trivial.

Ls2
(
Zd → {1}

)
−−−−−→ Ss

(
D(ω) ) −−−−−→ [S7 ×D(ω), F/O]

y
y

y

L1
2(Zd) −−−−−→ Ss

(
S(ω) ) −−−−−→ [S7 × S(ω), F/O]

The relative Wall group Ls2(Zd → {1}) fits into a familiar type of exact sequence from [Wall book]:

· · · Ls2(Zd) → L2({1}) → Ls2
(
Zd → {1}

)
→ Ls1(Zd) · · ·

It will suffice to show that Ls2
(
Zd → {1}

)
is trivial, and we shall use the exact sequence to do this.

First of all, results from [Wall 1976] show that Ls1(Zd) = 0, so that the map from Z2
∼= L2({1}) to

Ls2
(
Zd → {1}

)
is onto. Next, since the map Zd → {1} has an obvious one-sided inverse (inclusion

of the identity) and Wall groups are functorial with respect to group homomorphisms, we know
that the map Ls2(Zd) → L2({1}) is split surjective, so that the map from Z2

∼= L2({1}) to
Ls2

(
Zd → {1}

)
is the zero homomorphism. Combining these, we see that the relative Wall group

must be trivial, and as noted above this suffices to complete the proof of the theorem.
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