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In his writings on coordinate geometry, Descartes emphasized that he was only willing to work
with curves that could be defined by algebraic equations. He was not able to find such equations
for some important curves from classical Greek geometry, including the quadratrix/trisectrix of
Hippias (c. 460 B.C.E.— ¢. 400 B.C.E.), and he excluded them from his setting by describing them
as “mechanical.” Several decades later, Leibniz took a different view of the situation, recognizing
that curves that are not definable by algebraic equations can — and in fact should — also be
studied effectively using the methods of coordinate geometry and calculus.

Even though the Leibniz viewpoint is now universally accepted in analytic geometry and
calculus, one can still ask whether certain classical Greek curves in the plane with no reasonably
simple description by an algebraic equation are indeed not definable by an algebraic equation
F(z,y) = 0, where F' is a nontrivial polynomial in x and y with real coefficients. The purpose
of this note is to prove that two important examples have no description of this type. One is the
quadratrix/trisectrix of Hippias, and the other is the Archimedean spiral, which is given in polar
coordinates by r = 6 and in rectangular coordinates by

s(t) = (tcost, tsint) .

In order to analyze such curves, we shall need some background results which state that the so-
called elementary transcendental functions do not satisfy equations of the form F(z, f(x)) = 0,
where F' is a nontrivial polynomial in two variables. This property is reflected by the use of the
word “transcendental” to describe these functions, but proofs of such results do not appear in
standard analytic geometry and calculus texts for several reasons (in particular, the mathematical
level of such proofs is well above the levels suitable for basic courses in single variable calculus, and
the results themselves are not needed for the usual applications of calculus to problems in other
subjects). The following online reference contains explicit statements and proofs that exponential
functions, logarithmic functions, and the six standard trigonometric functions do not satisfy the
types of algebraic equations described above:

http://math.ucr.edu/~res/mathl44/transcendentals.pdf

The discussion here will be at about the same mathematical level, using some input from
advanced undergraduate and beginning graduate algebra courses together with standard results
from calculus and differential equations courses. The following companion document contains
figures related to the discussion here:

http://math.ucr.edu/~res/mathl153/transcurves2.pdf

1. Algebraic curves and analytic parametrizations
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Our goal is to prove a useful result which shows that if certain types of parametrized curves
satisfy an algebraic equation near a point then they do so everywhere.

PROPOSITION. Suppose that we are given a parametrized curve

defined on an open interval J containing to, where the parametric equations are real analytic
functions on J. If there is a strongly nontrivial polynomial F'(z,y) such that F °s(t) = 0 for all t
sufficiently close to tg, then this equation holds for all t € J.

Proof. Standard considerations show that the composite function F °s(t) is real analytic on J
(use Fact 2 in Section 1.4 of transcendentals), and it is zero on some subinterval (tg — J,to + 0).
Therefore, by Fact 3 from the section cited in the previous sentence we know that F'°s(t) is zero
everywhere on J.m

2. The Archimedean Spiral

As noted above, the standard equation defining this curve AS in polar coordinates is r = 0,
where 6 > 0, and this yields the parametrization s(t) = (tcost, tsint), where ¢ > 0. We shall show
that there is no nonzero point p on this curve for which one can find an open neighborhood U
containing p and a strongly nontrivial polynomial G such that G = 0 for all points on ASNU.

By the proposition in the preceding section and the existence of real analytic parametric equa-
tions for AS, if one can find a point, open neighborhood and polynomial as above, then it follows
that G = 0 on all points of AS. Denote the polynomial in question by G(z,y) = Z” a; jx'y’.

CLAIM 1: Each vertical line x = b and each horizontal line y = ¢ meets AS in infinitely many
points.

This seems clear if one sketches the curve (see Figure 1 in the file transcurves2.pdf), and
on the coordinate axes we know that the points ((—1)*k7,0) lie on both the spiral and the z-axis
while the points (0, (—1)*(k + %)) lie on both the spiral and the y-axis. Since the problem is
symmetric in x and y, we shall only prove the statement regarding horizontal lines other than the
z-axis, so that ¢ # 0; the argument in the vertical case is similar.

The first step is to notice that if (z,c) lies on AS and ¢ # 0 and (z,c) = s(t), then we have

:1'—|-62

and cott = = .
c
This is illustrated in Figure 2 from the file transcurves2.pdf. We need to prove that, for each
nonzero real number ¢, there are infinitely many values of X which solve the resulting equation in
x:
r = c-cot a2+ c?

If we make the change of variables u = V2 + ¢2, this equation can be rewritten in the form
ccotu = vu? — 2, and the goal translates to showing that there are infinitely many solutions to
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this curve for which u > |¢|. In the discussion below, k£ will denote an arbitrary positive integer
such that k > |c|/7.

CLAIM 2:  If h(u) = ccotu — Vu? — 2, then for each k as above there is a real number wy,
such that km < u < (k+ 1) and h(ui) = 0.

The proof of this is similar to the proof that there are infinitely many solutions to the equation
tanz = x. Let € be the sign of ¢. Then one has the following one-sided limit formulas:

lim eh(u) = +oo lim eh(u) = —o0
u—km+ u—(k+1)m —

It follows tht there is some real number uj between km and (k + 1)7 such that € h(ug) = 0, and
the claim follows because € h(u) = 0 if and only if A(u) = 0.

Completion of the proof that AS is not algebraic. = Suppose that G is a polynomial in two
variables such that G(z,y) = 0 for all (z,y) on AS. For each real number ¢ we know there are
infinitely many = such that G(x,¢) = 0. If G(z,y) = Z” a; jz'y’, then for each i left hand side
is thus a polynomial in # which has infinitely many roots, and therefore the coefficients i a; ;¢
must be zero for all i. Define polynomials h;(y) = > ; a; jy’. Since hi(c) = 0 for all ¢, it follows
that for each ¢ we have a; ; = 0 for all j; but this means that all the coefficients a; ; must vanish.
This completes the proof that AS is not algebraic (in fact, it is not algebraic even if one restricts
to some open interval of the positive real line).m

3. The Quadratrix/Trisectrix of Hippias

The standard equation for this curve is y = x cot x for x # 0; this limit of the right hand side
as x — 0 is equal to 1 (e.g., this follows from L’Hospital’s Rule or more elementary considerations),
so it is customary to add the point (0, 1) so that the curve becomes continuous for |z| < 7. This
curve has infinitely many disconnected pieces, but in classical Greek mathematics the portion of
the curve receiving attention was the connected piece in the first quadrant with 0 < z < 17 (see
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Figure 3 in transcurves.pdf.

Our objective is to prove that (the coordinates for) the points on this piece of the curve do not
satisfy a strongly nontrivial polynomial equation in two variables. But this follows immediately by
combining the results in Sections I1.2 and 1.4 in transcendentals.pdf with the following simple
observation: If the function f defined on an open interval J is transcendental on J, then so are the
functions ™ - f for all m > 0. These considerations imply that x cot x is transcendental on the
interval 0 < z < %71, and from this it follows that the coordinates on this piece of the curve do not
satisfy a strongly polynomial equation.m



