MORE EXERCISES FOR SECTIONS II. 3 AND II. 4

C1. Suppose that A, B, C are noncollinear points in a plane P, ald let $X \in \triangle A B C$. Prove that if X is a vertex of $\triangle A B C$ then there are (at least) two lines L and M such that X lies on both and each contains at least three distinct points of $\triangle A B C$, but if X is not a vertex then there is only one line L in P such that $X \in L$ and L contains at least three points of $\triangle A B C$. [Hint: The conclusion in Exercise II.2.8 is useful for establishing part of this result.]

C2. \quad Suppose that we are given $\triangle A B C$ and $\triangle D E F$ in a plane P such that $\triangle A B C=\triangle D E F$. Prove that $\{A, B, C\}=\{D, E, F\}$. [Hint: Use the preceding exercise.]

C3. Suppose that we are given a triangle $\triangle A B C$ in a plane P, and suppose that L is a line in P such that L contains a point X in the interior of $\triangle A B C$. Prove that L and $\triangle A B C$ have (at least) two points in common.

C4. [In this exercise we shall view points of \mathbb{R}^{n} as $n \times 1$ column vectors and identify scalars with 1×1 matrices in the obvious fashion.] Let T be an affine transformation of \mathbb{R}^{3} and write it as $T(\mathbf{x})=A \mathbf{x}+\mathbf{b}$, where A is an invertible 3×3 matrix and \mathbf{b} is some vector in \mathbb{R}^{3}. Let P be the plane defined by the equation $C \mathbf{x}=d$, where C is a 3×1 matrix and $d \in \mathbb{R}$, and let Q be the image of P; in other words, Q is the set of all vectors \mathbf{y} such that $\mathbf{y}=T(\mathbf{x})$ for some $\mathbf{x} \in P$. Prove that Q is also a plane, and give an explicit equation of the form $U \mathbf{y}=v$ (where U is 1×3 and v is a scalar) which defines Q. [Hint: Solve $T(\mathbf{x})=\mathbf{y}$ for \mathbf{x} in terms of \mathbf{y}, A and \mathbf{b}.]

