MORE EXERCISES FOR SECTIONS II.3 AND II.4

C1. Suppose that A, B, C are noncollinear points in a plane P, ald let $X \in \Delta ABC$. Prove that if X is a vertex of ΔABC then there are (at least) two lines L and M such that X lies on both and each contains at least three distinct points of ΔABC , but if X is not a vertex then there is only one line L in P such that $X \in L$ and L contains at least three points of ΔABC . [Hint: The conclusion in Exercise II.2.8 is useful for establishing part of this result.]

C2. Suppose that we are given $\triangle ABC$ and $\triangle DEF$ in a plane P such that $\triangle ABC = \triangle DEF$. Prove that $\{A, B, C\} = \{D, E, F\}$. [*Hint:* Use the preceding exercise.]

C3. Suppose that we are given a triangle ΔABC in a plane *P*, and suppose that *L* is a line in *P* such that *L* contains a point *X* in the interior of ΔABC . Prove that *L* and ΔABC have (at least) two points in common.

C4. [In this exercise we shall view points of \mathbb{R}^n as $n \times 1$ column vectors and identify scalars with 1×1 matrices in the obvious fashion.] Let T be an affine transformation of \mathbb{R}^3 and write it as $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$, where A is an invertible 3×3 matrix and \mathbf{b} is some vector in \mathbb{R}^3 . Let P be the plane defined by the equation $C\mathbf{x} = d$, where C is a 3×1 matrix and $d \in \mathbb{R}$, and let Q be the image of P; in other words, Q is the set of all vectors \mathbf{y} such that $\mathbf{y} = T(\mathbf{x})$ for some $\mathbf{x} \in P$. Prove that Q is also a plane, and give an explicit equation of the form $U\mathbf{y} = v$ (where U is 1×3 and v is a scalar) which defines Q. [Hint: Solve $T(\mathbf{x}) = \mathbf{y}$ for \mathbf{x} in terms of \mathbf{y} , A and \mathbf{b} .]