SOLUTIONS TO ADDITIONAL EXERCISES FOR II. 1 AND II. 2

Here are the solutions to the additional exercises in triangle-exercises.pdf. Illustrations to accompany these solutions are given in the online file

```
trianglefigures.pdf
```

in the course directory.

C1. Supppose first that X is one of the vertices A, B, C. In these cases the conclusion follows because $A \in A B \cap A C$ and each of these lines contains an infinite number of points on the triangle (namely, all points of $[A B]$ and $[A C]$ respectively), $B \in A B \cap B C$ and each of these lines contains an infinite number of points on the triangle (namely, all points of $[A B]$ and $[B C]$ respectively), and finally $C \in B C \cap A C$ and each of these lines contains an infinite number of points on the triangle (namely, all points of $[B C]$ and $[A C]$ respectively).

Suppose now that X is not a vertex. Without loss of generality we may assume that $X \in(A B)$, for the remaining cases where $X \in(B C)$ or $X \in(A C)$ follow by interchanging the roles of A, B, C in the argument we shall give.

If $X \in(A B)$ and $L=A B$, then clearly $X \in L$ and L contains infinitely many points of the triangle because it contains $[A B]$. From now on, suppose that $X \neq A B$.

If $L=X C$, then X and C lie on both L and the triangle; we claim that no other point of L satisfies these conditions. Suppose to the contrary that there is such a third point Y; there are three cases depending upon whether Y lies on $A B, B C$ or $A C$. If $Y \in A B$, then both L and $A B$ contain the distinct points X and Y, so that $L=X Y$; but we are assuming that X, Y, C are collinear, and this contradicts our even more basic assumption that A, B, C are noncollinear (this is implicit in asserting the existence of $\triangle A B C)$. Therefore the line $X C$ only meets the triangle in two points.

Now suppose that $C \notin L$ and $L \neq A B$; we need to show that L and $\triangle A B C$ have at most one other point in common besides X. By Pasch's Theorem there is a second point Y on L which lies on either $(B C)$ or $(A C)$; in either case there we claim that there is no third point in $L \cap \triangle A B C$. Since $X \in A B$ is not one of the vertices and the lines $B C$ and $A C$ meet $A B$ in B and A respectively, it follows that X lies on neither of these lines. Therefore the line $L=X Y$ meets $\triangle A B C$ in two sides and cannot contain any of the vertices. If there were a third point, it would lie on one of $(A B),(B C)$ or $(A C)$. By Exercises II. 2.8 we know that L cannot contain points of all three sides,, and if the third point were in $(A B)$ it would follow that $L=A B$. On the other hand, the line L cannot contain X and two points from either $(A C)$ or $(B C)$, for in that case L would be equal to $A C$ or $B C$ and also contain $X \in(A B)$, so that L would also be equal to $A B$. Thus the existence of a third point leads to a contradiction if $L \neq A B, X C$, and hence no such point can exist, so that all lines through X except $A B$ meet the triangle in two points.■

C2. The most difficult parts of this proof were done in the preceding exercise. Let \mathbf{T} be equal to $\triangle A B C=\triangle D E F$. By the preceding exercise, since $\mathbf{T}=\triangle A B C$ we
know that $\{A, B, C\}$ is the set \mathbf{V} of all points X in \mathbf{T} such that two lines through X contain at least three points of \mathbf{T}, and likewise $\{D, E, F\}$ is the set \mathbf{V} of all points X in \mathbf{T} such that two lines through X contain at least three points of \mathbf{T}. Therefore we have $\{A, B, C\}=\mathbf{V}=\{D, E, F\}$.

C3. Let H_{1} and H_{2} denote the two half-planes associated to L. Then each of the points A, B, C lies on exactly one of the subsets L, H_{1}, H_{2}.

Before we split the argument into cases using the previous sentence, we make a general observation. Since $X \in L$ lies in the interior of $\triangle A B C$, by the Crossbar Theorem we know that $(B X$ and $(A C)$ have a point Y in common. This point cannot be X because a point cannot lie in both the interior of $\triangle A B C$ and one of the three sides $A B, B C, A C$ (look at the definition of interior). Since $Y \in(B C$, it follows that either $B * X * Y$ or $B * Y * X$ is true; however, if the latter were true, then B and X would lie on opposite sides of the line $A Y=A C$, contradicting the assumption on X. Therefore we must have $B * X * Y$.

We claim that all three vertices cannot lie in either H_{1} or H_{2}. If they did, then by convexity the point Y in the preceding paragraph would also lie in the given half-plane, and similarly the point X would lie in this half-plane. Since $X \in L$ by assumption, this is impossible, and thus the three vertices cannot all lie on one side of L.

Next, we claim that at most one vertex lies on L. If, say, $A \in L$, then $L=A X$, and if either B or C were also on L we would have that $L=A B$ or $A C$, which in turn would imply that $X \in A B$ or $A C$, contradicting the condition that X lies in the interior of the triangle. The cases where $B \in L$ and $C \in L$ can be established by interchanging the roles of the three vertices in the preceding argument.

Suppose now that one vertex lies on L; we claim that the other two vertices must lie on opposite sides of L. Once again, it is enough to consider the case where $A \in L$, for the other cases will follow by interchanging the roles of the vertices. But if $A \in L$, then the Crossbar Theorem implies that L and $(B C)$ have a point W in common (in fact $(B C)$ and ($A X$ do), and therefore it follows that B and C lie on opposite sides of L. Furthermore, it follows that the line L meets the triangle in the distinct points A and W.

The only possibility left to consider is the case where no vertex lies on L; by the preceding discussion, we know that neither half-plane contains all three vertices, and thus two of the vertices are on one half-plane and one is on the other. As before, without loss of generality we may assume that A is on one side and B, C are on the other. But in this situation we know that the line L meets both $(B C)$ and $(A C)$. This completes the examination of all possible cases.■

C4. We shall follow the hint and solve for \mathbf{x} in terms of \mathbf{y}. Since $\mathbf{y}=A \mathbf{x}+\mathbf{b}$ and A is invertible, it follows that $\mathbf{x}=A^{-1}(\mathbf{y}-\mathbf{b})$. If we substitute this into the defining equation for the plane, we see that

$$
d=C \mathbf{x}=C A^{-1}(\mathbf{y}-\mathbf{b}) \quad \text { or equivalently } C A^{-1} \mathbf{y}=d+C A^{-1} \mathbf{b}
$$

which shows that \mathbf{y} is defined by an equation of the form $P \mathbf{y}=q$, where $P=C A^{-1}$ and $q=d+C A^{-1} \mathbf{b}$.

