
SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2

Here are the solutions to the additional exercises in triangle-exercises.pdf. Illus-
trations to accompany these solutions are given in the online file

trianglefigures.pdf

in the course directory.

C1. Supppose first that X is one of the vertices A, B, C. In these cases the conclusion
follows because A ∈ AB∩AC and each of these lines contains an infinite number of points
on the triangle (namely, all points of [AB] and [AC] respectively), B ∈ AB∩BC and each
of these lines contains an infinite number of points on the triangle (namely, all points of
[AB] and [BC] respectively), and finally C ∈ BC ∩AC and each of these lines contains an
infinite number of points on the triangle (namely, all points of [BC] and [AC] respectively).

Suppose now that X is not a vertex. Without loss of generality we may assume that
X ∈ (AB), for the remaining cases where X ∈ (BC) or X ∈ (AC) follow by interchanging
the roles of A, B, C in the argument we shall give.

If X ∈ (AB) and L = AB, then clearly X ∈ L and L contains infinitely many points
of the triangle because it contains [AB]. From now on, suppose that X 6= AB.

If L = XC, then X and C lie on both L and the triangle; we claim that no other
point of L satisfies these conditions. Suppose to the contrary that there is such a third
point Y ; there are three cases depending upon whether Y lies on AB, BC or AC. If
Y ∈ AB, then both L and AB contain the distinct points X and Y , so that L = XY ;
but we are assuming that X, Y, C are collinear, and this contradicts our even more basic
assumption that A, B, C are noncollinear (this is implicit in asserting the existence of
∆ABC). Therefore the line XC only meets the triangle in two points.

Now suppose that C 6∈ L and L 6= AB; we need to show that L and ∆ABC have
at most one other point in common besides X. By Pasch’s Theorem there is a second
point Y on L which lies on either (BC) or (AC); in either case there we claim that there
is no third point in L ∩ ∆ABC. Since X ∈ AB is not one of the vertices and the lines
BC and AC meet AB in B and A respectively, it follows that X lies on neither of these
lines. Therefore the line L = XY meets ∆ABC in two sides and cannot contain any of
the vertices. If there were a third point, it would lie on one of (AB), (BC) or (AC). By
Exercises II.2.8 we know that L cannot contain points of all three sides,, and if the third
point were in (AB) it would follow that L = AB. On the other hand, the line L cannot
contain X and two points from either (AC) or (BC), for in that case L would be equal
to AC or BC and also contain X ∈ (AB), so that L would also be equal to AB. Thus
the existence of a third point leads to a contradiction if L 6= AB, XC, and hence no such
point can exist, so that all lines through X except AB meet the triangle in two points.

C2. The most difficult parts of this proof were done in the preceding exercise.
Let T be equal to ∆ABC = ∆DEF . By the preceding exercise, since T = ∆ABC we
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know that {A, B, C} is the set V of all points X in T such that two lines through X

contain at least three points of T, and likewise {D, E, F} is the set V of all points X in
T such that two lines through X contain at least three points of T. Therefore we have
{A, B, C} = V = {D, E, F}.

C3. Let H1 and H2 denote the two half-planes associated to L. Then each of the
points A, B, C lies on exactly one of the subsets L, H1, H2.

Before we split the argument into cases using the previous sentence, we make a general
observation. Since X ∈ L lies in the interior of ∆ABC, by the Crossbar Theorem we know
that (BX and (AC) have a point Y in common. This point cannot be X because a point
cannot lie in both the interior of ∆ABC and one of the three sides AB, BC, AC (look at
the definition of interior). Since Y ∈ (BC, it follows that either B ∗ X ∗ Y or B ∗ Y ∗ X

is true; however, if the latter were true, then B and X would lie on opposite sides of the
line AY = AC, contradicting the assumption on X. Therefore we must have B ∗ X ∗ Y .

We claim that all three vertices cannot lie in either H1 or H2. If they did, then by
convexity the point Y in the preceding paragraph would also lie in the given half-plane,
and similarly the point X would lie in this half-plane. Since X ∈ L by assumption, this is
impossible, and thus the three vertices cannot all lie on one side of L.

Next, we claim that at most one vertex lies on L. If, say, A ∈ L, then L = AX, and
if either B or C were also on L we would have that L = AB or AC, which in turn would
imply that X ∈ AB or AC, contradicting the condition that X lies in the interior of the
triangle. The cases where B ∈ L and C ∈ L can be established by interchanging the roles
of the three vertices in the preceding argument.

Suppose now that one vertex lies on L; we claim that the other two vertices must lie
on opposite sides of L. Once again, it is enough to consider the case where A ∈ L, for the
other cases will follow by interchanging the roles of the vertices. But if A ∈ L, then the
Crossbar Theorem implies that L and (BC) have a point W in common (in fact (BC) and
(AX do), and therefore it follows that B and C lie on opposite sides of L. Furthermore,
it follows that the line L meets the triangle in the distinct points A and W .

The only possibility left to consider is the case where no vertex lies on L; by the
preceding discussion, we know that neither half-plane contains all three vertices, and thus
two of the vertices are on one half-plane and one is on the other. As before, without loss
of generality we may assume that A is on one side and B, C are on the other. But in
this situation we know that the line L meets both (BC) and (AC). This completes the
examination of all possible cases.

C4. We shall follow the hint and solve for x in terms of y. Since y = Ax + b and
A is invertible, it follows that x = A−1(y − b). If we substitute this into the defining
equation for the plane, we see that

d = Cx = CA−1(y − b) or equivalentlyCA−1y = d + CA−1b

which shows that y is defined by an equation of the form Py = q, where P = CA−1 and
q = d + CA−1b.
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