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Abstract. If two closed oriented manifolds with smooth semifree group
actions satisfy a condition called the Gap Hypothesis are equivariantly homo-
topy equivalent, then the equivalence between them can always be deformed
to an isovariant homotopy equivalence. This paper gives and analog for com-
pact bounded manifolds and equivariant homotopy equivalences that are iso-
variant on the boundary, showing that there are deformations to isovariant
equivalences that are fixed on the boundary. The proof is homotopy theo-
retic like the author’s approach to the existence result, but it also requires
some additional machinery. A uniqueness theorem for isovariant deforma-
tions follows directly from the main result.

As indicated in our previous paper [Sc9], there are two basic notions of homotopy
equivalence for spaces with group actions; namely, equivariant homotopy equivalences
and the stronger concept of isovariant homotopy equivalence. In particular, the classi-
fications of certain kinds of group actions on manifolds up to both types of equivalence
have been extensively studied, and the main result of [Sc9] shows that these coincide if
the manifolds in question satisfy a condition called the Gap Hypothesis.

There is a fairly extensive discussion of such matters in [Sc9], so we shall only sum-
marize points that are important for our purposes. First, we shall restrict attention to
group actions on manifolds that are smooth and semifree (the group acts freely off
the fixed point set — note that this holds for all actions of a cyclic group Zp of prime
order p). Second, we shall assume the Gap Hypothesis condition, which implies that the
dimensions of the ambient manifold X and the fixed point set F satisfy the inequality

dim F + 1 ≤ 1
2 dim X .

The main results of [Sc9] (see Theorem 1.1) state that if M and N are closed (compact,
unbounded, connected) smooth manifolds with semifree actions of a finite group G which
satisfy the Gap Hypothesis, and f : M → N is a G-equivariant homotopy equivalence,
then f is equivariantly homotopy to a G-isovariant homotopy equivalence. The main
result of this paper is a relative analog of Theorem 1.1 in [Sc9] for manifolds with
boundary.
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Theorem 1. Let G be a finite group, let (M, ∂M) and (N, ∂N) be compact, bounded,
smooth semifree G-manifolds that satisfy the Gap Hypothesis, and let f : (M, ∂M) →
(N, ∂N) be an equivariant homotopy equivalence that restricts to an isovariant homo-
topy equivalence from ∂M to ∂N . Then f is equivariantly homotopic to an isovariant
homotopy equivalence, and in fact one can choose the homotopy to be constant on ∂M .

One important consequence of this result is the following uniqueness property for the
isovariant homotopy equivalences given by this result and Theorem 1.1 from [Sc9]:

Theorem 2. In the setting of the previous result, suppose that f and g are isovariant
homotopy equivalences of pairs from (M, ∂M) to (N, ∂N) that are equivariantly homo-
topic, and assume further that the Gap Hypothesis holds for M × R and N × R. Then
there is an equivariant deformation of the equivariant homotopy between f and g to
an isovariant homotopy, and this deformation is fixed on M × {0, 1}; furthermore, if
the original equivariant homotopy is isovariant on ∂M × [0, 1], then one can choose the
equivariant deformation so that it is also fixed on the ∂M × [0, 1].

Note that if X × R satisfies the Gap Hypothesis then we have

dim(F × R) + 1 = dim F + 2 ≤ 1
2 dim(X × R) ≤ 1

2 (dim X + 1)

so that
dimF + 1 ≤ [ 12 (dimX + 1)] − 1 = 1

2 (dimX − 1) < 1
2 dimX

and hence X also satisfies the Gap Hypothesis. Therefore we obtain the following
immediate consequence:

Corollary 3. Suppose that M is a compact smooth semifree G-manifold where G is a
finite group acting semifreely on M . Let EG(M) be the group of all equivariant homotopy
classes of equivariant homotopy self-equivalences of M , let E ISO

G (M) be the group of all
isovariant homotopy classes of equivariant homotopy self-equivalences of (M.∂M), and
let j : EISO

G (M) → EG(M) be the forgetful homomorphism. Then j is surjective if M
satisfies the Gap Hypothesis and j is bijective if M × R satisfies the Gap Hypothesis.

In geometric topology, such relative theorems and uniqueness results are frequently
straightforward corollaries of the corresponding absolute existence theorems, and the
proofs are often included almost as afterthoughts to the latter. Since we did not include
the relative and uniqueness results in [Sc9], we should explain why they do not follow
immediately from the methods described in [Sc9]. A crucial step in the latter is to
deform an equivariant homotopy equivalence so that it is isovariant near the fixed point
set; in fact, one chooses the deformed map so that it satisfies a homotopy theoretic
analog of transversality near the fixed point set that is called normal straightening .
Suppose now that we are given an equivariant homotopy equivalence F of manifolds
with boundary and that the restriction of F to the boundary determines an isovariant
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homotopy equivalence ∂F . The results of [DuS] imply that ∂F is isovariantly homotopic
to a map that is normally straightened near the fixed point set, and the results of
[Sc9] imply the map F is equivariantly homotopic to a map of pairs that is normally
straightened near the fixed point set. Thus we obtain two deformations of ∂F to maps
that are normally straightened near the fixed point set.

Question. Can one choose these deformations so that they determine compatible
normal straightenings near the fixed point set of the boundary?

Here is one way of making the notion of compatibility more precise:

Sharpened question. Are the restrictions of the maps to neighborhoods of the fixed
point set isovariantly homotopic?

If it is possible to answer the sharpened question affirmatively, then the balance of
the proof of Theorem 1 will be a routine extension of the arguments in [Sc9]. However,
the deformation to a normally straightened map in the latter involves the arbitrary
choice of an equivariant fiber homotopy equivalence, so the method provides no way
of ensuring a positive answer to the compatibility question. In fact it is very easy to
construct examples for which the induced maps near the fixed point sets are not at
all compatible (in particular, their restrictions to neighborhoods of the fixed point sets
need not be isovariantly homotopic).

In order to overcome such difficulties we must introduce some means for guaranteeing
compatibility. We shall do this using equivariant analogs of the normal invariants which
arise in ordinary surgery theory (compare Rourke [Rk], p. 140, as well as Chapter 3 of
Lück [L] and Browder’s book [Br1]). As in the nonequivariant case, such maps can be
defined and studied directly by homotopy theoretic methods without any need to discuss
surgery problems as such. Using such invariants we shall describe canonical choices for
normal straightenings with the desired compatibility properties. These invariants lie in
equivariant analogs of some standard homotopy functors which arise in surgery theory
(cf. [MaMi]). Although the constructions of these objects parallel the nonequivariant
case, clear statements and proofs are difficult — and in some cases impossible — to find
in the literature, so for the sake of completeness it will be necessary to spend some time
describing the sets in which our equivariant normal invariants are defined.

In a subsequent paper [DoS] we shall use Theorem 1 in proving a generalization of the
main result in [Sc9] (namely, Theorem 2.2) to some classes of examples just outside the
Gap Hypothesis range satisfying dimM = 2 dim MG + ε, where ε is either 1 or 0. On
the other hand, in yet another paper [Sc10] we shall construct examples to show that
the main result in [Sc9] is false for some examples satisfying dim M = 2 dimMG + 1,
and simple modifications of such examples will also show that Theorem 2 is also false
for some examples satisfying dim M = 2 dimMG + 2.

Here is a summary of the paper. In Section 1 we shall discuss the equivariant ho-
motopy functors in which the equivariant normal invariants are defined. Some of these
ideas were previously considered in [Sc5] and [Sc4], but we shall need some further
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properties, and in particular we shall need a splitting theorem for such functors over
spaces on which the group acts trivially. The second section contains the definitions
of the equivariant normal invariants and some of their important formal properties;
in particular, if an equivariant homotopy equivalence is isovariant, these yield a close
relationship between the normal invariant to the behavior of the isovariant homotopy
equivalence near the fixed point set. We shall use this relationship and ideas from [Sc9]
to prove the required compatibility condition in Section 3. Finally, in Section 4 we shall
prove the main theorems and include some additional remarks.

1. Equivariant fiber retraction structures

Unfortunately, the phrase “proper mapping” has two distinct meanings in geometric
topology, and one of them plays a key role here. In this paper a proper map f :
(M, ∂M) → (N, ∂N) of manifolds with boundary will always mean that f also maps
interior of M to the interior of N , or equivalently that f−1(∂N) = ∂M . A simple
application of the smooth Collar Neighborhood Theorem implies that if f is an arbitrary
continuous map of bounded manifold pairs, then f is homotopic to a proper mapping
in the sense described above; one can similarly use an equivariant version of the Collar
Neighborhood Theorem to prove an equivariant analog if the bounded manifolds in
question have smooth actions of compact Lie groups.

One crucial step in [Sc9] depends on the following result of K. Kawakubo [Ka]:

Homotopy invariance of stable equivariant normal bundles. Let G be a compact

Lie group, let M and N be compact oriented smooth G-manifolds, suppose that f :
(M, ∂M) → (N, ∂N) is an equivariant homotopy equivalence of pairs, and let νM and

νN denote the equivariant normal bundles for smooth proper equivariant embeddings of

M and N in Ω × R+, where Ω is a finite dimensional orthogonal G-representation and

R+ denotes the nonnegative reals with trivial G-action. Then the unit sphere bundles

of νM and νN are stably fiber homotopically equivalent.

Remark. Standard (equivariant smooth) embedding and isotopy theorems imply
that the stable equivalence classes of the equivariant normal bundles νM and νN do not
depend upon the choice of equivariant smooth embedding because all such embeddings
are stably ambient isotopic.

In this paper we shall need a stronger version of this result. Specifically, the existence
of a canonical choice of stable G-fiber homotopy equivalence between the equivariant
normal bundles of M and N . Standard considerations involving direct sums of vector
bundles imply the existence of such a stable equivalence is equivalent to the existence
of a stable G-fiber homotopy trivialization for the unit sphere bundle of ν(N) ⊕ ξ,
where f∗ξ is stably inverse to ν(M) with respect to direct sum, and it is usually more
convenient to work with this equivalent formulation.

The construction of such equivalences and trivializations is formally parallel to a
standard well known construction in the nonequivariant case. In particular, a more
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general version of the latter is discussed in [Rk, p. 140], especially the discussion
preceding diagram (3.8); this reference cites results of M. Spivak on Poincaré duality
spaces [Spv], but since we are only interested in smooth manifolds one can replace this
with a reference to Atiyah’s earlier paper on Spanier-Whitehead duality and Thom
complexes [At]. With this substitution, everything extends to manifolds with group
actions if one uses K. Wirthmüller’s equivariant version of Spanier-Whitehead duality
[Wi] and the results of Kawakubo.

Standard results in algebraic topology yield a classifying space for equivalence classes
of stable vector bundles with stable fiber homotopy trivializations, and we shall denote
this space by F/O; this space is also frequently denoted by G/O (cf. [MaMi]), but it
seems better to avoid conflicting uses for G in a paper about group actions. We shall
need the equivariant analogs of this space and especially some basic properties with
no counterparts in the nonequivariant case. Similar objects were considered in [Sc5,
Section 2, page 261]. The most important conclusion for our purposes is Theorem 2.4,
which will be especially important for the proofs of the main results.

Let G be a compact Lie group, and (X, x0) be an invariantly pointed G-space; this
means that x0 ∈ X is a fixed point of the action. Given a finite-dimensional orthogonal
G-representation M , we shall say that an M -pointed G-vector bundle over X with a
G-equivariant fiber retraction is a pair (ξ, ρ), where ξ is a pointed G-vector bundle over
X (so we are given a G-isomorphism from M to the fiber over x0) and ρ : S(ξ) → S(M)
is a G-equivariant map such that the restriction of ρ to the fiber of x0 yields the identity
and the restriction of ρ to every fiber is a homotopy equivalence. As usual, S(ξ) denotes
the unit sphere bundle of ξ with respect to some riemannian metric. Two such objects
(ξj, ρj) — where j = 0 and 1 — are equivalent if and only if there is a similar sort
of object (η, σ) over X × [0, 1] and there are G-vector bundle isomorphisms hj : ξj →
η|X × {j} such that ρj = σ ohj . Not surprisingly, this yields an equivalence relation,
and the equivalence classes form a based set that we shall call F/OG,M (X, x0); the
base point is given by the product bundle X × M with the usual projection map from
X × S(M) to S(M). The pullback construction makes the sets F/OG,M (X, x0) into
a G-homotopy functor on invariantly pointed G-spaces, and it is routine to check that
the functor is equivariantly representable (cf. the discussion of a related construction
in [Sc5, p. 261]). The Whitney sum determines well behaved natural transformations

F/OG,M (X, x0) × F/OG,N (X, x0) −→ F/OG,M⊕N (X, x0)

for each pair of representations M and N , and one can take direct limits in the usual way
to form a corresponding stabilized functor F/OG(X, x0), which is also a representable
G-homotopy functor.

Given (X, x0) and M as above, we can also define a set of M -based G-vector bundles
VectG,M (X, x0) consisting of a G-vector bundle and an identification of the fiber over
x0 with the representation M ; as above, direct sum defines a natural transformation
from VectG,M ×VectG,N to VectG,M⊕N , and one can stabilize to obtain objects that
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can be called VectG; the existence of inverse bundles in equivariant K-theory (at least
for reasonable choices of X including finite G-CW complexes) implies that the latter is
isomorphic to the reduced equivariant real K-theory KOG(X, x0). There are natural
maps from the functors F/OG,M and F/OG to their counterparts VectG,M and VectG,
and these maps commute with direct sum constructions.

Likewise, given an element of F/OG,M (X, x0), there is an underlying G-vector bundle,
and if we stabilize we obtain an additive natural transformation from F/OG to VectG.
This natural transformation fits into long exact sequences which extend infinitely to
the left as in Section 3 of [Sc5]. The “fiber functor” FG for the natural transformation
F/OG → VectG is equivariantly representable as follows: Given a G-representation M ,
let EG(M) denote the space of equivariant self maps of the unit sphere S(M) and let
G act on this function space by conjugation. If N is another such representation then
the join construction defines a continuous equivariant homomorphism from EG(M) to
EG(M⊕N), and if we take colimits over a suitable family of representations (for example,
finite-dimensional subrepresentations of the countable direct sum ⊕∞ L2(G), where the
summands are the usual L2 group algebra), then we obtain a limit space EG which
represents the functor FG.

Variants with orbit type restrictions

A fundamental difference between the preceding constructions and those of [Sc5] is
that the latter involve free G-vector bundles in the sense of [Sc4]; i.e., the group G
acts freely off the zero section of the total space. The corresponding sets obtained
using such vector bundles are denoted by F/OG,free,M (X, x0), F/OG,free(X, x0), and
VectG,free(X, x0). There are obvious natural maps

F/OG,free,M (X, x0) −→ F/OG,M (X, x0)

F/OG,free(X, x0) −→ F/OG(X, x0)

VectG,free(X, x0) −→ VectG(X, x0)

that are given by passage from free G-vector bundles to arbitrary G-vector bundles. By
construction these maps all preserve direct sums. Similarly, one has functors FG,free,M

and FG,free defined using free G-representations rather than arbitrary ones. Further-
more, the natural homomorphism from F/OG,free(X, x0) to VectG,free(X, x0) fits into
an exact sequence exactly as in the unrestricted case (see Section 3 of [Sc5]), and there
is an exact commutative ladder diagram containing the two exact sequences.

We shall also need another variant of the constructions which lies between objects

of the form TG,free and TG, where T is one of F , F/O or K̃OG or their corresponding
unstable versions. Specifically, one can define functors

FG,semifree,M (X, x0), FG,semifree(X, x0)

F/OG,semifree,M (X, x0), F/OG,semifree(X, x0)
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K̃OG,semifree(X, x0)

such that all representations ane G-vector bundles are taken to have semifree actions.
Everything discussed thus far (and more) will go through with only the obvious changes,
and all of the natural maps

TG,free −→ TG

described above factor canonically through the corresponding functors TG,semifree.

Inverse bundles. We have noted that VectG(X, x0) is naturally isomorphic to
KOG(X, x0) if X is a reasonable space because G-vector bundles over such spaces have
stable inverses. Clearly one can define abelian groups KOG,A(X, x0), where A = “free”
or “semifree,” and there are obvious natural homomorphisms from the abelian monoids
VectG(X, x0) to the abelian groups KOG,A(X, x0). These maps will be bijective if and
only if VectG(X, x0) is an abelian group. If G is finite cyclic and A = “free,” then this
is true by Proposition 1.4 in [Sc4]. More generally, it will be true for a group G if the
following question has an affirmative answer:

Extension problem. Suppose G is a compact Lie group that admits a free finite
dimensional orthogonal representation, let H be a closed subgroup of G, and suppose
that V is a free finite dimensional representation of H. Is there a free representation
W of H such that V ⊕ W extends to a free representation of G?

Certainly the answer to this question is false if G = S1, and an example from Section
1 of [Sc4] shows that the monoid VectG,free(X, x0) need not have inverses in this case. It
is considerably more difficult to determine whether there is an affirmative answer if G
is finite; in particular, the answer is affirmative for many noncyclic examples, including
generalized quaternionic groups. However, under suitable elementary conditions on
(X, x0) one can conclude that inverses always exist, and this turns out to suffice our
purposes here. In particular, we have the following:

Lemma 1.0. Suppose that (X, x0) is an invariantly pointed finite G-equivariant CW
complex and that G acts semifreely on X. Then inverse vector bundles exist in the
abelian monoid VectG,semifree(X, x0)

Proof. In this case the answer to the extension problem is clearly yes for all isotropy
subgroups of the action on X; it is a tautology for G, and it is also clearly true if
H = {1}. These conditions are enough to carry out the construction of an inverse
bundle described in Proposition 1.4 of [Sc4].�

Splitting principles for spaces with trivial actions

If the group G acts trivially on the space X, then basic results on equivariant K-
theory imply that KOG(X) splits canonically into a direct sum of copies of the ordinary
real, complex and quaternionic K-theories KO(X), KU(X) = K(X) and KSp(X),
where the sum is indexed by the list of irreducible representations and the type of K-
theory depends upon whether the skew field for a representation is the real numbers, the
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complex numbers, or the quaternions (cf. [Se1, p. 134, lines 4–6]; in this passage Segal
uses KR for the object now generally called KO). Corresponding decompositions for the
reduced groups VectG(X, x0) also follow immediately. As in [Sc4], similar results hold

for VectG,free and K̃OG,free, the only difference being that the summation runs through
all free irreducible G-representations; the corresponding results for VectG,semifree and

K̃OG,semifree also follow from such considerations, and the various decompositions all
have the expected naturality properties. The following elementary relationship between
VectG,free and VectG,semifree for trivial G-spaces is part of a pattern which is important
for our purposes.

Proposition 1.1. Suppose that (X, x0) is a pointed G-space with a trivial action. Then
there is a natural isomorphism from VectG,semifree(X, x0) to the direct sum

VectG,free(X, x0) ⊕ K̃O(X, x0)

such that projection onto the second factor is given by taking the fixed point subbundle
and injection into the first factor is the forgetful map from free to semifree G-vector
bundles.

Proof. These follow directly from the direct sum decompositions of the groups

VectG,semifree(X, x0), VectG,free(X, x0)

into copies of nonequivariant real, complex and quaternionic K-theory; in the semifree
case there is one extra summand of real K-theory arising from the unique irreducible
semifree representation that is not free; namely, the trivial representation.�

We shall need corresponding and compatible splittings for our functors of the types
FG and F/OG. These are less trivial to derive than the formulas for Vect, and the
formula for F/O will be crucial to handling the main technical problem in this paper.
The first of these follows directly from the methods of [Se2] and [BeS]. As in [BeS], if
V is a free G-representation we define FG(V ) to be the topological monoid of all G-
equivariant self maps of the unit sphere S(V ) and take FG to be the limit of the spaces
FG(V ) for some appropriate collection of free G-representations V ; by the results of
[BeS] the homotopy types of FG and its classifying space BFG do not depend upon the
choice so long as the family has representations of arbitrarily large dimensions.

Proposition 1.2. If (X, x0) as above is a trivial G-space then there is a natural isomor-
phism FG,semifree(X, x0) ∼= [X, F ]× [X, FG] such that the following diagram commutes:

FG,free(X, x0) −−−−→ FG,semifree(X, x0) −−−−→ F{1}(X, x0)

∼=

y ∼=

y ∼=

y

[X, FG] −−−−→ [X, FG] × [X, F ] −−−−→ [X, F ]
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The horizontal arrows on the left are given by the inclusion of the family of free repre-
sentations into the family of semifree representations and the horizontal arrows on the
right are given by passage to fixed point sets.

This follows directly from the methods of [BeS] and [Se2].�

The topological monoid FG × F has a classifying space of the form BFG × BF , and
by results of S. Waner [Wa] the homotopy functor [X, BFG × BF ] classifies stabilized
equivariant spherical fibrations over X such that the equivariant homotopy type of the
fiber is a sphere with a semifree orthogonal action. In analogy with our constructions
for vector bundles, we can define unstable and stable functors on trivial G-spaces

SphG,(semi)free,M SphG,(semi)free SphG

and there is an additive structure given by fiberwise joins which is compatible with direct
sums for vector bundles. In particular, there are obvious additive maps from VectG,A to
SphG,A, and one can extend the previously described infinite exact sequences relating
FG,A, F/OG,A, and VectG,A one step to the right so that they include SphG,A.

Claim. If A is either “free” or “semifree”, then all objects in such exact sequences are
abelian groups with respect to direct sum or fiberwise join.

Sketch of proof. We know that everything in sight has a commutative monoid
structure, and we know that VectG,A has a group structure by the decomposition of an
element into a sum of ordinary vector bundles over various division rings. We also know
that SphG,A is represented by BFG if A = “free” and by BFG ×BF if A = “semifree.”
The fiberwise join construction defines compatible binary operations on these spaces,
and by the results of [BeS2] they have the homotopy-everything properties needed to
show that the operations come from infinite loop space structures. Thus in the exact
sequences of functors

· · · → FG,A −→ F/OG,A −→ VectG,A −→ SphG,A

all terms except possibly F/OG,A are abelian group valued. An elementary diagram
chase then shows that this remaining term is also abelian group valued.�

We are finally ready to state and prove a result that plays a crucial role in our paper.

Proposition 1.3. If (X, x0) as usual is a trivial G-space then there is a natural abelian
group isomorphism F/OG,semifree(X, x0) ∼= [X, F/O] ⊕ F/OG,free(X, x0) such that the
projection onto the first factor is given by taking fixed point sets and the injection from
the second factor is given by inclusion of the family of free representations in the family
of semifree representations. These splittings are compatible with similar splittings in
which F/O is replaced by F or Vect or Sph.

Proof. First of all, note that the composite

F/OG,free(X, x0) −→ F/OG,semifree(X, x0) −→ [X, F/O]
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is obviously trivial because it takes a free G-vector bundle to the subbundle determined
by its zero section. Next observe that the projection onto [X, F/O] has a one-sided
inverse given by inclusion of the family of trivial representations into the family of
semifree representations, and this map is clearly additive and compatible with similar
maps for F or Vect or Sph; for each of the latter, one has direct sum decompositions of
the type described in the proposition. Using all these facts, one can prove the required
direct sum decomposition for F/OG,semifree(X, x0) by a straightforward but slightly
tedious diagram chase.�

Unreduced analogs of the stabilized functors

Although the unstable functors TG,A,M depend upon the base point — or more
correctly, on the connected component of the latter in the fixed point set — the stabilized
versions do not really require choices of base points. To see this, given (X, x0) consider
the invariantly pointed G-space (X+,∞) where X+ = X t {∞} and G acts trivially on
the new added base point. We shall define the corresponding absolute group TG,A(X)
to be TG,A(X+,∞). There is a unique “initial object” map from (X+,∞) to (X, x0)
sending X to itself by the identity and sending ∞ to x0, and this induces a canonical
natural homomorphism θ from TG,A(X, x0) to TG,A(X+,∞).

Claim. The map θ is an isomorphism.

Proof of Claim. The inclusion map of {∞, x0} in X+ is an equivariant retract, for
an explicit one sided inverse is given by the map that is the identity on ∞ and sends
all points of X to x0. If we combine this with the long exact homotopy sequence of the
equivariant cofibration {∞, x0} ⊂ X+ → X, we see that θ is split injective. In order to
prove that θ is surjective, it suffices to check that

F/OG,A

(
{∞, x0}, ∞

)
= {0}

which reduces to showing that (at least stably) every equivariant homotopy self-equiva-
lence of a sphere with an orthogonal action of a finite group is equivariantly homotopic
to an orthogonal mapping. As noted in [Sc9], this is well known and in particular follows
from the Equivariant Hopf Theorem (cf. tom Dieck [tD], Thm. 8.4.1, pp. 213–214).�

2. Equivariant normal invariants and their properties

We have already mentioned that a homotopy equivalence of compact (possibly)
bounded smooth manifolds f : (M, ∂M) → (N∂N) has an associated smooth nor-
mal invariant which lies in the group [N, F/O]. The purpose of this section is to define
similar objects for equivariant homotopy equivalences. Most if not all of this has been
known for some time but has not appeared in print explicitly. Since we shall need some
basic properties of these generalizations to prove our main results, it is necessary to
include formal statements here. Our main objectives are formulas involving equivariant
homotopy equivalences that are isovariant, either everywhere or only on the boundary
(see Proposition 2.3 and Theorem 2.4 below).
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General remark. None of the results in this section assume the Gap Hypothesis.

Following standard terminology as in [At], if X is a space and α is a vector bundle
over X then Xα will denote the Thom space of α, with a canonical invariant base
point given by the “point at infinity.” Similarly, if X is a manifold with boundary then
(X, ∂X)α will denote the quotient obtained by collapsing the portion of bundle over ∂X
to a point.

As in the nonequivariant case, one can define normal invariants more generally for
certain mappings of degree ±1 with some extra structure that always exists if one has
a homotopy equivalence. In fact there are several equivariant generalizations of such
normal maps (or surgery problems) in the literature, so we begin by describing the
concept needed in this paper. As before, νX denotes the equivariant normal bundle
of some suitably chosen proper equivariant smooth embedding of the compact smooth
G-manifold X.

Definition. Let G be a compact Lie group, and let (N, ∂N) be a compact smooth
G-manifold with boundary. A weakly structured G-normal map is a triple (f,b, ξ)
consisting of (1) a proper G-mapping f : (M, ∂M) → (N, ∂N) of smooth G manifolds
with boundary such that the dimensions of M and N are equal, (2) a G-vector bundle
ξ over N such that the dimensions of the fibers of ξ and νM are equal, (3) a map
b : E(νM ) → E(ξ) of total spaces such that for each x ∈ M the map b sens the fiber
Ex(M) to the fiber Ef(x)(ξ) by a linear isomorphism.

Two such objects (f : M → N,b, ξ) and (h : P → N,d, ω) are said to be stably
concordant if there is an equivariant diffeomorphism ϕ : (P, ∂P ) → (M, ∂M), a pair of
linear G-representations V and W , and an equivariant map Φ : E(νP⊕V ) → E(νM⊕W )
such that (i) for each y ∈ P the map Φ sends the fiber Ey(νP ⊕ V ) to Ef(y)(νM ⊕ W )
by a linear isomorphism, (ii) we have d = b oΦ.

Once again, this construction depends upon choosing equivariant embeddings (in
complete analogy to the nonequivariant case), but as in the nonequivariant case there are
canonical bijections between stable concordance classes for arbitrary pairs of equivariant
embeddings for the sorts of reasons mentioned at the beginning of Section 1.

Before proceeding, we need to verify that equivariant homotopy equivalences deter-
mine weakly structured equivariant normal maps as defined above.

Proposition 2.0. Let (M, ∂M) and (N, ∂N) be compact (possibly) bounded smooth
G-manifolds, and let f : (M, ∂M) → (N, ∂N) be an equivariant homotopy equivalence.
Take L to be an equivariant homotopy inverse to f , and let ξ = h∗νM . Then there is a
mapping b such that the triple (f,b, ξ) is a weakly structured G-normal map.

Sketch of proof. (Compare Rourke [Rk]; see also Sections 3.3 and 5.3 of Lück [L].)
We only need to check that such a mapping can be defined, but this follows because
h of is equivariantly homotopic to the identity and the equivariant homotopy invariance
of pullbacks implies that f∗ξ = f∗h∗νM is equivariantly isomorphic to νM .�



12

Our definition of normal map does not place any condition on the degrees of either
the globally defined maps or their restrictions to components of fixed point sets. In
order to proceed we shall require a fairly strong restriction on these degrees.

Defintition. Let G be a compact Lie group, and let M and N be compact smooth
G-manifolds of the same dimension. Suppose that f : (M, ∂M) → (N, ∂N) is an
equivariant continuous mapping, and assume that for each isotropy subgroup H the
mapping of fixed point sets fH defines a bijection from the arc components of MH

to the arc components of NH and also from the arc components of ∂MH to the arc
components of ∂NH . Assume further that all the components described above are
orientable. We shall say that f has total equivariant degree ±1 if for each subgroup H
and each component of MH or ∂MH the map induced by fH has degree ±1.

Basic Example. If f is an equivariant homotopy equivalence (of pairs), then f
automatically has total equivariant degree ±1.

In most situations, it suffices to know the degree condition for a reasonable family
A of subgroups. For example, if the action is effective and all the isotropy subgroups
are normal (as in the semifree case), then one can take A to be the famil of isotropy
subgroups.

If we are given a normal map (f,b, ξ) of degree ±1 in the nonequivariant case, the
next step is to define its normal invariant in the group of homotopy classes [N, F/O].
For weakly structured equivariant normal maps of total degree ±1 we can carry out a
similar construction to obtain a class in F/OG(N).

Construction 2.1. Let f : (M, ∂M) → (N∂N) be a weakly structured equivariant
normal map of compact smooth G-manifolds as above, with total equivariant degree
±1. The G-equivariant normal invariant of f is the element of the group F/OG(N)
represented by the object given as follows:

(1) Let b• : Mν → N ξ be the associated map of Thom spaces given by taking one
point compactifications, and let b1 : (M, ∂M)ν → (N, ∂N)ξ be the map of quo-
tients obtained by collapsing the restrictions ∂M ν and ∂N ξ to the base points. Let
cM : SV ⊕R → (M, ∂M)ν be given by the Pontryagin-Thom map which collapses the
complement of the interior of a neat tubular neighborhood of M ⊂ V × [0,∞) to a
point.

(2) Let τN denote the equivariant tangent bundle of N , and let α be a G-vector bundle
such that α ⊕ ξ ⊕ τN is isomorphic to N × W for some G-representation W ; the
existence of stable inverses implies that such bundles exist and are unique up to
stable equivalence. Let δ : Nα ∧ (N, ∂N)ξ → SV ⊕W⊕R be a standard G-equivariant
Spanier-Whitehead duality map, and let η be the map δ o ( id[Nα] ∧ 〈b1

ocM 〉 ). By
construction, η is an equivariant map from Nα⊕V ⊕R ∼= Nα ∧SV ⊕R to SV ⊕W⊕R such
that the restriction to a suspended fiber compactification SV ⊕W⊕R ∼= SW ∧ SV ⊕R is
homotopic to the identity.
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(3) Let γ be the map from the sphere bundle S(α ⊕ W ⊕ R
2) to Nα ∧ V ⊕ R given by

collapsing the a canonical cross section, and let ϕ be the composite of γ and η. Then
ϕ determines an equivariant fiber homotopy trivialization of the sphere bundle.

Remarks on the construction. 1. This is an equivariant version of the con-
struction cited in [Rk, p. 140]; the latter works with the category of piecewise linear
manifolds, but everything goes through for smooth manifolds if one replaces F/PL by
F/O. Conversely, the discussion in Sections 3.3–3.5 and 5.3 of Lück [L] deals with
the smooth category and describes the adaptations for piecewise linear and topological
manifolds in Section 5.4. — There is also a dual approach to normal invariants in the
nonequivariant case which is described in M. A. Armstrong’s paper [Ar], once again
stated in the PL category with a straightforward adaptation to the smooth category. It
is also possible to carry out the dual approach equivariantly; at one crucial step in the
nonequivariant case one needs a result stating that the total spaces of the equivariant
normal bundles of homotopy equivalent manifolds are stably equivalent, and the equi-
variant analog of this result is given by work of Kawakubo [K2] (related results are also
due to S. Kwasik [Kw]).

2. Clearly the construction involves numerous choices, so at some point it is
necessary to check that the constructed element of F/OG(N) does not depend upon
these choices, at least if one stabilizes by taking direct sums with a product bundle. This
proceeds exactly as in the nonequivariant case; for example, if we choose another neat
equivariant embedding, then the original and new embeddings will determine stably
homotopic objects that become equal in F/OG(N). The independence of choices at
other points also follow by straightforward adaptations from the nonequivariant case.

We have described the construction of normal invariants in detail because we actually
need a refinement of the general concept for semifree actions.

Proposition 2.2. In the preceding discussion, suppose that G acts semifreely on M
and N . Then the normal invariant has a canonical lifting to F/OG,semifree(N).

In order to verify this we need to notice a few things. First, one can embed a compact
smooth semifree G-manifold smoothly and neatly in V × [0,∞), where V has a semifree
G-action. Second, since VectG,semifree has inverse bundles, we can choose α and W to
have semifree actions. Third, the verification that the construction is independent of
choices goes through essentially unchanged.�

We can now state generalizations for some basic properties of nonequivariant normal
invariants.

Proposition 2.3. The equivariant normal invariants described above (and their refine-
ments for semifree actions) have the following properties:

(i) The invariant is trivial for an equivariant diffeomorphism, and equivariantly ho-
motopic equivariant homotopy equivalences have the same normal invariants.

(ii) If q(f) is the normal invariant of f and ∂f : ∂M → ∂N is the induced map of
boundaries, then q(∂f) is the image of q(f) under the restriction map from F/OG,A(N)
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to F/OG,A(∂N); here A is either the family of all representations or the family of all
semifree representations.

(iii) If we are given two equivariant homotopy equivalences f : (M, ∂M) → (N, ∂N)
and g : (N, ∂N) → (P, ∂P ) then the normal invariant of the composite is given by the
formula q(g of) = q(g) + [g∗]−1q(f).

(iv) Suppose f splits into a map manifold triads (M ; M0, M1) → (N ; N0, N1) and
that f0 is the induced map on (M0, ∂M0). Let j0 be the inclusion of N0 in N . Then we
have q(f0) = j∗0q(f).

(v) Suppose that ξ is a G-vector bundle over the compact smooth G-manifold N and

f :
(
D(ξ), S(ξ)

)
−→ N ×

(
D(W ), S(W )

)

is an equivariant fiber homotopy trivialization. If β denotes the class determined by ξ
and f in F/OG,A(N), then the normal invariant of f is equal to β.

In the literature one sometimes sees a formula like the last one with a minus sign;
this is because some papers use a definition of normal invariant that is inverse to the
one given here and in [Rk].

Specialization to isovariant homotopy equivalences. Suppose now that the map
f : (M, ∂M) → (N, ∂N) is isovariant map and that f is normally straightened in the
sense of [DuS] and [Sc9]; since every isovariant homotopy equivalence is isovariantly
homotopic to one with this property by [DuS. p. 31], there will be no loss of generality
if we make this assumption. The latter implies know that f splits into a map of triads
(M ; M0, M1) → (N ; N0, N1) where M0 and N0 are closed tubular neighborhoods of
the fixed point set; actually, since we are making no assumptions on the dimensions of
the various components of the fixed point set, it might be preferable to view this as a
union of tubular neighborhoods over these components. As in [Sc9], let {Nα} denote
the set of components of NG; the associated map fG of fixed point sets defines a 1 − 1
correspondence between the components of MG and NG, and for each α we take

Mα = f−1(Nα) ∩ MG .

As in [Sc9], fα : Mα → Nα will denote the partial map of fixed point sets determined
by f , and the equivariant normal bundles of Mα and Nα in M and N will be called
ξα and ωα respectively. Finally, S(ν) will again generically represent the unit sphere
bundle of a vector bundle ν.

Since we are assuming f is normally straightened, it follows that its restriction f0,1

to M0 ∩ M1 splits into pieces corresponding to the components of the fixed point sets
of M and N . Suppose now that the associated map fα defines an ordinary homotopy
equivalence from (Mα, ∂Mα) to (Nα, ∂Nα), and let Lα denote a homotopy inverse to
fα. Given an index variable α corresponding to such a pair of components, take

hα :
(
D(Mα), S(Mα)

)
−→

(
D(Mα), S(Mα)

)
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to be the associated map of pairs defined by f0,1. By [Sc9] we know that the mappings hα

are equivariant fiber homotopy equivalences of pairs covering the mappings fα. Each hα

determines a class λ(hα) ∈ F/OG,free(Nα) by a simple stabilization trick. Specifically,
purely formal considerations imply that hα determines a canonical equivariant fiber
homotopy equivalence h′

α from S(L∗ξα) to S(ωα); note that both are free G-vector
bundles over Nα. Therefore, if µα represents an inverse G-vector bundle to ωα then
the fiberwise join h′

α ⊕ id[µα] defines an equivariant fiber homotopy trivialization from
S(L∗

αξα ⊕ µα) to S(ωα ⊕ µα) ∼= Nα × S(Wα), where Wα is a free G-representation such
that ωα ⊕ µα

∼= Nα × Wα. Standard considerations imply that the stabilized class of
λ(hα) in F/OG,free(Nα) does not depend upon the choice of (a stable) inverse bundle,
and in fact the class itself depends only on the isovariant homotopy class of the original
mapping f .

The following basic relationship between λ(hα) and the normal invariant of f is
absolutely indispensable for our purposes.

Theorem 2.4. In the setting above, let jα : Nα → N denote the inclusion mapping.
Then under the canonical isomorphism

F/OG,semifree(Nα) ∼= F/OG,free(Nα) × [Nα, F/O]

the restricted normal invariant j∗αq(f) corresponds to (λ(hα), q(fα) ).

Proof. The map hα factors as a composite

D(ξα) −→ D
(
[f∗

α]−1ξα

)
−→ D(ωα)

where for each x ∈ Mα the first map sends the fiber over x to the fiber over fα(x) by
a linear isomorphism and the second map is fiber preserving over Nα and determines
a fiber homotopy equivalence of bundle pairs. By the formula for normal invariants of
composites, it suffices to prove the formula in the theorem for each of the factors. The
first of these follows directly from the construction of normal invariants, and the second
follows from the final part of Proposition 2.3.�

The preceding observations also lead directly to the following basic fact about equi-
variant homotopy equivalences that are isovariant on the boundary.

Theorem 2.5. Let M , N , Mα, Nα, ξα and ωα be as above. Assume f : (M, ∂M) →
(N, ∂N) is an equivariant map of total degree ±1 that is isovariant on the boundary and
determines a (nonequivariant) homotopy equivalence of fixed point sets. Assume that
the map on the boundary is normally straightened so that we have equivariant maps of
pairs of bundle pairs

hα :
(
D(ξα|∂Mα), S(ξα|∂Mα)

)
−→

(
D(ωα|∂Nα), S(ωα|∂Nα)

)

covering fα|∂Mα that are (equivariant) homotopy equivalences on each fiber. Then there
are free G-representations Wα and equivariant homotopy equivalences of pairs

Kα :
(
D(ξα ⊕ Wα), S(ξα ⊕ Wα)

)
−→

(
D(ωα ⊕ Wα), S(ωα ⊕ Wα)

)
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covering fα that are (equivariant) homotopy equivalences on each fiber such that the
restriction of Kα to the inverse image of the boundary is the fiberwise join of hα and
the identity on Wα.

Sketch of proof. In fact, one can construct Kα by taking fiberwise joins of the
normal invariants over the components Nα with the identities on the bundles ωα. By
Theorem 2.4 the restrictions to the boundaries are just the stabilizations of the original
maps hα.�

3. Proofs of main results

If the Gap Hypothesis holds, then the conclusion of Theorem 2.5 can be strengthened.

Theorem 3.1. Let M , N , Mα, Nα, ξα and ωα be as above. Assume f : (M, ∂M) →
(N, ∂N) is an equivariant map of total degree ±1 that is isovariant on the boundary and
determines a (nonequivariant) homotopy equivalence of fixed point sets. Assume that
the map on the boundary is normally straightened so that we have equivariant maps of
pairs of bundle pairs

hα :
(
D(ξα|∂Mα), S(ξα|∂Mα)

)
−→

(
D(ωα|∂Nα), S(ωα|∂Nα)

)

covering fα|∂Mα that are (equivariant) homotopy equivalences on each fiber. Suppose
further that M and N satisfy the Gap Hypothesis. Then there equivariant homotopy
equivalence of pairs

kα :
(
D(ξα), S(ξα)

)
−→

(
D(ωα), S(ωα)

)

covering fα that are (equivariant) homotopy equivalences on each fiber such that the
restriction of kα to the inverse image of the boundary is equal to hα,

Proof. We need to show that if the Gap Hypothesis holds, the the map in Theorem
2.5 can be desuspended to a map of pairs

(
D(ξα), S(ξα)

)
−→

(
D(ωα), S(ωα)

)

and this can be done using a homotopy that is fixed on the boundary of Mα. The ob-
structions to doing this lie in cohomology groups of the pair (Nα, ∂Nα) with coefficients
in the relative homotopy groups of (FG, FG(Vα) ), where Vα is the normal representation
at a fixed point in Nα. As in the proof of Proposition 5.1 in [Sc9], the dimensions of
Mα and Nα are less than or equal to the connectivity of the pair, and therefore the
obstructions vanish because they lie in cohomology groups that are trivial.�

The preceding result allows us to state and prove the relative normal straightening
property that we need in order to prove a relative version of the main result in [Sc9],
but before doing so it will be useful to describe an elementary construction we shall
need.
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Definition. Suppose that G is a compact Lie group and X is a compact smooth G-
manifold with boundary. Let γ be a G-vector bundle over X, E(γ) denote the associated
total space with its usual structure as a smooth G-manifold and let D(γ) and S(γ) be
the associated unit disk and sphere bundles. Suppose we are given a smooth equivariant
collar neighborhood of the boundary c : ∂X × [0.2) → X and let

c̃ : E(γ|∂X) −→ E(γ)

be a corresponding collar neighborhood covering c that maps fibers to fibers orthogo-
nally. The standard tapered pinching map ρ(γ, c̃) associated to these data is the map
defined by

ρc̃(y, t) = c̃
(
(1 − t) · y

)

if t ≤ 1 and by ρ(w) = 0 ·w otherwise. This yields a well defined continuous equivariant
map that is the identity on the boundary and collapses everything outside the open
collar

c̃
(
∂X × [0, 1)

)

to the zero section. Frequently we shall write ρ(γ) if there is no ambiguity about
the equivariant collar neighborhoods we are working with, and in some cases we may
abbreviate this further to ρ.

Proposition 3.2. The map ρ(γ, c̃) is homotopic to the identity by a fiber preserving
homotopy that is fixed on the boundary.

Proof. It suffices to take the straight line homotopy given by

t y + (1 − t) ρ(γ, c̃)

which is the identity on the boundary because the same is true for ρ.�

We can now prove the result on relative normal straightenings fairly directly.

Theorem 3.3. Let M , N , Mα, Nα, ξα and ωα be as above. Assume f : (M, ∂M) →
(N, ∂N) is an equivariant map of total degree ±1 that is isovariant on the boundary
and determines a (nonequivariant) homotopy equivalence of fixed point sets. Assume
that the map on the boundary is normally straightened. Suppose further that M and N
satisfy the Gap Hypothesis. Then f is equivariantly homotopic to an equivariant map
F that is normally straightened and agrees with f on the boundary. In fact, one can
construct an equivariant homotopy between f and F that is the constant homotopy on
the boundary.

Proof. Standard considerations imply that we might as well assume f is well behaved
with respect to closed equivariant collar neighborhoods for ∂M and ∂N . Specifically,
if cM and cM are the collar neighborhood embeddings, then we have f ocM (x, t) =
cN ( f(x), t) for all x ∈ ∂M and t ∈ [0, 1]. As usual, we also assume these collars are
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neat with respect to all fixed point set components. For each component Mα of MG

let Tα be a neat equivariant tubular neighborhood of Mα in M , and let T ′
α be defined

similarly for Nα in NG. By uniform continuity, for sufficiently small choices of Tα we
have f(Tα) ⊂ T ′

α, so we shall also assume this for each α. All of this can be done so that
the normal straightening on the boundary is left unchanged (at least up to a change of
scale for the unit disk and sphere bundles).

Let hα be the normal straightening on the boundary, let kα be the extension given by

Theorem 3.1, and let k̃α be obtained by pushing kα over to a map from Tα to T ′
α. Let

σ and σ′ be the relative pinching maps for the equivariant normal bundles ξα ↓ Mα and
ωα ↓ Nα pushed over to Tα and T ′

α respectively. It follows that the maps on Tα defined

by σ′ okα and fα
oσ are equal. Since the first is equivariantly homotopic to k̃α and

the second is equivariantly homotopic to f |Tα with the boundary held fixed, it follows
that the latter two maps are equivariantly homotopic with the boundary held fixed.
Therefore, by the Equivariant Homotopy Extension Property we have an equivariant

homotopy from f to some equivariant map f ′ such that f ′|Tα = k̃α and the homotopy
is fixed on the boundary. The map f ′ is normally straightened, and therefore we have
constructed the desired relative equivariant deformation of f .�

Proof of Theorem 1. In principle, all we need to check is (i) that the approach
in Section 5 of [Sc9] goes through for bounded manifolds and equivariant homotopy
equivalences that are isovariant on the boundary, (ii) in carrying this out we can keep
the homotopy fixed on the boundary.

The first step in Proposition 5.1 of [Sc9] is to make the map isovariant near the
fixed point set so that nothing on the boundary is disturbed. This is established in
Theorem 3.3 above. Next, we need to show that the set of nonisovariant points can be
equivariantly engulfed into tubular neighborhoods of the fixed point set components.
This can be done exactly as in Proposition 5.2 of [Sc9], and since the map is already
isovariant on the boundary, the set of nonisovariant points lies entirely in the interior of
M and the equivariant isotopies which engulf the nonisovariant points can be chosen to
be fixed near the boundary. We then need to show that since the nonisovariant points
are suitably engulfed the equivariant deformation of our original map can be deformed
further into an almost isovariant mapping. This can be done exactly as in part (iii)
of Theorem 2.1 in [Sc9]. Finally, we need to show that the almost isovariant mapping
can be suitably deformed into an isovariant mapping and that the latter is an isovariant
homotopy equivalence. The first of these follows from [DuS], and the second follows by
combining the same sorts of duality considerations appearing in the proof of Proposition
5.3 in [Sc9] with the Isovariant Whitehead Theorem from Section 4 of [DuS].�

Proof of Theorem 2. It is convenient to start with the unbounded case. Let
H : M × [0, 1] → N be an equivariant homotopy between the isovariant homotopy
equivalences f and g; standard elementary considerations imply that we may assume H
is fixed for t close to 0 or 1. Consider the map

H#(x, t) =
(
H(x, t), t

)
.



19

We claim that H# is an equivariant homotopy equivalence that is isovariant on the
boundary. The second part follows immediately from the isovariance of f and g, and
the first follows because a straightforward elementary argument shows that if k is a
homotopy inverse to f then k × id[0,1] is a homotopy inverse to H# (as maps of triads,
in fact). Therefore Theorem 1 implies that H# is equivariantly homotopic, leaving the
boundary fixed, to an isovariant homotopy equivalence, say K#. If we let K denote the
projection of K# onto the N factor, we obtain the desired isovariant homotopy from f
to g.

Suppose now that M is bounded and that the original homotopy is isovariant on the
boundary. Then we may form H# exactly as before, and it will define an equivariant
homotopy equivalence on M × [0, 1] that is isovariant on

∂
(
M × [0, 1]

)
= M × {0, 1} ∪ ∂M × [0, 1] .

There are standard questions about smoothness at the “corner set” ∂M × {0, 1}, but
since we already have a map that is isovariant near the entire topological boundary we
need not be concerned with such issues here (because everything near the boundary is
left unchanged). We can now use the proof of Theorem 1 to conclude that H# is equiv-
ariantly homotopic, leaving the boundary fixed, to an isovariant homotopy equivalence,
and the projection onto N will be the desired isovariant homotopy.

Finally suppose M is bounded but we do not know if the map on the boundary is
isovariant. Then we can apply the unbounded case from [Sc9] to deform the map from
∂M to ∂N into an isovariant homotopy equivalence, and by the Relative Equivariant
Homotopy Extension Property we may deform the original map, leaving M × {0, 1}
fixed, to a map which is also isovariant on ∂M × [0, 1]. Therefore we have obtained an
equivariant homotopy equivalence that is homotopic to H# leaving ∂M × [0, 1] fixed
and is isovariant on the entire boundary. By the preceding paragraph the latter is
equivariantly homotopic, leaving the entire boundary fixed, to an isovariant homotopy
equivalence. Combining these homotopies, we have an equivariant homotopy from H#

to an isovariant homotopy equivalence leaving ∂M×[0, 1] fixed. If we take the projection
of this combined homotopy onto N , we obtain the desired equivariant homotopy from
the original equivariant homotopy to an isovariant one.�

If we combine the preceding results with the proof of Theorem 5.4 of [Sc9], we obtain
the following generalization of the latter to manifolds with boundary.

Theorem 3.4. Let f : (M, ∂M) → (N, ∂N) be a continuous isovariant mapping of
oriented compact semifree smooth G-manifolds that satisfy the Gap Hypothesis. Then f
is an isovariant homotopy equivalence of pairs if and only if f is an ordinary homotopy
equivalence of pairs (forgetting the group action), and the associated map of fixed point
set pairs fG : (MG, ∂MG) → (NG, ∂NG) is also a homotopy equivalence of pairs.

Sketch of proof. The proof requires a generalization of one fact from [Sc9] to mani-
folds with boundary. Namely, an isovariant map is an isovariant homotopy equivalence
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if it is an equivariant homotopy equivalence (see Proposition 4.3 in [Sc9]); this follows
from duality considerations and the Isovariant Whitehead Theorem in [DuS] (compare
the assertions at the end of the proof of Theorem 1 above). Once we know this the
argument proving Theorem 5.4 in [Sc9] goes through unchanged.�

4. Remarks on the proof(s)

The proofs of our relative results (Theorems 1 and 2) require considerably more
work than their absolute counterparts in [Sc9]. On the other hand, in the surgery-
theoretic approach of Straus [St] and Browder [Br2] the proofs of the relative results are
basically straightforward analogs of the absolute cases. A few comments on the reasons
for this disparity might yield additional insight into the relationship between the two
approaches.

First of all, as noted in the introduction to [Sc9], the indirect approach through
surgery theory requires a great deal more technical input and reflects the powerful
nature of surgery-theoretic methods. Our direct approach requires far less machinery,
and it is not surprising that such arguments may require more work.

Also, one advantage of the direct approach is that it leads to concepts and results
of independent interest. For example, Theorem 2.5 yields an invariant which generates
potential obstructions to isovariance when the Gap Hypothesis fails. In a subsequent
paper we shall give examples realizing nontrivial obstructions of this type.

Finally, it is important to observe that the proofs of the results in this paper and
[Sc9] are not easy applications of the obstructions to isovariance in [DuS]. In particular,
if one looks at the cohomological obstruction groups in that paper, it soon becomes
clear that there are many obstructions that are potentially nontrivial. Sorting through
these possibilities requires some work, and the latter would require arguments and
constructions like those of [Sc9] and this paper.
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