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Abstract In fundamental but unpublished results from the 1970s and 80s,
S. Straus and W. Browder showed that two notions of homotopy equivalence
for manifolds with smooth group actions — isovariant and equivariant —
are equivalent under a condition known as a Gap Hypothesis. The proofs
use deep results in geometric topology, mainly from C. T. C. Wall’s theory
of surgery on compact manifolds. No complete proof of this fundamental
result has been published (or posted to the World Wide Web) during the
intervening decades, and one purpose of this paper is to give a proof in the
semifree case using the approach of Browder and Straus. We also obtain
a simplified recognition principle for isovariant homotopy equivalences of
closed manifolds with group actions satisfying a very weak Gap Hypothesis.
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1 Background

Although the notion of topological equivalence (or homeomorphism) is obvi-
ously central to most branches of topology, for more than a century mathe-
maticians have also recognized the importance and usefulness of a weaker no-
tion called homotopy equivalence (e.g., see [64]). If we consider more structured
objects given by a space with a continuous action of some topological group G,
the natural analog of a topological equivalence is an equivariant topological
equivalence ϕ satisfying ϕ(g · x) = g · ϕ(x) for all x in the domain and all
g ∈ G, but there are two distinct analogs of homotopy equivalence:

(1) Equivariant homotopy equivalence, for which the morphisms and homo-
topies are all equivariant.
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(2) Isovariant homotopy equivalence, for which the morphisms and homo-
topies also satisfy the condition g · ϕ(x) = ϕ(x) if and only if g · x = x
(in terms of isotropy subgroups [8], this means Gϕ(x) = Gx for all x).

If ϕ is an equivariant homeomorphism, then the condition in the second state-
ment is automatically satisfied, so equivariant and isovariant topological equiv-
alence are identical notions.

Example. If two spaces are isovariantly homotopy equivalent, then they are
equivariantly homotopy equivalent. However, if we take the Z2 -action Φ− on
the real line R sending x to −x, then the Z2 -space (R,Φ−) is equivariantly
but not isovariantly homotopy equivalent to the one point space {0} with the
trivial Z2 -action.

During the 1960s, several major advances in geometric topology yielded a clas-
sification scheme for smooth or topological manifolds within a given homotopy
type (compare [61]). This research and other considerations motivated anal-
ogous questions for smooth or continuous group actions on manifolds up to
equivariant or isovariant homotopy equivalence. In particular, the following
basic phenomena were discovered for manifolds with smooth group actions:

(1) Classifications up to some versions of isovariant homotopy equivalence
can often be given using variants of established techniques in geometric
topology (see [12], the commentary on the latter in [28], Section II.1 of [53]
the final section of [23], and Weinberger’s book [62]; additional references
are also cited in the final section of this paper).

(2) The same hold for classifications up to some forms of equivariant ho-
motopy equivalence PROVIDED the objects satisfy a type of condition
called a Gap Hypothesis; for example, if G = Z2 and M is a smooth
G-manifold, this states that the dimensions of M and its fixed point set
MG satisfy an inequality of the form dimM ≥ 2 dimMG + ε for some
integer ε close to zero. The importance and usefulness of the restriction
became apparent in work of T. Petrie ([38] and [39]) as well as subsequent
papers of Dovermann-Petrie [19], Dovermann-Rothenberg [20], and Lück-
Madsen [35] (this list is not meant to be exhaustive).

Results of S. H. Straus in the 1970s [57] and independently obtained results
of W. Browder in the 1980s [11] yield a strong connection between these two
themes:

Browder-Straus Theorem. Under suitable conditions (an appropriate ver-
sions of the Gap Hypothesis and other rairly simple restrictions), an equivariant
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homotopy equivalence of closed smooth G-manifolds is equivariantly homotopic
to an isovariant homotopy equivalence, and two equivariantly homotopic iso-
variant homotopy equivalences are isovariantly homotopic.

Unfortunately, a complete and correct proof of this decades-old theorem has
not appeared in print, and the aim of this paper is to give a proof using the
original surgery-theoretic methods of Straus and Browder. An earlier paper
[54] attempted to give a more homotopy-theoretic proof, but the argument
contains a mistake (specifically, the application of the Blakers-Massey Theorem
is incorrect; this error occurs in the proof of Proposition 4.2 in [54]).

Overview of the paper.

Section 2 begins with background material on isovariant homotopy theory and
continues with statements of the main results, ending with a brief discussion of
some side issues. The main results can be viewed as variants of some results of C.
T. C. Wall on splitting homotopy equivalences of manifolds (see Chapter 12A of
[61]), and Section 3 is devoted to proving an extension of Wall’s π−π Theorem
in Chapter 4 of [61] which will allow us to generalize the methods of Chapter
12A in [61]). In Section 4 we shall complete the proofs of the main results,
and in Section 5 we shall discuss some known applications and related results.
These include a new and simple recognition principle for isovariant homotopy
equivalences of smooth G-manifolds satisfying a very weak version of the Gap
Hypothesis. Finally, in Section 6 we shall discuss a variety of questions related
to the results of this paper. In particular, we shall prove some extensions of the
main results to a broad class of 4-dimensional semifree G-manifolds.

Acknowledgments I am extremely grateful to Bill Browder for helpful con-
versations and correspondence regarding his results in [11]. I would also like to
thank Heiner Dovermann for various conversations involving his work in [18],
and I am also grateful to Frank Connolly and John Klein for pointing out the
gap in the reasoning of [54]. Comments of the referee for [54] were also valuable
and appreciated. The research on this problem was partially supported by Na-
tional Science Foundation Grants DMS 86-02543, 89-02622 and 91-02711, and
also by the Max-Planck-Institut für Mathematik in Bonn, and their support is
also gratefully acknowledged.

2 The main results and related issues

Before stating the main result, we shall summarize some background informa-
tion about isovariant homotopy theory.
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Isovariance and almost isovariance

One important feature of equivariant homotopy theory is that we can modify
many standard methods and results from ordinary homotopy theory and apply
them effectively to spaces with group actions. Obviously we would like to do
something similar for isovariant homotopy theory, but this requires a less direct
approach based upon an intermediate concept of almost isovariance. We begin
with some definitions.

Definition. Let X and Y be sets with actions of a topological group G, and
let f : X → Y be a G-equivariant mapping. A point p ∈ G is a nonisovariant
point of f if the isotropy subgroup Gf(p) properly contains Gx . Note that
Gx ⊂ Gf(x) for all x ∈ X if f is equivariant, and Gx ⊂ Gf(x) for all x ∈ X if
f is isovariant.

Definition. Let M and N be smooth G-manifolds, where G is a compact Lie
group, and assume that the actions are semifree (the only isotropy subgroups are
{1} and G). Take DM and DN to be unions of closed tubular neighborhoods
for the various fixed point set components in MG and NG , and denote their
boundaries by SM and SN respectively . A continuous equivariant mapping
f : M → N is amost isovariant with respect to DM and SM if the following
hold:

(1) The sets of nonisovariant points for f is contained in the interior of DM .

(2) The original mapping f is actually a map of triads from (M ;DM ,M −
IntDM ) to (N ;DN , N − IntDN ).

An arbitrary isovariant mapping f : M → N can always be deformed isovari-
antly to a map of triads as in the second condition (see Section 4 of [23]), so
the only effective difference between isovariance and almost isovariance is that
the latter includes maps which might not be isovariant near the fixed point set.

The main results of Section 4 in [23] imply that there is a 1–1 correspondence
between isovariant homotopy classes of continuous mappings M → N and
almost isovariant homotopy classes of continous equivariant mappings M → N
which are almost isovariant with respect to DM and DN . Note that this is true
for all possible fixed choices of DM and DN .

The concept of almost isovariance is useful for studying isovariant homotopy
theory because the standard methods of homotopy theory extend in a straight-
forward manner to almost isovariant mappings (cf. [23] and [22]).

A definition of almost isovariance for more general actions is given in [23]. We
have restricted attention to semifree actions because of their relatively simple
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orbit structure; furthermore, the results in the semifree case suffice to study
several basic types of questions effectively.

Statement of the main results

We have already mentioned that our main results require a type of assumption
known as a Gap Hypothesis. Here is a precise statement of what we need:

Definition. Let M be a smooth G-manifold, where G is a compact Lie
group. We shall say that M satisfies the Standard Gap Hypothesis (for
semifree actions) provided dimM − dimMG ≥ 3 and

2 · dimMG + 1 < dimM .

Observe that the second condition implies the first unless dimMG = 0 and
dimM = 2.

As indicated in the previous section, we are mainly interested in the following
unpublished result, which is due to Straus [57] and Browder [11]. It implies
a fairly strong, general and precise connection between almost isovariance and
the Standard Gap Hypothesis.

Theorem 2.1 (i) Let f : M → N be an equivariant homotopy equivalence of
connected, compact, unbounded ( = closed) and semifree smooth G-manifolds
that satisfy the Standard Gap Hypothesis. Assume that M and N are at least
5-dimensional. Then f is equivariantly homotopic to an isovariant homotopy
equivalence.

(ii) Let f0 and f1 : M → N be a isovariant homotopy equivalences of con-
nected, compact, unbounded ( = closed) and semifree smooth G-manifolds
such that M×R and N×R satisfy the Standard Gap Hypothesis, and suppose
that H : M × [0, 1] → N is an equivariant homotopy from f to g . Assume that
M and N are at least 4-dimensional. Then H is equivariantly homotopic to
an isovariant homotopy by a deformation which is constant on M × {0, 1}.

Both conclusions in Theorem 2.1 are special cases of the following more general
result on deforming equivariant homotopy equivalences to isovariant ones.

Theorem 2.2 Let f : (M,∂M) → (N, ∂N) be an equivariant homotopy
equivalence of connected, oriented, compact, bounded smooth G-manifolds that
satisfy the Standard Gap Hypothesis, and assume that the associated map
∂f : ∂M → ∂N is an isovariant homotopy equivalence. Assume that M and N
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are at least 5-dimensional. Then f is equivariantly homotopic to an isovariant
homotopy equivalence, and one can choose this deformation to be constant on
the boundary.

The first conclusion in Theorem 2.1 is the special case where ∂M = ∂N = ∅,
and the second conclusion is the special case where M = P × [0, 1] and N =
Q× [0, 1], where P and Q are smooth G-manifolds with ∂P = ∂Q = ∅.

Some further results

There are several directions in which one can consider extensions of the main
theorems, and we shall summarize a few of them here. Additional details on
some of these issues are given in Section 6.

1. Equivariant homotopy equivalences coming from isovariant homotopy
equivalences . Given an equivariant homotopy equivalence ϕ of a closed
smooth G-manifold with no assumptions about Gap Hypotheses, it is mean-
ingful ask whether the equivariant homotopy class of ϕ can be represented
by an isovariant homotopy equivalence. In general this is not possible, but in
Theorem 5.2 we prove that an isovariant representative of ϕ will also be an
isovariant homotopy equivalence if the groups act semifreely and satisfy a weak
Gap Condition (namely, the fixed point sets have codimension ≥ 3). For the
sake of simplicity we shall only state and prove the result for oriented manifolds
such that all fixed point set components are also oriented.

2. An absolute analog of Theorem 2.2. It is natural to ask if there is an
parallel result for equivariant homotopy equivalences of manifolds with bound-
ary if we do not assume that the boundary is sent to itself by an isovariant
homotopy equivalence. We shall prove a result of this type when the boundary
is sent to itself by an equivariant homotopy equivalence (Theorem 4.1) and give
examples to show the need for the additional condition.

3. Extensions of Theorem 2.1 to 4-manifolds. We shall prove two results
of this type in Section 6, one of which only requires that the group is not cyclic
of order 2 (Theorem 6.2) and another of which holds if the fundamental groups
of the manifolds are finite or abelian (Theorem 6.3). One could go further in
this direction, proving analogs of Theorem 4.1 for bounded manifolds, but we
shall not pursue this any further.

4. Generalizations to nonsemifree smooth actions. One reason for restrict-
ing attention to semifree actions is that it avoids complications regarding the
placement of the fixed point sets for the various subgroups of G (we need only
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consider the fixed point set of G itself), and another is that the class of semifree
actions is broad enough to include all actions of the cyclic group Zp where p has
prime order (in this case the only subgroups are {1} and Zp itself). Everything
in this paper can be generalized to actions with treelike isotropy structure in
the sense of [23]; this condition holds if the isotropy subgroups are normal and
linearly ordered by inclusion, and therefore this class of group actions includes
all actions of the cyclic p-groups Zpr , where p is prime and r ≥ 1. Specifically,
one can generalize Theorems 2.1, 2.2, and 4.1 by combining the methods of
this paper with an induction on the number of orbit types as in [23]. There is
general agreement that one can generalize these results to fairly general actions
of a finite group G on a manifold P which satisfy the following two conditions:

(1) Standard Gap Hypothesis. For each pair of isotropy subgroups H % K
in G and each pair of components B ⊂ PH , C ⊂ PK such that B $ C
we have 2 · dimB + 1 < dimC .

(2) If H is not maximal among the isotropy subgroups, then every component
of PH is at least 5-dimensional.

Further comments on such generalizations appear in Section 6.

5. Generalizations to nonsmoothable actions. Browder has noted that the
methods of [11] (and this paper) can be extended to certain actions which are
not smoothable, at least if one replaces isovariance by a suitable notion of almost
isovariance. In particular, everything should go through for piecewise linear
locally linear G-manifolds (see [43] for more information on the latter). Since
the methods of this paper and [23] rely heavily on the existence of well-behaved
neighborhoods for the fixed point sets of the isotropy subgroups, passage to
more general classes of actions such as

(1) continuous locally linear actions (the locally smooth actions of [8]),

(2) homotopically stratified actions in the sense of [42] or [62]

is likely to be considerably less straightforward. Once again, further comments
appear in Section 6.

6. Optimality of the Gap Conditions in the main results. Since the con-
clusions of the main results are fairly strong, and it is natural to expect that
counterexamples exist for equivariant homotopy equivalences of closed smooth
G-manifolds which do not satisfy some variant the Standard Gap Hypothesis.
As noted after the statement of Theorem 5.1, in some cases one can weaken the
condition in the Standard Gap Hypothesis, and in forthcoming work with K.H.
Dovermann we shall give still other examples (some of these rely on results due
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to A. Bak and M. Morimoto in [3] and [4]). In contrast, there are also exam-
ples which suggest that positive results in such cases are extremely limited, and
forthcoming work of S. Safii [46] will give counterexamples to the main results
just outside the range of the Standard Gap Hypothesis.

3 Input from equivariant surgery theory

Let M and N be closed, smooth, semifree G-manifolds with fixed point sets
MG and NG respectively, and let E(MG) and E(NG) denote closed equiv-
ariant tubular neighborhoods of the fixed point sets. If f : M → N is a
G-isovariant homotopy equivalence, then the main results of [23] state that f
is isovariantly homotopic to an isovariant homotopy equivalence of triads from(
M ;E(MG),M − IntE(MG)

)
to

(
N ;E(NG), N − IntE(NG)

)
. This splitting

result for isovarian homotopy equivalences suggest a relationship between the
following two questions:

(1) Given an equivariant homotopy equivalence f : M → N of closed smooth
G-manifolds, is f equivariantly homotopic to an isovariant homotopy
equivalence?

(2) Let CAT denote the smooth, piecewise linear or topological category, and
suppose that W is a closed CAT-manifold which splits as W = W1 ∪W2 ,
where W1 and W2 are compact bounded manifolds with ∂W1 = ∂W2 .
If V is a closed CAT-manifold and f : V → W is a simple homotopy
equivalence, can f be deformed to a homotopy eqivalence of triads from
(V ;V1, V2) to (W ;W1,W2) for a suitably chosen splitting V = V1 ∪ V2?

Problems of this sort have been studied for nearly a century (e.g., H. Kneser’s
connected sum conjecture for 3-manifolds [32]; see Chapter 7 of [26] for a proof).
A thorough discussion of this topic is beyond the scope of the present article,
so we shall limit ourselves to stating an important special case which appears
in Chapter 12A of [61] (see Theorem 12.1 on pages 142–143; strictly speaking,
the hypotheses here are slightly stronger than those in Wall’s book).

Theorem 3.1 Let CAT denote the smooth, piecewise linear or topological
category, and suppose that W is a closed CAT-manifold of dimension ≥ 6 which
splits as W = W1 ∪W2 , where W1 and W2 are compact bounded manifolds
with ∂W1 = ∂W2 and the latter is also connected. Assume that the induced
map of fundamental groups from π1(∂W1) to π1(W1) is an isomorphism. If V
is a closed CAT-manifold and f : V → W is a simple homotopy equivalence,
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then f can be deformed to a homotopy eqivalence of triads from (V ;V1, V2) to
(W ;W1,W2) for a suitably chosen splitting V = V1 ∪ V2 .

In fact, the proofs of Theorems 2.1 and 2.2 in this paper are variants of the proof
for Theorem 12.1 in [61], and the goal of this section is to formulate equivariant
versions of Wall’s π − π Theorem ([61], Chapter 4) that are needed to extend
Wall’s proof of Theorem 3.1.

Background remarks. If W1 , W2 and their common boundary are simply
connected, then the conclusion of Theorem 3.1 is due to Browder (see [9], Sec-
tion 1), with subsequent generalizations due to J. Wagoner [60] and D. Sullivan
(unpublished). A few basic applications of the theorem are given in [6] and [9].

A class of equivariant surgery problems

We are primarily interested in equivariant degree 1 maps of compact, oriented,
smooth semifree G-manifolds such that the induced map of fixed point sets is a
homotopy equivalence. Let f : M → N be such a mapping. In any discussion
of surgery theory some notion of bundle data is needed, but in this paper we
shall only need a very weak version; namely, our bundle data will be a map
of stable equivariant G-vector bundles b : E(νM ) → E(ξ ↓ N), where νM

denotes the stable equivariant normal bundle of M in some linear G-action
on a sufficiently large coordinate space Rk , such that for each x ∈ M the
map sends the fiber over x to the fiber over f(x) by a Gx -equivariant linear
isomorphism (here Gx denotes the isotropy subgroup at x); the pair (f,b) will
be called a degree 1 normal map. As usual, if f is an equivariant homotopy
equivalence then it defines an isomorphism f ∗ of reduced equivariant KO -
groups K̃OG(N) ∼= K̃OG(M), and hence there is a G-vector bundle ξ , which
is unique up to stable equivalence, for which one can define bundle data of the
given form. If M and N have boundaries, possibly decomposed into smaller
pieces, then the necessary bundle data shall include compatible bundle data for
these subsets.

We can now use the preceding definitions and conventions to state the equivari-
ant generalization of Wall’s π − π Theorem which is needed here. This result
essentially goes back to [57].

Theorem 3.2 Let W is a compact smooth G-manifold of dimension ≥ 6
such that ∂W splits as ∂W = ∂1W ∪ ∂0W , where ∂1W and ∂0W are compact
manifolds with ∂∂0W = ∂∂1W and the former is also connected. Assume
that the induced map of fundamental groups from π1(∂0W ) to π1(W ) is an
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isomorphism. Furthermore, assume that W satisfies the slightly weakened Gap
Condition 2 dimWG < dimW and G acts freely on ∂0W . If (V, ∂V = ∂0V ∪
∂1V ) satisfies the analogous conditions and

(f,b) : (V ; ∂1V, ∂0V ) −→ (W ; ∂1W,∂0W )

is a degree 1 normal map (in the sense described above) which is a homotopy
equivalence on ∂1V , then (f,b) is normally cobordant to a G-simple homotopy
equivalence such that the cobordism is a product with [0, 1] over ∂1W and WG .

Similar π − π theorems for equivariant surgery are given in Section 3 of [35];
one difference between the results in [35] and Theorem 3.2 is that the fixed
point reference data in the former map bijectively from ∂0W to W while the
corresponding data in the latter do not.

The basic idea of the proof is fairly easy to summarize. In the proof of Wall’s
result the normal cobordism is constructed in a series of elementary steps. For
each of these steps, one starts out with a degree 1 normal map

(f ′,b) : (V ′; ∂1V, ∂0V
′) −→ (W ; ∂1W,∂0W )

and approximates certain maps of q -disks or spheres into V by smooth em-
beddings; in Wall’s setting these can be constructed because q ≤ 1

2 dimW or
some closely related condition holds. In order to generalize this argument, it
suffices to know that the images of these embeddings are disjoint from each
other and from the fixed point set. If W satisfies the Gap Hypothesis, this can
be achieved using standard transversality results such as Theorem 2.5 on page
78 of [27]. Thus the main issue in the proof of Theorem 3.2 is to explain more
precisely how and why these things can be done.

Algebraic considerations. Wall’s proof of Theorem 3.1 requires an algebraic
lemma which gives a condition for certain homology groups to be projective or
stably free modules (specifically, Lemma 2.3 on page 26 of [61]); the latter ap-
plies to chain complexes over group rings which are free in each dimension,
finitely generated in each dimension, and zero in all but finitely many dimen-
sions. We shall need a slight generalization of this result when the chain groups
are direct sums of permutation modules Z[Γ/Hα] which are free abelian groups
on the cosets in Γ/Hα , where Γ is a fixed group and the subgroups Hα are
variable. Our standard examples of chain complexes with such chain groups
come from lifting a G-action on a finite G-CW complex X to the universal
covering of X ; such liftings exist provided XG is nonempty (compare Theorem
I.9.2 in[8] and Theorem 1.13 in [16]).
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In order to state our generalization of Lemma 2.3 in [61] we need some notational
conventions. Let G be a finite group, let X be a connected finite G-CW
complex, let A ⊂ X be a G-subcomplex, and let X ′ denote the universal
covering of X . If AG is nonempty (so that XG is also nonempty), then as
in the preceding paragraph the fundamental group Γ of X/G is isomorphic
to a semidirect product of π1(X,x0) and G, where x0 ∈ AG and G acts on
π1(X,x0) via the action of G on (X,x0). Furthermore, the action of G on
X lifts to a Γ-action on the universal covering space X ′ , and similarly the
G-equivariant cell complex structure on X lifts to a Γ-equivariant cell complex
structure on X ′ .

The singular set of X , denoted by Sing (X) is the union of all equivariant cells
of the form G/H × eα such that H is a nontrivial subgroup, and similarly for
A. By the definition of equivariant CW complexes we know that Sing (X) and
Sing (A) are equivariant subcomplexes of X and A respectively.

Finally, given an arbitrary subset Y ⊂ X , its inverse image in the universal cov-
ering will be denoted by Y ′ . By construction, if Y is an equivariant subcomplex
of X then Y ′ is an equivariant subcomplex of X ′ .

Lemma 3.3 Suppose that we are given the data of the preceding paragraph,
and assume further that the induced map of singular sets from Sing (A) to
Sing (X) is an equivariant homotopy equivalence. Then there is a Z[Γ] chain
complex B∗ such that each chain group is a finitely generated free Z[Γ]-module
which is trivial in all but finitely many dimenions, such that for every Z[Γ]-
module M we have isomorphisms

H∗(X
′, A′;M) ∼= H∗(B;M) , H∗(X ′, A′;M) ∼= H∗(B;M) .

Since the proof of Wall’s Lemma 2.6 goes through for chain complexes satisfying
the conditions in the lemma, it follows that the homology cohomology groups
of C∗ , and hence also the corresponding homology and cohomology groups of
(X,A), automatically satisfy the projectivity and stable freeness conclusions in
Wall’s lemma. Important special cases of this result are mentioned briefly in
the proof of Theorem 1.2 in [36].

Proof. Let C∗(X
′, A′) denote the Γ-equivariant cellular chain complex of the

pair (X ′, A′) By construction the inverse images of the singular sets define a
chain subcomplex S∗ = C∗ ( Sing (X)′,Sing (A)′ ), and the associated quotient
complex B∗ satisfies the finiteness and freeness conditions in the lemma. Since
the induced map of singular sets from Sing (A) to Sing (X) is an equivariant
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homotopy equivalence, it follows that the homology groups of S∗ ⊗Z[Γ] M are
trivial for for every Z[Γ]-module M , and therefore by the long exact homology
and cohomology sequences of the pairs

S∗ ⊗Z[Γ] M ⊂ C∗(X
′, A′) ⊗Z[Γ] M

we have canonical isomorphisms from the homology and cohomology groups
of (X ′, A′) with coefficients in M to the corresponding groups for the chain
complex B∗ .

Proof of Theorem 3.2. Since the argument is a modification of the proof in
Chapter 3 of [61], we shall concentrate on the points at which changes to the
latter are needed; as in Wall’s book, the even- and odd-dimensional cases must
be treated separately.

Even-dimensional case. Assume that dimW = 2k , where k ≥ 3. The first
step in [61] is to perform surgery on embedded spheres and disks to make
a normal map k -connected over W and (k − 1)-connected over ∂0W . The
relevant spheres and disks have dimension ≤ k− 1 in the first case and ≤ k− 2
in the second. Since the group action on ∂W0 is free, there is no problem
performing surgery over the boundary, and the Gap Hypothesis translates to
the inequality dimW k ≤ k − 2, and hence general position implies that
one can choose the invariant submanifolds in W up to isotopy so that they are
disjoint from WG . Once this is done, the next step in [61] involves the middle
dimension, in which case we obtain a finite collection of neat embeddings (in
the sense of [27]) of (D2k, S2k−1) into (V, ∂0V ). In the equivariant case we want
embeddings of G×(D2k, S2k−1) into (V, ∂0V ) which are disjoint from WG . We
can use the Gap Hypothesis once more to obtain this sharper conclusion. If U
denotes an invariant, neat, closed tubular neighborhood for this configuration
of disks, then as in [61] we obtain a simple homotopy equivalence if we remove
the interior of U .

Odd-dimensional case. Assume that dimW = 2k + 1, where k ≥ 3. As in
the preceding case we can convert the original normal map to one that is k -
connected over both W and ∂0W , so we might as well assume that the original
normal map

(f,b) : (V ; ∂1V, ∂0V ) −→ (W ; ∂1W,∂0W )

has this property.

Following Lemma 2.2 in [61], let Ki(V, V0) denote the kernel of the algebraic
map Hi(V

′V ′

0) → Hi(W
′,W ′

0), where A′ denotes the universal covering of A;
note that in our example the fundamental groups of V , W , V0 and W0 are
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canonically isomorphic. Similarly, let Ki(V ) and Ki(V0) denote the respective
kernels of the algebraic maps Hi(V

′) → Hi(W
′) and Hi(V

′

0) → Hi(W
′

0). The
same considerations as in the preceding paragraph then imply that our map
is normally cobordant to one for which Kk(V, V0) and Kk+1(V ) are both zero
(the second follows from the first by the duality statement in Lemma 2.2 of
[61]); as before, the Gap Hypothesis implies that one can perform the necessary
surgery-theoretic constructions away from the fixed point set. Once again, this
means we might as well assume that the original normal map also satisfies the
additional algebraic conditions.

The arguments and Wall and the earlier discussions in this section now imply
that the group Kk+1(V, V0) can be assumed to be a finitely generated free
Z[Γ]-module. Take a set of mappings gi : (Dk+1, Sk) → (V, V0) which represent
the free generators of the given module. As in [61] we can take these maps
to be smooth immersions with trivial normal bundles, and the next step in
Wall’s program is to show that the associated maps from G × Sk to V0 are
regularly homotopic to pairwise disjoint smooth embeddings. The construction
of these embeddings involves some auxiliary embeddings of 2-disks in V , and
the Gap Hypothesis implies that we can always take these 2-disks to be disjoint
from WG . Therefore, as in [61] we can attach equivariant handles of the form
G×Dk+1×Dk along the constructed embeddings of G×Sk×Dk in V0 . If we do
so, we obtain a new normal map (X,X0) → (W,W0); define Ki(X,X0), Ki(X)
and Ki(X0) to be the analogs of Ki(V,X0), Ki(V ) and Ki(V0). The arguments
in [61] then generalize directly to show that Kk+1(X,X0) ∼= Kk+1(V, V0) and
Kk+1(X) ∼= Kk+1(X,X0) (note that Kk+1(X0) ∼= Kk−1(X0) = 0 also holds in
our setting). In fact, as in [61] we can go further and conclude that Kk(X0) = 0
and hence that X0 →W0 is a simple homotopy equivalence.

The final geometric step in Chapter 4 of [61] involves surgery on generators from
Kk(X), and once again the Gap Hypothesis shows that we can choose the gen-
erators to be disjoint from the fixed point set XG . These equivariant surgeries
yield a new normal map (Y,X0) → (W,W0), and the algebraic formalism in
[61] now shows that the map Y →W is a simple homotopy equivalence, which
in turn implies that (Y,X0) → (W,W0) is a simple homotopy equivalence of
pairs and hence completes the proof of the theorem.

4 Proofs of the main results

It will be convenient to begin with some notational conventions and elementary
observations in order to simplify the main discussion and the proofs.
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Summary of notational conventions

Let P be a closed smooth G-manifold, where G is a finite group. By local
linearity of the action we know that the fixed point set P G is a union of con-
nected smooth submanifolds; as before, denote these connected components by
Pα . For each α let D(Pα) denote a closed tubular neighborhood. By construc-
tion these sets are total spaces of closed unit disk bundles over the manifolds
Pα , so let S(Pα) and denote the associated unit sphere bundles; it follows that

∂D(Pα) = S(Pα) .

Suppose now that M and N are smooth semifree G-manifolds and f : M → N
is an equivariant homotopy equivalence. Then the associated map fG of fixed
point sets defines a 1 − 1 correspondence between the components of MG and
NG , and we shall use the following terminology to discuss the fixed point data
attached to these G-manifolds:

(1) {Nα} denotes the set of components of NG where we may as well assume
that α runs through the elements of π0(N

G).

(2) If for each α we let

Mα = f−1[Nα] ∩MG

then fα is the continuous map from Mα to Nα determined by f .

(3) If the equivariant normal bundles of Mα and Nα in M and N are ξα
and ωα respectively, and let S(ν) and D(ν) generically represent the unit
sphere and disk bundle of the vector bundle ν (with the associated group
action since ν is a G-vector bundle).

We shall also use some notational conventions we have previously developed
and mentioned.

Consequences of Theorem 2.2

Before proving Theorem 2.2, we shall explain how it implies several other central
results.

Proof that Theorem 2.2 implies Theorem 2.1. The first conclusion is
the special case of Theorem 2.1 for which the boundaries are empty, and the
second conclusion may be derived as follows: Let h : M × [0, 1] → N be an
equivariant homotopy between two isovariant homotopy equivalences, and de-
fine H : M × [0, 1] → N × [0, 1] so that its projections onto N and [0, 1] are
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h and the usual coordinate projection respectively. By construction, H deter-
mines an equivariant homotopy equivalence of pairs from (M×[0, 1],M×{0, 1})
to (N × [0, 1], N ×{0, 1}) which is isovariant on the boundary, and therefore H
is equivariantly homotopic as a map of pairs to an isovariant homotopy equiva-
lence K , and we can in fact find a homotopy which is fixed on M × [0, 1]. The
composite of K followed by coordinate projection onto N will then define the
desired isovariant homotopy from f to g .

We shall continue by stating an absolute version of Theorem 2.2:

Theorem 4.1 (i) Let f : (M,∂M) → (N, ∂N) be an equivariant homotopy
equivalence of connected, compact smooth semifree G-manifolds with boundary
that satisfy the Standard Gap Hypothesis. Assume that either M and N are
at least 6-dimensional or M and N are 5-dimensional and the action of G
preserves orientations. Then f is equivariantly homotopic, as a map of pairs,
to an isovariant homotopy equivalence.

(ii) Let f0 and f1 : (M,∂M) → (N, ∂N) be isovariant homotopy equivalences
of connected, compact, compact smooth semifree G-manifolds with boundary
such that M×R and N×R satisfy the Standard Gap Hypothesis, and suppose
that

H : (M × [0, 1], ∂M × [0, 1]) −→ (N, ∂N)

is an equivariant homotopy of pairs from f to g . Assume that M and N are
at least 5-dimensional. Then H is equivariantly homotopic, as a map of pairs,
to an isovariant homotopy equivalenceby a deformation which is constant on
M × {0, 1}.

Examples. It is easy to see that the first part of Theorem 4.1 does not
generalize to equivariant homotopy equivalances which do not come from ho-
motopy equivalences of pairs, and here are some explicit counterexamples. Let
G be the cyclic group Zn for some integer n ≥ 2, let G act trivially on R, and
take the standard action by complex multiplication on C. For each positive in-
teger k the unit disks in Rk ×C2k and Rk ×C3k are equivariantly contractible,
and hence these unit disks are equivariantly homotopy equivalent. However,
if they were isovariantly homotopy equivalent then the complements of their
fixed point sets would also be isovariantly homotopy equivalent. Since these
complements are nonequivariantly homotopy equivalent to S4k−1 and S6k−1

respectively, it follows that the unit disks in Rk ×C2k and Rk ×C3k cannot be
isovariantly (or even equivariantly) homotopy equivalent.
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One can also construct counterexamples involving bounded manifolds where
the domain and codomain have the same dimension. Given an integer m ≥
2, consider the linear Zm -action on D2 ⊂ C sending (z, v) to the product
z v . If k ≡ 1 mod m and k > 1, then the map Ψk(v) = vk again defines
a Zm -isovariant map from D2 to itself which is a Zm -equivariant homotopy
equivalence, but is not an isovariant homotopy equivalence because Ψk is not
a homotopy equivalence on the complements of the fixed points sets. One can
easily modify this construction to obtain many other examples; for example,
one can take products with linear disks (and round corners equivariantly).

Proof that Theorem 2.2 implies Theorem 4.1. We shall begin by ver-
ifying that the equivariant homotopy equivalence of pairs is equivariantly ho-
motopy equivalent, as a map of pairs, to an isovariant homotopy equivalence.
Since the associated map of boundaries ∂f : ∂M → ∂N satisfies the hypotheses
of Theorem 2.2, it follows that ∂f is equivariantly homotopy equivalent to an
isovariant homotopy equivalence, and by the Equivariant Homotopy Extension
Property the original map of pairs is equivariantly homotopic to an equivariant
homotopy equivalence of pairs which is isovariant on the boundary. Another
application of Theorem 2.2 now implies the latter map is equivariantly homo-
topic to an isovariant homotopy equivalence such that the homotopy leaves the
boundary fixed.

The proof of the second statement follows similarly. Let H be an equivariant
homotopy from (M × [0, 1], ∂M × [0, 1]) to (N, ∂N) for which the top and
bottom maps f0 and f1 are isovariant homotopy equivalences, and let

K : (M × [0, 1], ∂M × [0, 1]) −→ (N × [0, 1], ∂N × [0, 1])

be the map whose projection onto N and [0, 1] are given by H and the usual
coordinate projection onto [0, 1]. Let K• denote the associated map from
∂M × [0, 1] to ∂N × [0, 1]. Another application of Theorem 2.2 shows that we
can equivariantly deform K• to an isovariant homotopy equivalence L• , and by
the Equivariant Homotopy Extension Property we can extend this homotopy
to obtain a homotopic map of pairs L whose restriction to ∂M × [0, 1] is L•

and whose restriction to M ×{0, 1} is given by the isovariant mappings f0 and
f1 . By construction this map is isovariant on all of ∂(M × [0, 1]), and therefore
one final application of Theorem 2.2 shows that L is equivariantly homotopic
to an isovariant homtopy equivalence such that the homotopy is fixed on the
boundary. This deformation yields the desired isovariant homotopy equivalence
of pairs.
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Proof of Theorem 2.2 in the unbounded case. Following [61] we begin
with the case in which M and N have no boundaries because all the main
issues are already present for such examples but many objects are simpler to
describe.

Assume we are given an equivariant homotopy equivalence f : M → N , where
M and N are smooth semifree G-manifolds satisfying the hypotheses of the
theorem and f is an equivariant homotopy equivalence. As in [61] we can
use an equivariant homotopy inverse for f to find bundle data b for f in the
previously described sense, and hence we have an equivariant surgery problem
(f,b) : M → N .

The fixed point set NG splits into a disjoint union of finitely many components
Fα ; choose pairwise disjoint closed equivariant tubular neighborhoods Eα for
the respective components, set E equal to the union of the neighborhoods Eα ,
and let

C = N − ∪α Int (E) .

By construction, we have ∂C = ∂E . Since G acts freely on this invariant sub-
manifold, standard transversality theorems imply that f is equivariantly homo-
topic to a smooth equivariant map which is transverse to ∂C = ∂E . Without
loss of generality, we may as well assume that f also has these properties.

Assuming the conditions in the previous sentence, for each component Fα of NG

let fα : (E′

α, ∂E
′

α) → (Eα, ∂Eα) denote the restriction of f to the inverse image
of Eα , and let f0 : (C ′, ∂C ′) → (C, ∂C) denote the restriction of f to the inverse
image of C . By equivariance MG is contained in the interior of E ′ , so that G
acts freely on C ′ and likewise for ∂C ′ = ∂E′ . For each α the Gap Hypothesis
implies that dim(NG∩Eα) ≤ dim(Eα)−3, and from this we caonclude that the
inclusions ∂Eα ⊂ Eα induce isomorphisms in fundamental groups. Therefore
Theorem 3.2 implies that for each α there is a normal cobordism

(ψα, cα) : (Qα, Pα) −→ (Eα, ∂Eα)

from fα to a simple equivariant homotopy equivalence. Set Q and P equal to
qα Qα and qα Pα respectively. It follows that we can assemble the equivariant
surgery problems (ψα, cα) into a single object of the form (ψ, c) : (Q,P ) →
(E, ∂E).

Proceeding further as in [61] (see the last paragraph on page 142), we may now
construct a normal cobordism by attaching a copy of M × [0, 1] to Q along
E′ × {1} with corners suitably rounded at ∂E ′ × {1} (compare the drawing at
the top of [61], p. 143). For each α let Lα denote the top of the cobordism
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Qα , and as before let L = qαLα . We then have an equivariant normal map of
triads
(
W ;M × {0} ∪ L,C ′ × {1} ∪ P

)
→ (N × [0, 1];N × {0} ∪E × {1}, C × {1}) .

By construction, this map is an equivariant simple homotopy equivalence on the
first pieces of the respective boundaries. We claim it induces an isomorphism
of fundamental groups on the second piece; specifically, we are claiming that
the inclusion of C × {1} in N × [0, 1] induces an isomorphism of fundamental
groups. The proof of this assertion is more direcct that its counterpart in [61],
and it proceeds as follows: Since the inclusion of N × {1} in N × [0, 1] is a
homotopy equivalence, it is enough to show that the inclusion of C × {1} in
N × {1} induces an isomorphism of fundamental groups, or equivalently that
the same statement is true for the inclusion C ⊂ N . By construction, C is
equivariantly homotopy equivalent to N = NG , and since dimNG ≤ dimN−3
by the Gap Hypothesis it follows that N −NG ⊂ N induces an isomorphism of
fundamental groups. Combining these observations, we see that the inclusion
of C ×{1} in N × [0, 1] induces an isomorphism of fundamental groups, which
is what we wanted to prove. As noted above, this implies the second conclusion
in Theorem 2.1.

Proof of Theorem 2.2 in the bounded case. We shall use the setting of
the preceding argument, but in order to take the boundaries of M and N into
account we add the convention that if X is a compact bounded manifold and
A ⊂ X , then A• will denote the intersection A ∩ ∂X .

Note that the fixed point components Fα ⊂ NG satisfy ∂Fα = F •

α , and in this
case the boundaries of the closed tubular neighborhoods split as ∂Eα = E•

α∩Sα ,
where E•

α is a closed tubular neighborhood of ∂Fα in ∂N = N • , and Sα is
the unit sphere bundle for the disk bundle Eα ↓ Fα . As usual, we assume that
the tubular neighborhoods are neat with respect to a collar neighborhood for
∂N ⊂ N in the sense of [27].

General considerations about equivariant homotopy equivalences show that the
isovariant homotopy equivalence ∂f : ∂M → ∂N sends each component of
MG to a unique component of NG , and in fact we have induced homotopy
equivalences of pairs

fα : (F ′

α, ∂F
′

α) −→ (Fα, ∂Fα)

where F ′

α is the unique component of MG which maps to NG . Furthermore,
the results of [23] imply that we can isovariantly deform f as a map of pairs so
that ∂f sends the submanifolds

S′

α , E′

α , C ′ ⊂ M , S′

α
• , E′

α
• , C ′• ⊂ M• = ∂M
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to their counterparts

Sα , Eα , C ⊂ N , S•

α , E•

α , C• ⊂ N• = ∂N

and the deformed maps on M and ∂M are smoothly transverse to each of the
given submanifolds of N or ∂N . For the remainder of the proof we shall assume
that f and its induced boundary map ∂f satisfy these additional conditions.

As in the unbounded case we can apply our version of the π − π Theorem
to obtain normal cobordisms (Qα, Pα) from the mappings fα to equivariant
homotopy equivalences of pairs, but there is one major difference: We now
have normal cobordisms of triads

Φα : (Qα;Gα, Rα) −→ (Eα;E•

α, Sα)

such that the restricted maps Gα → E•

α are equivalent to composites

E′

α
• × [0, 1] −→ E ′

α
• −→ E•

α

where the left hand map is projection onto the first factor and the right hand
map is ∂fα .

Following the conventions in the proof for the unbounded case, we shall write
S = q Sα , R = q Rα , G = q Gα and so on. With this notation, we can form
a normal map of triads from

(W ;M × {0} ∪ ∂M × [0, 1] ∪ L ∪Gα, C
′ × {1} ×R)

to the standard triad

(N × [0, 1]; ∂N × [0, 1] ∪N × {0} ∪E × {1}, C × {1})

by gluing the maps Φα to f × id[0.1] via the identification of E = ∂0Q with
E × {1} ⊂ E × [0, 1].

A straightforward application of the Seifert-van Kampen Theorem implies that
the inclusion of C × {1} in N × [0, 1] induces an isomorphism of fundamental
groups and therefore we may use the same argument in the unbounded case to
show that the normal map of triads is normally covbordant to an equivariant
simple homotopy equivalence Λ such that the isovariant cobordism is a product
with an interval over each of the tubular neighborhood maps Gα → Eα . If the
domain triad for this equivariant simple homotopy equivalence is given by

(W ∗;M × {0} ∪ ∂M × [0, 1] ∪ L ∪Gα, C
∗ × {1} ×R)

then the s-cobordism Theorem implies that (W ∗,M × {0}) is equivariantly
diffeomorphic to (M × [0, 1],M × {0}), and it follows that the restriction of Λ
to W × {1} is an almost isovariant homotopy equivalence. We can now apply
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the results of [23] to conclude that Λ is almost isovariantly homotopic to an
isovariant homotopy equivalence, where for each t ∈ [0, 1] the homotopy Θt

is given on the boundaries by the original boundary map ∂f ; this homotopy
satifies all the conditions in the conclusion of the theorem.

Remark There is a slight difference between the Gap Conditions in Theorems
3.2 and 2.2; specifically, in the first result we have dimM − 2 dimMG > 0
while in the second result we have dimM − 2 dimMG > 1. The reason for this
apparent disparity is that the proof of Theorem 2.2 applies Theorem 3.2 to a
(dimM +1)-dimensional cobordism whose boundary contains M (and its fixed
point set has dimension equal to dimMG + 1).

5 Some applications

In [57] Straus derived an interesting application of the Theorem 2.1 to cyclic
reduced products of manifolds, and a result from [54] gives a criterion for recog-
nizing certain isovariant homotopy equivalence with fewer conditions than the
general statements of Section 4 in [23]. For the sake of completeness we are
including proofs of both results.

Homotopy invariance of deleted reduced products

Given a topological space X and an integer n, its n-fold cyclic reduced product is
defined to be the quotient of the product space Xn (i.e., n copies of X ) modulo
the action of Zn on the latter by permuting coordinates, and the deleted cyclic
reduced product is the subset of the latter obtained by removing the image of
the diagonal ∆(Xn) consisting of those points whose coordinates are all equal.
In his thesis [57] Straus used his version of Theorem 2.1 to obtain the following
homotopy invariance property for such spaces:

Theorem 5.1 Let M and N be closed smooth manifolds of dimension ≥ 2, let
p be an odd prime, and suppose that M and N are homotopy equivalent. Let
Zp act smoothly on the p-fold self products

∏pM and
∏pN (where

∏pX =
X × · · · ×X , with p factors) by cyclically permuting the coordinates, and let
Dp(M), Dp(N) be the invariant subsets sets given by removing the diagonals
from

∏pM and
∏pN . Then the deleted reduced cyclic products Dp(M)/Zp

and Dp(N)/Zp are homotopy equivalent.
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As also noted in [57], this result does not extend to compact bounded manifolds,
and in fact closed unit disks of different dimensions yield simple but systematic
counterexamples. The results of [52] imply that Theorem 5 extends to simply
connected manifolds if p = 2, but results of R. Longoni and P. Salvatore [34]
imply that the result does not extend to 3-dimensional lens spaces when p = 2.
Further results on the relationship between D2(M)/Z2 and D2(N)/Z2 for ho-
motopy equivalent manifolds appear in a paper by P. Löffler and R. J. Milgram
[33].

The argument below follows Straus’ approach in [57] very closely; it also appears
in [54].

Sketch of proof. We shall first prove the result when dimM = dimN ≥
3 and then dispose of the remaining cases afterwards. If f : M → N is a
homotopy equivalence then

∏p f :
∏pM →

∏pN is an equivariant homotopy
equivalence of closed smooth Zp -manifolds. All actions of Zp are semifree if p is
prime, so this condition holds automatically. Furthermore, the fixed point sets
of the action on

∏pM and
∏pN are the respective diagonals ∆ (

∏pM) ∼= M
and ∆ (

∏pN)n ∼= N , and since

dim∆p (
∏pX) = dimX = (dim

∏pX) /p ≤
1
3 dim

∏pX < 1
2 dim

∏pX − 1

if X = M or N is at least 3-dimensional and p is odd, then the Standard Gap
Hypothesis also holds. Therefore Theorem 2.1 implies that

∏p f is equivari-
antly homotopic to an isovariant homotopy equivalence, and the latter in turn
yields an equivariant homotopy equivalence from Dp(M) to Dp(N). The in-
duced map of orbit spaces is the desired homotopy equivalence from Dp(M)/Zp

to Dp(N)/Zp .

Suppose now that dimM = dimN ≤ 2. In these cases homotopy equivalent
manifolds are homeomorphic, so we can take the homotopy equivalence f :
M → N to be a homeomorphism. It follows immediately that

∏p f is a
homeomorphism and as such is automatically isovariant. One can now complete
the proof as in the last two sentences of the preceding paragraph.

Recognizing isovariant homotopy equivalences

If X and Y are smooth manifolds with semifree differentiable actions of a
finite group G, then the Isovariant Whitehead Theorem in [23] (Theorem 4.10
on p. 35) implies that an isovariant map f : X → Y is an isovariant homotopy
equivalence if and only if it induces homotopy equivalences on subsets of X and
Y as follows:
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(1) f maps X to Y by a homotopy equivalence.

(2) The induced map of fixed points sets fG : XG → Y G is a homotopy
equivalence.

(3) The induced map of fixed point set complements X −XG → Y − Y G is
a homotopy equivalence.

(4) For each component Fα of XG , the map f induces a fiber homotopy
equivalence from the sphere bundle Sα for a tubular neighborhood of Fα

to the corresponding sphere bundle S ′

α of the component F ′

α ⊂ Y G which
corresponds to Fα under f .

Some of the methods and results in [23] yield stronger results in a few different
directions. For example, Corollaries 4.11 and 4.12 in [23] (see pp. 35–37) imply
that if X and Y are smooth G-manifolds, then the last condition is redundant,
at least if one imposes some orientability hypotheses (see Remark 1 below for
further discussion). Other results along these lines appeared in [54]. In fact,
one can strengthen all of these results as follows:

Theorem 5.2 Let f : M → N be an equivariant homotopy equivalence of
connected, compact, unbounded ( = closed) and oriented smooth G-manifolds
such that (1) G acts semifreely, (2) all components of the fixed point sets
MG and NG are orientable, (3) the weak gap condition dimM − dimMG =
dimN − dimNG ≥ 3 is satisfied. If f is isovariant, then f is an isovariant
homotopy equivalence.

Remarks.

1. Orientability of fixed point set components. As on page 36 of [23], the
orientability condition (2) is added in order to avoid complications involving
cohomology with local coefficients. The orientability condition is always sat-
isfied if G has odd order (because all nontrivial real G-representations come
from complex representations and hence the equivariant normal bundles of fixed
point set components are always orientable). One can use considerations involv-
ing oriented double coverings to prove an extension of Theorem 5.2 for examples
where MG and NG have nonorientable components.

2. The codimension ≥ 3 hypothesis. The conclusion of the theorem does
not necessarily hold if dimM − dimMG = dimN − dimNG = 2. Specifically,
for each n ≥ 4 consider the infinite family of smooth Zm -actions on Sn with
knotted (n− 2)-spheres as fixed point sets in [58]. Let V be the tangent space
at a fixed point with the associated linear Zm -action. By Alexander Duality
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the complement of the fixed point set has the homology groups of S1 , and one
can use the methods of Section 2 in [48] to construct a degree 1 isovariant map
from one of these actions to the linear sphere S(V ⊕ R) such that the map of
fixed point sets is a homeomorphism. This map is an equivariant homotopy
equivalence, but it cannot be an isovariant homotopy equivalence because the
complement of the fixed point set in the linear action is homotopy equivalent
to S1 but the complements of the fixed point sets in the exotic actions are not
(specifically, by Section II of [58] the Alexander polynomials of the examples
are nontrivial).

Proof of Theorem 5.2. Following the notation at the beginning of Sec-
tion 4, denote the corresponding components of MG and NG by Mα and
Nα , let Eα(M) and Eα(N) denote pairwise disjoint invariant closed tubu-
lar neighborhoods of these components, and set EM and EN equal to the
unions of these closed tubular neighborhoods. Next, let Sα(M) = ∂Eα(M)
and Sα(N) = ∂Eα(N) be the boundaries of the respective components, let
SM and SN be the unions, and finally let CM and CN be the closures of the
complements of EM and EN respectively. By construction SM and SN define
G-invariant splittings of M = EM ∪ CM and N = EN ∪ CN respectively.

We claim that the pairs (M,CM ) and (N,CN ) are 2-connected. This follows
because (1) CM and CN are deformation retracts of M −MG and N − NG

respectively, (2) the pairs (M,M −MG) and (N,N − NG) are 2-connected
because dimM − dimMG = dimN − dimNG ≥ 3.

Let M ′ and N ′ denote the universal coverings of M and N respectively, and
let f ′ : M ′ → N ′ be a lifting of the equivariant homotopy equivalence f .
Furthermore, let E ′

M , C ′

M and S′

M be the inverse images of EM , CM and SM

with respect to the universal covering map M ′ →M , and define E ′

N , C ′

N and
S′

N in terms of the submanifolds EN , CN and SN and the universal covering
map N ′ → N . Finally, let Λ denote the group ring Z[π1(M)] ∼= Z[π1(N)].

By Theorem 4.5 on page 30 of [23], the isovariant map f is isovariantly ho-
motopic to a map of triads (M ;EM , CM ) → (N ;EN , CN ), and therefore the
induced map f ′ of universal coverings also splits into a map of triads

(M ′;E′

M , C
′

M ) −→ (N ′;E′

N , C
′

N ) .

Since the homotopy equivalence f has degree ±1, the discussion of degree 1
maps in Chapter 2 of [61] applies, and accordingly the homology mappings

Hj(E
′

M ; Λ) −→ Hj(E
′

N ; Λ)

Hj(S
′

M ; Λ) −→ Hj(S
′

N ; Λ)
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Hj(C
′

M ; Λ) −→ Hj(C
′

N ; Λ)

are split surjections, Let Kj(E
′

M ), Kj(S
′

M ) and Kj(C
′

M ) denote their respective
kernels. Since f is a homotopy equivalence, we can use the reasoning at the
top of page 93 in [13] to conclude that

Kj(S
′

M ) ∼= Kj(E
′

M ) ⊕ Kj(C
′

M ) .

By construction we know that the map of pairs (EM , SM ) → (EN , SN ) splits
into maps of connected components (Eα(M), Sα(M)) → (Eα(N), Sα(N)), and
since f is an equivariant homotopy equivalence it follows that the underlying
maps of spaces Eα(M) → Eα(N) are homotopy equivalences. As in the proof of
Corollary 4.12 on page 37 of [23], an argument involving normal degrees shows
that the maps Sα(M) → Sα(N) are homotopy equivalences, which in turn im-
plies that Kj(Sα(M)′) vanish for all j . Therefore the direct sum decomposition
of the preceding paragraph implies that Kj(C

′

M ) = 0 for all j .

By Corollary 4.12 of [23], it suffices to prove that the map CM → CN is a
homotopy equivalence. At the beginning of the proof we noted that the pairs
(M,CM ) and (N,CN ) are 2-connected, and since M and N are connected
the same is true for CM and CN . The next step is to verify that the map
CM → CN induces an isomorphism of fundamental groups. To see this consider
the following commutative diagram:

π1(CM ) −−−−→ π1(CN )
y

y

π1(M) −−−−→ π1(N)

The vertical morphisms are bijective by the 2-connectivity condition, and the
bottom morphism is bijective since M → N is a homotopy equivalence, so
the top diagram must also be an isomorphism by a diagram chase. These
isomorphisms of fundamental groups imply that C ′

M and C ′

N are the universal
covering spaces of CM and CN respectively, so that the map C ′

M → C ′

N is
a lifting of CM → CN to universal coverings. By the preceding paragraph
we know that the map C ′

M → C ′

N induces isomorphisms in homology, and
therefore it follows that CM → CN is a homotopy equivalence, which is what
we wanted to prove.

6 Final remarks

It is natural to ask about possible extensions of the main results to more gen-
eral settings, and in this section we shall summarize a few results and specific
questions.
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Equivariant mappings of degree 1

Results of K. H. Dovermann [18] show that certain equivariant degree 1 map-
pings of smooth G-manifolds are normally cobordant to isovariant maps (in the
sense of equivariant surgery theory). In particular, Dovermann’s results apply
if a degree 1 map f : M → N satisfies the following conditions:

(1) The actions on M and N are semifree.

(2) The map of fixed point sets fG : MG → NG is a homotopy equivalence.

(3) The dimensions of M and N are sufficiently large.

(4) One can define suitable bundle data similar to that of Section 3.

In contrast, the following results of Browder (implicit in [11]) yield equivariant
degree 1 maps of such that (1) the underling G-manifolds satisfy the Gap
Hypothesis, (2) the maps are not equivariantly homotopic to isovariant maps.

Examples 6.1 Let k and q be distinct positive integers such that q is even
and G has a free q -dimensional linear representation (i.e., the group acts freely
except at the zero vector). Let N = Sk × Sq with trivial action on the first
coordinate and the one point compactification of the free linear representation
on the second, let M0 be the disjoint union of N and two copies of the space
G×Sk×Sq (where G acts by translation on itself and trivially on the other two
coordinates), and define an equivariant map f0 : M0 → N by taking the identity
on M , the unique equivariant extension of the identity map on Sk × Sq over
one copy of G×Sk ×Sq , and the unique equivariant extension of an orientation
reversing self diffeomorphism of Sk × Sq over the other copy. By construction
this map has degree one, and one can attach 1-handles equivariantly to M0 away
from the fixed point set to obtain an equivariant cobordism of maps from f0 to
a map f on a connected 1-manifold M that is nonequivariantly diffeomorphic
to a connected sum of 2 · |G| + 1 copies of Sk × Sq . Since the fixed point
sets of M and N are k -dimensional and the manifolds themselves are (k+ q)-
dimensional, it follows that the Standard Gap Hypothesis holds if we impose
the stronger restriction q ≥ k + 2. By construction the map f determines a
homotopy equivalence of fixed point sets and is isovariant on a neighborhood
of the fixed point set.

Assertion It is not possible to deform f equivariantly so that the set of non-
isovariant points lies in a tubular neighborhood of the fixed point set. In par-
ticular, it is also not possible to deform f equivariantly to an isovariant map.
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Proof. To prove the assertion, assume that one has a map h equivariantly
homotopic to f with the stated property, and let U be a tubular neighborhood
of MG that contains the set of nonisovariant points. Let X be a submanifold of
the form {g}×{v}×Sq in M that arises from one of the copies of G×Sk ×Sq

in M0 . Although X and U may have points in common, by the uniqueness of
tubular neighborhoods we can always isotop X into a submanifold X ′ that is
disjoint from U . By the hypotheses on h we know that h(X ′) is disjoint from
NG = Sk × S0 , and therefore h(X ′) is contained in

N −NG ∼= Sk × Sq−1 × R

so that the image of the generator of Hq(X
′) = Z maps trivially into Hq(N).

However, h is supposed to be homotopic to a map which is nontrivial on the
latter by construction, so we have a contradiction, and therefore it is not possible
to find an isovariant map h that is equivariantly homotopic to f .

A refinement of the preceding argument shows that if Y is a subset of M such
that the image of Hq(Y ) in Hq(M) is equal to the image of Hq(X), then Y must
contain some nonisovariant points of any equivariant map that is equivariantly
homotopic to f .

Remark By construction, Browder’s examples are normally cobordant to the
identity; an explicit normal cobordism from the identity to f0 is given by

W = N × [0, 1] q G× Sk × Sq × [0, 1]

where ∂−W = N ×{0} and ∂+W is the remaining 2|G|+1 components of the
boundary, and one can obtain a normal cobordism to f by adding 1-handles
equivariantly along the top part of the boundary. More generally, results of
K. H. Dovermann [18] imply that one can always construct equivariant normal
cobordisms to equivariant normal maps if the Gap Hypothesis holds and the
map is already an equivariant homotopy equivalence on the singular set as in
Browder’s examples.

However, it is also possible to construct examples like Browder’s that are not
cobordant to highly connected maps. It suffices to let k ≡ 0(4) and replace
G × Sk × Sq by G× S(γ), where the latter is the sphere bundle of a fiber ho-
motopically trivial vector bundle γ over Sk with nontrivial rational Pontryagin
classes; one must also replace the equivariant folding map from G × Sk × Sq

to N by its composite with the identity on G times a fiber homotopy equiva-
lence from S(γ) to Sk × Sq . Characteristic number arguments imply the map
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obtained in this fashion is not cobordant to a k -connected map. Of course, a
degree 1 map of this type does not have the bundle data required for a normal
map in the sense of equivariant surgery theory.

Exceptional low-dimensional cases

The dimension hypotheses in Theorem 2.1 arise because similar conditions are
needed to apply surgery theory. Since the Gap Hypothesis only applies to
manifolds of dimension ≥ 3, the only cases not covered by the main result are
dimM = dimN = 3, 4. However, the second part of Theorem 2.1 also applies
to 4-manifolds, and in fact we can prove that the first part of Theorem 2.1 is
also true for certain group actions on 4-manifolds.

Theorem 6.2 Let f : M → N be an equivariant homotopy equivalence of
connected, compact, unbounded ( = closed) and semifree smooth G-manifolds
that satisfy the Standard Gap Hypothesis. Assume that M and N are 4-
dimensional, and if G is isomorhic to Z2 also assume that dimMG = dimNG =
0. Then f is equivariantly homotopic to an isovariant homotopy equivalence.

Notes. If G is not cyclic of order 2 and the actions have nonempty fixed
point sets, then dimMG = dimNG = 0 automatically holds because all free
representations of G are even-dimensional. On the other hand, if G ∼= Z2

then semifreeness and the Gap Hypothesis only imply the weaker condition
dimMG = dimNG ≤ 1. The hypothesis in the theorem is satisfied if M and
N are oriented and G ∼= Z2 acts orientation-preservingly.

Proof. We shall assume that MG and NG are nonempty because equivariant
maps between free G-manifolds are automatically isovariant. Since the given
actions on the 4-manifolds satisfy the Gap Hypothesis, we know that 4 =
dimMG > 1 + 2dimMG , so that dimMG ≤ 1. As indicated in the preceding
paragraph, the hypotheses of the theorem imply that dimMG = dimNG = 0
in all cases. If we now take trivial G-action on S1 , we see that both of the
product G-manifolds M × S1 and N × S1 satisfy the Gap Hypothesis.

It follows that the equivariant homotopy equivalence f × id(S1) : M × S1 →
N × S1 satisfies the hypotheses in the first part of Theorem 2.1. Therefore
we can now apply the first half of Theorem 2.1 to conclude that f × id(S1)
is equivariantly homotopic to an isovariant homotopy equivalence f ′ . Let H
denote an equivariant homotopy relating these two maps.

Standard results on lifting maps to covering spaces now imply that H lifts
equivariantly to the infinite cyclic coverings X × R → X × S1 , where X is
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either M × [0, 1] or N . Therefore the lifting of H defines an equivariant homo-
topy from f × R to some isovariant homotopy equivalence F ′ (with G acting
trivially on R). If Y = M or N then the injections ϕY : Y → Y × R (with
ϕY (y) = (y, 0) ) and coordinate projections ρY : P × R → Y are isovariant
homotopy equivalences which are mutually inverse in the isovariant homotopy
category, and hence the composite ρN

oH oϕM defines an equivariant homotopy
from f to the isovariant homotopy equivalence ρN

oF ′ oϕM which is isovariantly
homotopic to f .

Although it seems likely that a similar conclusion holds when dimMG =
dimNG = 1, it is not clear how one might try to verify this in complete gener-
ality. However, if the fundamental groups of M and N are small in the sense of
[24] (e.g., finite or abelian), then we have the following extension of Theorems
2.1 and 6.2:

Theorem 6.3 Let f : M → N be an equivariant homotopy equivalence of
connected, compact, unbounded ( = closed) and semifree smooth G-manifolds
that satisfy the Standard Gap Hypothesis. Assume that M and N are 4-
dimensional and that π1(M) ∼= π1(N) is small in the sense of [24]. Then f is
equivariantly homotopic to an isovariant homotopy equivalence.

The differences between this and the preceding result are that the fundamental
groups have been restricted but the conclusion now covers the cases where
dimMG = dimNG = 1.

Proof. It is only necessary to replace the input from smooth surgery theory in
the proof of Theorem 2.1 with its counterparts in the 4-dimensional topological
surgery of [24] for manifolds with small fundamental groups. In particular,
one must use the latter to prove an analog of our equivariant π − π Theorem
(i.e., Theorem 3.2) for certain 5-dimensional topological G-manifolds with small
fundamental groups (specifically, this covers group actions that are semifree and
tame in the sense of Chapter 14B in [61]).

In the remaining case where dimM = dimN = 3, the class of semifree group
actions satisfying the Gap Hypothesis is far more restricted than it is in higher
dimensions. Specifically, if a smooth semifree, nonfree G-action on a 3-manifold
satisfies the Standard Gap Hypothesis, then the fixed point set must be 0-
dimensional and the group G must be isomorphic to Z2 . It is natural to ask
whether currently known techniques from 3-dimensional topology (including the
equivariant geometrization theorems) can be applied to verify the main result
of this paper for such examples.
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Generalizations to nonsemifree actions.

The reasons for our restriction to semifree actions are discussed in Remark 4
at the end of Section 2. If we are given an arbitrary smooth action of a finite
group G on a manifold M , it is necessary to work with all the fixed point sets
MH , where H runs through the isotropy subgroups of G, and with invariant
tubular neighborhoods of the components of these fixed point sets. The notion
of smooth stratification is particularly well-suited for managing such data (e.g.,
see [12], Section 2.5 of [21], or the more general approach in Chapter 4 of [40]);
however, it is also possible to study the underlying issues without introducing
stratifications explicitly (see [15], [19], or [20], for example). In any case, the
basic approach to working with nonsemifree action is by induction on the strata,
assuming results have been established for all strata strictly less than a given one
and adapting the methods of this paper to show that, under this hypothesis,
the results will be true for all strata up to and including the given one; for
semifree actions, one knows that the desired results are true on the strata of the
fixed point set because an equivariant map of trivial G-spaces is automatically
isovariant, and for this reason one can view our arguments as a special case of
an inductive step.

Strictly speaking, there are two inductive processes here, one of which is an
extension of the diagram-theoretic setting in [23] to nonsemifree actions, and the
other of which is an extension of the surgery-theoretic methods in the present
article. As noted before, it seems very likely that both of these programs can be
carried out by a well-informed researcher who has the patience, determination
and motivation to do so. Of course, the urgency of completing this work may
depend upon finding applications of such generalizations.

Analogous results for more general actions

A few general comments about this issue are stated in Remark 5 at the end
of Section 2; for the sake of simplicity we shall only consider semifree actions
here. As noted in the remark, one fundamental difficulty involves the structure
of small neighborhoods for the components of the fixed point set. An improved
understanding of such local structure from the viewpoint of controlled topology
as in [41] and [62] would be extremely useful for studying possible extensions of
our main results to group actions that are not necessarily smooth but are still
somehow well behaved topologically.

Any study of such questions for locally linear actions seems likely to have some
interaction with the theory of isovariant homotopy structure sets for locally
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linear G-manifolds due to S. Weinberger [62]. A general analysis of isovariant
homotopy for continuous locally linear actions will require new techniques be-
cause the sets Sing(XH) do not necessarily have equivariant mapping cylinder
neighborhoods in this case (as before, see [42]); it seems quite likely that some
sort of sheaf-theoretic machinery will be required.

Isovariance and the Gap Hypothesis

Questions about the role of the Gap Hypothesis in transformation groups have
been around for some time (cf. [51]). Such questions rarely have clear cut
answers, but the main results of this paper provide further evidence that the
usefulness of the Gap Hypothesis is closely related to

(1) the strong implications of isovariance for analyzing existence and classi-
fications questions for group actions,

(2) some very close relationships between isovariant homotopy and equivari-
ant homotopy when the Gap Hypothesis holds.

As noted at the beginning of this paper, examples of these phenomena have been
well known for some time. Isovariant techniques play a central role in several
classification results for group actions when the Standard Gap Hypothesis fails;
in many cases where such machinery is not used explicitly, the work can readily
be interpreted in these terms. One fundamentally important breakthrough in
this area was due to Browder and Quinn [12] (see also the commentary on the
latter in [28]), and a more general discussion of the situation in the smooth
category — which also extends earlier work on the smooth classification of
topologically linear actions on spheres — appears in Section II.1 of [53] (see
also the final section of [23]). In the piecewise linear and topological categories,
there is a distinct body of results which is largely based on techniques from
controlled topology (e.g., Weinberger’s book [62], the survey articles by Hughes-
Weinberger [28] and Cappell-Weinberger [14], and the doctoral dissertation of
A. Beshears [7]). A full historical account of the topic is beyond the scope of
this paper, but some additional references include the work of A. Assadi with
Browder [1] and P. Vogel [2], the monograph by L. Jones on symmetries of disks
[31], and the material on symmetries of aspherical manifolds in Weinberger’s
paper on higher Atiyah-Singer invariants [63].

In certain respects the main results of this paper imply that equivariant and
isovariant homotopy equivalence of closed G-manifolds are equivalent notions
provided the Gap Hypothesis holds. One possible conclusion from these re-
sults is that the study of classification questions outside the range of the usual
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Gap Conditions should be largely based on isovariant rather than equivariant
homotopy equivalence. In particular, our main results and the conclusions of
[23] suggest a two step approach to analyzing smooth G-manifolds within a
given equivariant homotopy type if the Gap Hypothesis does not necessarily
hold; namely, the first step is to study the obstructions to isovariance for an
equivariant homotopy equivalence and the second step is to study one of the
versions of the isovariant surgery theories in [53] or [62]. It would be interesting
to see how well this succeeds in some test cases.
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