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PART I

INTRODUCTION TO ISOVARIANT HOMOTOPY THEORY

Background references and notation

Although we shall include a few remarks on the basic facts and concepts of differen-
tiable transformation groups, a detailed account of the subject’s foundations is beyond
the scope of this article. The following references contain most if not all of the relevant
background material:

(1) Chapters I–II and Sections VI.1–2 of Bredon, Introduction to Compact Transfor-
mation Groups ( := [Bre3]).

(2) Chapter I and Sections II.1–2 of tom Dieck, Transformation Groups ( := [tD2]).

(3) Chapters I–II and the Summary of Dovermann–Schultz, Equivariant Surgery The-
ories and Their Periodicity Properties ( := [DoS2]).

Most of the algebraic topology that we use can be found in the standard books by
Spanier [Sp] and Milnor and Stasheff [MS].

We shall generally use standard notational conventions in transformation groups
including MG for the fixed point set of a group G acting on a space M , Gx for the
isotropy subgroup of G at x, and M(H) for the set of all points whose isotropy subgroups
are conjugate to H, and |G| for the order of a finite group G. These (and many others)
can be found in the references listed above.

As indicated by the title of this article, we shall deal mainly with smooth group
actions. However, for purposes of comparison we shall occasionally comment on other
families of group actions that lie between smooth and topological (i.e., continuous)
actions on manifolds. In particular, we shall discuss results for group actions that are
locally linear (≡ locally smooth in the sense of Bredon [Bre3]), and if G is finite we shall
also discuss actions that are piecewise linear (usually abbreviated to PL) or PL locally
linear (≡ Gpl in [Ro, pp. 303–304]). Further information on these families can be found
in the references cited, in [LaR], and in standard texts of PL topology such as Hudson
[Hud] or Rourke and Sanderson [RSa]; the logical relations among the various types of
actions are either obvious or implicit in work of S. Illman [Il3].

Finally, to simplify the exposition we adopt the following default hypothesis:
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(?) For all differentiable group actions, the group G that acts is assumed to be finite
unless there are statements or contexts to indicate otherwise.

1. Equivariant differential topology

To a great extent the foundations of the theory of transformation groups are devel-
oped by analogy. Specifically, given a fact or concept in some category of objects and
morphisms A, one attempts to describe something parallel in an equivariant category
AG with the following sorts of data:

(i) The objects of AG are pairs consisting of an object X in A and a homomorphism
Φ : G→ AutA(X) that may be required to satisfy additional technical restrictions
(e.g., that a naturally associated map ϕ : G×X → X lie in A).

(ii) The morphisms f : (X, Φ)→ (X ′, Φ′) satisfy the equivariance identity Φ′(g) of =
f oΦ(g) for all g ∈ G.

In this article we are interested mainly in the category of smooth finite-dimensional
manifolds. Two basic concepts in this category are the notions of vector bundle and
smooth embedding. Each of these has a natural analog in the G-equivariant category;
namely, a smooth G-vector bundle E ↓ M is taken to have a smooth action of G that
sends the fiber over x ∈ M linearly into the fiber over g · x for all (g, x) ∈ G × M
(cf. [Bre3, pp. 303–304]), and an equivariant smooth embedding is merely a smooth
embedding that is G-equivariant. In ordinary differential topology the Tubular Neigh-
borhood Theorems relate smooth embeddings to smooth vector bundles in a funda-
mentally important manner, and one has a straightforward equivariant generalization
with extremely far reaching consequences for the theory of differentiable transformation
groups:

Theorem 1.1. (i) Let M and N be smooth (finite dimensional) G-manifolds, and let
f : M → N be a smooth equivariant embedding. Then there is an equivariant vector
bundle E ↓M and a smooth embedding F : E → N whose restriction to the zero section
is essentially f .

(ii) Suppose that fj : Ej → N (where j = 0, 1) satisfy (i), and suppose we are given
invariant riemannian metrics on Ej with unit disk bundles D(Ej). Then there is a
metric preserving G-vector bundle isomorphism ϕ : E0 → E1 covering the identity on M
and a smooth equivariant ambient isotopy H : N × [0, 1]→ N such that H1

ofo = f1
oϕ.

This theorem follows from the results of [Bre3, Sections VI.2–3].

If the source manifold M in Theorem 1.1 is a homogeneous space G/H, then the
theorem reduces to the differentiable slice theorem [Bre3, Cor. VI.2.4, p. 308]:

Corollary 1.2. Let M be a smooth finite dimensional G-manifold without boundary,
let x ∈ M be given, and let H be the isotropy subgroup Gx. Then x has a G-invariant
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neighborhood that is G-diffeomorphic to an associated fiber space G ×H V ↓ G/H for
some finite dimensional G-representation V .�

Default convention. Unless stated otherwise, all manifolds are henceforth assumed
to be finite dimensional.

For our purposes it is important to have an analog of Theorem 1.1 for smooth G-
manifolds with boundary. As in the nonequivariant category, the most important prop-
erty of bounded smooth G-manifolds is the existence of collar neighborhoods for the
boundary.

Proposition 1.3. Let M be a smooth G-manifold with boundary ∂M . Then ∂M has a
neighborhood that is equivariantly diffeomorphic to ∂M × [0, 1) – with trivial action on
the second coordinate – such that ∂M corresponds to ∂M × {0}. If cj are two smooth
equivariant collar neighborhoods (where j = 0, 1), then c0|∂M× [0, 1

2
] and c1|∂M× [0, 1

2
]

are ambient isotopic.

This result follows from the same sort of argument that appears in M. Hirsch’s
differential topology textbook [Hi, Thm. 4.6.1, pp. 113–114].�

As noted in [Hi, Ch. 4, Sec. 6], the analog of the Tubular Neighborhood Theorem
for bounded manifolds requires a suitably refined notion of embedding for manifolds
with boundary. Specifically, one needs to work with neat embeddings of (M, ∂M) in
(N, ∂N) such that boundary goes to boundary and interior to interior (i.e., a proper
embedding of manifolds with boundary) and some neighborhood of ∂M in M meets ∂N
orthogonally along the boundary (say with respect to some collar neighborhoods). We
then have the following equivariant analog of the results for bounded manifolds in [Hi,
Thms. 4.6.3 and 4.6.5, pp. 114–116].

Theorem 1.4. (i) Let (M, ∂M) and (N, ∂N) be smooth (finite dimensional) G-manifolds
with boundary, and let f : (M, ∂M)→ (N, ∂N) be a smooth equivariant embedding sat-
isfying the neatness condition described above (with respect to some invariant collar
neighborhoods). Then there is an equivariant vector bundle E ↓ M and a neat smooth
embedding F : E → N whose restriction to the zero section is essentially f .

(ii) Suppose that fj : Ej → N (where j = 0, 1) satisfy (i), and suppose we are given
invariant riemannian metrics on Ej with unit disk bundles D(Ej). Then there is a
metric preserving G-vector bundle isomorphism ϕ : E0 → E1 covering the identity on M
and a smooth equivariant ambient isotopy H : N×[0, 1]→ N such that H1

ofo = f1
oϕ.�

The equivariant Tubular Neighborhood Theorems imply that certain invariant sub-
sets of a smooth G-manifold are also smoothly embedded submanifolds or unions of
submanifolds (where the dimension may vary from one component to the next). For
example, this holds for the fixed point set MG and the constant orbit type set M(H).
Since M is the pairwise disjoint union of these subsets M(H), where (H) runs through
the conjugacy classes of subgroups of G, and the induced G-action on M(H) is com-
pletely determined by fiber bundle considerations, we therefore have a decomposition
of M into G-invariant pieces that can be studied effectively by standard topological
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methods. In order to understand things more thoroughly it is necessary to determine
how these pieces fit together; a fairly complete account of this can be found in work
of M. Davis [Dav]. As indicated in [DoS2, Sec. II.4], the process can be viewed as a
special case of the Thom-Mather theory of smoothly stratified sets.

Convention on abuse of language. If we are given an invariant closed subset N ⊂M
of a smooth G-manifold M such that N is a disjoint union of smoothly embedded
submanifolds Nj , and the maps ϕj : Ej → Nj define pairwise disjoint tubular (i.e.,
vector bundle) neighborhoods as in the preceding results, we shall often say that the
disjoint union

∐

ϕj :
∐

Ej →
∐

Nj (≈ N)

is an invariant tubular neighborhood of N in M ; if α is the disjoint union of the as-
sociated vector bundles αj (whose fibers may have different dimensions!), then D(α)
and S(α) will denote the unions of the associated disk and sphere bundles

∐

D(αj) and
∐

S(αj) respectively.

2. Equivariant homotopy theory

One of the main themes in algebraic topology is the use of cohomology groups to
analyze the homotopy classes of maps from one space to another. The classical ap-
proach to this general question involves obstruction theory (cf. [Wh1]; for historical
background see [Eil] and [Wh2]). Although several new and powerful techniques for
studying homotopy classes have emerged over the past four decades, in many cases the
obstruction-theoretic approach is still the most useful or illuminating. The applicabil-
ity of obstruction theory to equivariant homotopy was already understood by the mid
nineteen fifties (cf. [Dg]), especially when the group action is free (i.e., all isotropy
subgroups are trivial). Systematic investigations of equivariant homotopy theory began
in the nineteen sixties. A historical summary appears in the first part of [Sc10, Sec. 1];
we shall merely sketch the basic mathematical points here.

In principle, classical obstruction theory yields an algebraic setting for describing
homotopy classes of maps provided one has the following data:

(i) Cellular decompositions for the source spaces.
(ii) Suitably defined cohomology groups for the source spaces, in general with twisted

coefficients, that can be computed from small cochain complexes reflecting the
cell structure. The coefficients are determined by the homotopy type of the target
space and some information involving fundamental groups.

In [Bre2] G. Bredon described general and usable equivariant analogs of (i) and (ii).
The objects in (i) were forerunners of G − CW complexes (e.g., see [tD2, Sec. II.1]),
and the cohomology functors in (ii) evolved into the so-called Bredon (equivariant)
cohomology groups; the latter were first defined by Bredon [Bre2], and a close relation
of these to ordinary singular cohomology follows from an alternative definition due to
Th. Bröcker [Brö] (in this connection also see [Il1]). Equivariant coefficient systems in
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Bredon cohomology are more complicated than ordinary coefficient groups and require
families of abelian groups indexed by the components of each fixed point set Y H (where
H is a subgroup of G), but one still has small cochain complexes for computing the
Bredon cohomology groups BRH∗(X,A).

The following results reflect the strong analogies between ordinary and equivariant
homotopy theory.

Property 2.0. (G-homotopy extension property) Let G be a compact Lie group, let
X be a G − CW complex, let A ⊂ X be a subcomplex, let f : X → Y be a continuous
equivariant map into some G-space Y , and let ht : A→ Y be an equivariant homotopy
such that h0 = f |A. Then ht extends to an equivariant homotopy Ht : X → Y such
that H0 = f .�

Property 2.1. (Extension theorem) Let G, A, X, Y be as above, and let h : A → Y
be continuous and equivariant. Then f extends to a continuous equivariant map from
A to Y if a sequence of obstructions valued in the i-dimensional Bredon cohomology
groups of (X, A), with coefficients in the (i − 1)-dimensional homotopy groups of fixed
set components of Y , is trivial.�

Property 2.2. (Classification theorem) Let G, X, Y be as above, and let hj : X → Y
be continuous and equivariant for j = 0, 1. Then h0 and h1 are equivariantly homotopic
if a sequence of obstructions valued in the i-dimensional Bredon cohomology groups of
X, with coefficients in the i-dimensional homotopy groups of fixed set components of Y ,
is trivial.�

Note the difference in coefficient groups between 2.1 and 2.2.

Property 2.3. (Barratt-Federer spectral sequence) Let G, X, Y be as above, and also
assume X is finite-dimensional. Modulo some mildly exceptional behavior in dimensions
1 and 0 there is a spectral sequence such that

E2
i,j = BRH−i

G (X; Gπj(Y ))

where Gπj(Y ) is a coefficient system derived from the homotopy groups of components
of fixed point sets Y H (where H runs through subgroups of G) and E∞

i,j gives a series for
πi+j(FG(X, Y )), where FG(X, Y ) is the space of G-equivariant continuous maps from
X to Y with the compact open topology.�

Precise statements of 2.1–2.3 appear in [DuS, Sec. 1]. Unfortunately, the preceding
results are computationally less useful than their nonequivariant counterparts because
Bredon cohomology groups are far more difficult to compute than ordinary singular
cohomology. One the other hand, results from [Sc2] yield alternatives to 2.1–2.3 that
involve ordinary cohomology groups; not surprisingly, there is a price to pay for this –
roughly speaking, each Bredon cohomology group is replaced by a finite list of ordinary
cohomology groups. In particular, the analog of Property 2.3 given by [Sc2] is the
Barratt-Federer/Fáry spectral sequence in [DuS, Thm. 1.5].
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One can in fact extend nearly all the basic concepts and results in algebraic topology
to the category of G − CW complexes, including an equivariant version of the White-
head theorem for recognizing equivariant homotopy equivalences (see [Bre2]), Postnikov
decompositions, and localization at a subring of the rationals [MMT]. This can be in-
terpreted as a special case of a more general observation (see [DF, p. 131]; in this
connection also see [May] and [DuS, statement (1.8)]). There is also a correspond-
ing analog of equivariant stable homotopy theory; references for the latter include tom
Dieck’s book on the Burnside ring [tD1], an exhaustive account by G. Lewis, J. P. May,
and M. Steinberger [LMS], and a more recent survey article by G. Carlsson [Car].

Application to smooth G-manifolds

Of course, if we wish to apply the preceding machinery to compact smooth G-
manifolds it is necessary to find appropriate interpretations of the latter as G − CW
complexes. There are two ways of doing this. Results of A. Wassermann [Wa] yield
a version of Morse Theory for G-invariant smooth functions on smooth G-manifolds,
and from this it is elementary to show that smooth G-manifolds have the G-homotopy
type of finite-dimensional G−CW complexes; in fact, for compact smooth G-manifolds
one can choose the G − CW complexes to be finite (also see [Ko] for a self-contained
account of these results). On the other hand, for many purposes it is more useful to
invoke a stronger result due to S. Illman [Il3]: Every smooth G-manifold (G finite) has
a G-equivariant triangulation that is smooth in the sense of J. H. C. Whitehead (see
[Mun] for the corresponding result in ordinary differential topology).

3. Isovariant homotopy theory

Recall that a finite group action on a reasonable (say paracompact Hausdorff) space
X is free if the isotropy subgroups at all points are trivial. Basic results in topology state
that a free action of a finite group G on such a space is determined by its orbit space
X/G and a homotopy class of maps from X/G to a universal base space BG ' K(G, 1).
In [Pa] R. S. Palais extended this to a classification theory for G-spaces that are not
necessarily free; this involves a special class of maps that Palais called isovariant.
Specifically, a G-equivariant map f : X → Y is said to be isovariant if for all x ∈ X
the isotropy subgroups satisfy Gx = Gf(x); an equivariant map f automatically satisfies
Gx ⊂ Gf(x), but it is easy to see that equality often does not hold. During the nineteen
sixties and seventies isovariant maps were also discussed in connection with various
topological problems, and questions about isovariant homotopy arose naturally; much
of this is discussed at various points of [DuS]. The usefulness of isovariant homotopy
for classifying G-manifolds became explicit in the work of Browder and Quinn [BQ]
on stratified surgery theory. Various ad hoc techniques for dealing with isovariant
homotopy theory gradually emerged, and by the mid nineteen eighties it was clear that
one could analyze isovariant homotopy effectively by the basic techniques of algebraic
topology. The key idea is expressed in [DuS] as follows:
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Isovariant homotopy for smooth G-manifolds is essentially equivalent to equivari-
ant homotopy theory for suitable diagrams of smooth G-manifolds.

We shall explain this statement in several steps, beginning with a discussion of dia-
gram categories. If D is a small category and S is some category of topological spaces,
then a D-diagram with values in S is merely a covariant functor D→ S and a morphism
of D-diagrams is a natural transformation of functors. Results of W. Dwyer and D. M.
Kan [DK] show that one can extend much of classical homotopy theory and obstruction
theory to categories of D-diagrams with values in the category of CW complexes, and
subsequent generalizations of E. Dror Farjoun [DF] yield corresponding results for suit-
able categories of D-diagrams of G-CW complexes. More precisely, we need to choose a
small category associated to some finite partially ordered set P that is closed under tak-
ing greatest lower bounds, and we also must restrict attention to P-diagrams satisfying
a few simple admissibility conditions (see [DuS, conditions (i) − (iii) preceding (1.6)].
The basic results of equivariant algebraic topology extend directly to such equivariant
diagrams and are summarized in [DuS, (1.6)–(1.10)].

Before discussing the types of diagrams we need, a technical remark is in order.
Strictly speaking, the results of [DuS] only deal with a restricted class of group actions,
but this class includes all actions of the cyclic groups Zpr , where p is a prime, and
all fixed point free actions of Zpq, where p and q are distinct primes. Extensions to
more general actions will appear in a sequel to [DuS]. We shall first discuss the types of
diagrams needed in an important special case and then outline an inductive extension
to the general case.

The semifree case

The conclusions of [DuS] apply directly to actions that are semifree (= free off the
fixed point set), so we shall describe the appropriate diagrams of G-manifolds in this
important special case. If M is a compact smooth G-manifold, let MG denote its fixed
point set as usual, let αM be the equivariant normal bundle of MG in M , let D(αM )
and S(αM ) be the associated unit disk and sphere bundles respectively, and let M ∗MG

denote the closure of M−D(αM ). Then the relevant diagram of spaces, which is denoted
by B(QFM ) in [DuS], is the following partially ordered set:

S(αM ) −−−−→ D(αM ) ←−−−− MG





y





y

M ∗MG −−−−→ M

In the preceding special case the main result of [DuS, Sec. 4] can be stated as follows:

Theorem 3.1. (compare [DuS, Thm. 4.5]) Let G be a finite group, let X and Y be
compact smooth semifree G-manifolds, and let B(QFX) and B(QFY ) be the diagrams
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described above. Then there is a canonical isomorphism:











G− equivariant
homotopy classes of

continuous equivariant
diagram morphisms

B(QFX)→ B(QFY )











∼=











G− isovariant
homotopy classes of

continuous isovariant
maps of spaces

X −→ Y











�

The proof of this result is a fairly straightforward application of standard compactness
considerations and the covering homotopy property for fiber bundles; details appear in
[DuS, Sects. 2–4].

Results of Dwyer and Kan [DK] and E. Dror Farjoun [DF] show that one can “do
algebraic topology” in the diagram category corresponding to the left hand side of
the correspondence displayed in the theorem. In particular, the associated obstruction
theories in the diagram categories (cf. [DuS, Sec. 1]) are essentially obstruction theories
for isovariant homotopy theory. Furthermore, as noted in [DuS, (1.8)–(1.10)] one also
has Postnikov decompositions, localization at subrings of the rationals, and spectral
sequences for the homotopy groups of isovariant function spaces analogous to those of
J. Møller and the author [Mø, Sc2]. At the end of [DuS, Sec. 4] these ideas are applied
to prove isovariant analogs of the Whitehead Theorems for recognizing (ordinary or
equivariant) homotopy equivalences. Here is one special case:

Theorem 3.2. Let G be a finite group, let X and Y be compact, unbounded, semifree
smooth G-manifolds, let f : X → Y be an isovariant map, and also assume that all fixed
point sets XH and Y H are orientable. Then f is an isovariant homotopy equivalence
if and only if for each isotropy subgroup H the map f induces homotopy equivalences
from XH to Y H and from XH − Sing(XH) to Y H − Sing(Y H).

Notation and remark. The singular set of MH , denoted by Sing(MH), is the set
of all points in MH whose isotropy subgroups properly contain H. By definition an
isovariant map X → Y automatically takes XH − Sing(XH) to Y H − Sing(Y H).�

Related isovariant analogs of the Whitehead Theorem also appear in [DuS, Thm.
4.10 and Cor. 4.11]).

Actions with more general isotropy structures

The preceding results extend to arbitrary compact differentiable G-manifolds (where
G is finite as usual). In principle the argument combines the techniques used in the
semifree case with an inductive framework that we shall describe below; details will
appear in a sequel to [DuS].

Definition. If G is a compact Lie group acting with finitely many orbit types (e.g.,
if G is finite), then the isotropy depth of the action is the largest nonnegative integer d
such that one has a sequence of isotropy subgroups

H0 $ H1 $ · · · $ Hd.
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In particular, an action with only one isotropy type (e.g., a free action) has isotropy
depth zero, and a semifree action has isotropy depth one; the results of [DuS] include
extensions of 3.1 and 3.2 to actions with isotropy depth one. Aside from semifree actions,
the class with isotropy depth one also includes fixed point free, effective actions of Zpq,
where p and q are distinct primes (since the group in question contains exactly two
nontrivial proper subgroups, and neither contains the other).

One of the main steps in extending Theorem 3.1 is the description of an analog to
B(QFM ) for actions of isotropy depth greater than one. Suppose we are given a compact
smooth G-manifold M ; we begin by choosing a G-invariant metric on M and using it
to construct a system of invariant tubular neighborhoods of the fixed point sets MH

where H runs through the isotropy subgroups of the action. If we are given an action of
isotropy depth zero, then the finiteness of G implies that M splits into a disjoint union
of codimension zero submanifolds MK where K runs through the conjugates of H, and
the isovariance diagram IsD(M) is given by the partially ordered set whose members
are the sets MK . One then assumes that IsD(Y ) has been defined for smooth actions
of isotropy depth less than d such that IsD(Y ) satisfies some appropriate conditions
(e.g., it contains all fixed point sets Y H where H runs through the isotropy subgroups
of the action).

Consider next a smooth action on M with isotropy depth equal to d, and let Fd ⊂M
be the set of points whose isotropy subgroups are maximal. It follows that Fd is an
invariant union of smooth submanifolds (neatly embedded if ∂M 6= ∅). Let S〈d〉 and
D〈d〉 be the unit sphere and disk bundles for an invariant tubular neighborhood of
Fd (with the abuse of language convention at the end of Section 1), and let C〈d〉 :=
M ∗Fd be the closure of the complement of D〈d〉. The diagram IsD(M) of G-invariant
subspaces of M is then constructed in pieces as follows: Since S〈d〉 and C〈d〉 have
isotropy depth ≤ d− 1 we can take IsD(M ; M ∗Fd) to be the union of IsD(S〈d〉) and

IsD(C〈d〉). The set Fd is a pairwise disjoint union of the subsets MH where H runs
through the maximal isotropy subgroups of the action, so define IsD(M ; Fd) to be the
family of all such sets M(K). Next, define IsD(M ; D〈d〉) to be the family of all subsets

D〈d〉H ; the partially ordered set IsD(M) is then defined to be a family of subsets
generated from IsD(M ; M ∗Fd) and IsD(M ; D〈d〉) by adjoining suitable unions P ∪Q
where P ∈ IsD(M ; M ∗Fd) and Q ∈ IsD(C〈d〉).

With these definitions of isovariance diagrams Theorem 3.1 generalizes to a similar
canonical isomorphism:











G− equivariant
homotopy classes of

continuous equivariant
diagram morphisms
IsD(M)→ IsD(N)











∼=











G− isovariant
homotopy classes of
continuous isovariant

maps of spaces
M −→ N











where M and N are compact smooth G-manifolds. Roughly speaking, this can be done
inductively by first adjusting the map on D〈d〉 and then using an inductive hypothesis
to adjust the map on M ∗Fd leaving S〈d〉 fixed.
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4. Isovariance versus equivariance

One basic question in equivariant homotopy theory is to determine whether a contin-
uous map between two G-spaces is homotopic to an equivariant map (cf. [LW], [MP],
and [La]). In this section we are interested in a corresponding question for isovariant
homotopy theory; namely, whether a continuous equivariant map is equivariantly ho-
motopic to an isovariant map. Several special cases have been studied in by geometric
methods. One example will be discussed in Section II.2; other results include Illman’s
work on isovariance and equivariant general position [Il4] and results with applications
to embedding manifolds in the metastable range (see Haefliger [Hae, Prop. 2, p. 245/06]
and Harris [Har, Prop. 13, p. 24]). Each approach seems to yield insights not apparent
from the others.

Default hypothesis: To keep the notation relatively uncomplicated we shall only
consider semifree actions on connected manifolds whose fixed point sets are connected.

Similar results also hold for more general actions, but the terminology quickly be-
comes far more complicated.

We begin with an elementary observation.

Proposition 4.1. Let M and N be as above, let αM and αN be the equivariant normal
bundles of the fixed point sets, let D(−) denote an associated unit disk bundle, and let
f : M → N be an equivariant map. Then f is equivariantly homotopic to a map h such
that h(D(αM )) ⊂ D(αN ). Furthermore, if h0 and h1 are two equivariant maps with this
property and Φt is an equivariant homotopy from h0 to h1, then there is an equivariant
homotopy Ψt from h0 to h1 such that Ψt(D(αM )) ⊂ D(αN ) for all t ∈ [0, 1].

This is essentially a special case of [DuS, Prop. 5.1].�

Theorem 3.1 and Proposition 4.1 combine to yield the following lifting condition for
finding an isovariant map in an equivariant homotopy class:

Theorem 4.2. Let M and N be as above, and let f : M → N be a continuous equivari-
ant map satisfying the conditions of Proposition 4.1. Then f is equivariantly homotopic
to an isovariant map if the associated maps S(αM ) → D(αN ) and M ∗MG → N lift –

equivariantly and compatibly – to S(αN ) and N ∗NG respectively.

This is a special case of [DuS, Thm. 5.3].�

One can obtain cohomological isovariance obstructions by combining Theorem 4.2
with obstruction theory in several different ways. Typical results along this line are
given in [DuS, Thms. 5.4–5.5]. The remarks at the end of [DuS, Sec. 5] discuss variants
and special cases of these theorems.

Comparative computations

Another way of studying the difference between equivariant and isovariant homotopy
is to compare the homotopy groups of an equivariant function space FG(X, Y ) with
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those of the corresponding isovariant function space IFG(X, Y ), say if X and Y satisfy
the basic assumptions of [DuS]. For example, one could use the appropriate Barratt-
Federer spectral sequences from [Sc2] and [DuS] in each case, and as a first step it might
be worthwhile to take tensor products with the rationals and obtain information about
rational homotopy groups.

The final section of [DuS] provides a comparison along these lines when G = Zp and
X = Y = S(V ), where p and q are distinct odd primes and V is a linear G-representation
such that V contains at least two free irreducible summands. If FG(V ) is the space of
equivariant self maps of S(V ) then the Barratt-Federer spectral sequence of [Sc2] shows
that πk(FG(V ))⊗ Q = 0 for all but finitely many k. On the other hand, if IFG(V ) is
the space of isovariant self maps of S(V ) then the results of [DuS, Sec. 6] show that
each rational homotopy group πk(IFG(V ))⊗Q is finite dimensional, but the sequence
of dimensions dk satisfies limsupk→∞dk/kn = ∞ for every positive integer n. There is
an explanation for this difference in terms of the Barratt-Federer spectral sequences: In
the equivariant setting one has cohomology groups with coefficients in the homotopy
groups of spheres, and rationally these vanish in all but at most two dimensions. On
the other hand, in the isovariant setting one has cohomology groups with coefficients in
the homotopy groups of wedges of spheres, and the ranks of these groups tend to grow
exponentially as the dimension increases.


