
Isovariant Homotopy Theory, the Gap Hypothesis, and

Rational Classification Problems

Two basic types of problems in geometric topology:

(1) Existence of objects with certain properties.

(2) Classification of objects similar to standard examples up to isomorphism.

For (topological or smooth) manifolds, surgery theory is a collection of tools for ana-
lyzing such problems.

Want to modify and extend things to manifolds with group actions (all smooth here).
This ultimately requires a well-developed understanding of G-equivariant algebraic topol-
ogy when G is a compact Lie group.

SIMPLIFYING ASSUMPTION. Default hypothesis that actions be semifree (the
group acts freely off the fixed point set). Note that if p is prime, then all actions of Z/p
must be semifree.—Can handle more complicated orbit structure using the ideas in the
special case plus inductive machinery.

FOCUS ON CLASSIFICATION. In geometric topology, one productive topic is
the classification of (topological or smooth) manifolds with a given homotopy type. One
can ask a similar question for manifolds with smooth actions of finite, or more generally
compact Lie, groups. As the talk’s title should suggest, this is the focus here.

Two approaches which developed fairly early:

(A) Look at a refinement of equivariance called isovariance. An equivariant map f
satisfies f(g · x) = g · f(x), so the isotropy subgroups satisfy Gx ⊂ Gf(x) for all
x. Isovariant means that equality always holds.

(B) The standard Gap Hypothesis: For semifree actions this reduces to dim M ≥

2 · dim MG + 2.

Note that the fixed set MG is a union of pairwise disjoint submanifolds for smooth actions;
the dimensions of the pieces may vary, and dim MG is the highest of these numbers.

Question. How are these related?
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Need tools to work with isovariant homotopy theory as “a homotopy theory.” By Dula-RS,
for smooth actions this is equivalent to a category of diagrams in equivariant homotopy
theory. [Figure 1] We then have the following evidence of some relationship:

Theorem. (S. Straus, W. Browder) Aside from some low-dimensional issues, an equiv-
ariant homotopy equivalence of smooth semifree G-manifolds is equivariantly homotopic
to an isovariant homotopy equivalence PROVIDED the (standard) Gap Hypothesis holds.
A similar result holds for equivariant homotopies of such maps under a slightly stronger
hypothesis. [Figure 2]

What happens if the Gap Hypothesis does not hold?

Some differences almost certain. However, if ∆ = dim M − 2 · dim MG is not too
negative, things sometimes do not behave too badly. (A. Bak - M. Morimoto in odd dims,
K. H. Dovermann - RS in even dimensions). But if the difference gets a little larger, then
things really start to go wrong.

(M. Rothenberg - S. Weinberger) Breakdown of a fundamental surgery result (an
equivariant π − π Theorem).

(RS) Examples of equivariantly homotopy equivalent Z/2-manifolds which are
not isovariantly homotopy equivalent.

A recent result of S. Safii (Ph. D. Thesis, UC Riverside, 2015) shows that some things
go wrong right away:

Theorem. Let ∆ ≤ 1. Then there is a smooth simply connected G-manifold M
with ∆(M) = ∆, an orientation preserving (semifree) smooth G-action on M , and a G-
equivariant homotopy equivalence f : N → M which is not equivariantly homotopic to an
isovariant homotopy equivalence.

One consequence: The conclusion of the (general) equivariant π − π Theorem is false
for orientation preserving actions whenever the Gap Hypothesis fails. — If it were true for,
say, ∆ = 1, then one could improve the range for which the result of Straus and Browder
is valid.

One conclusion might be to look more closely at the classification of smooth G-
manifolds with a given isovariant homotopy type if we want to go beyond the Gap
Hypothesis range.
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Decent classification schemes exist, but they immediately run into formidable homo-
topy problems like understanding the higher homotopy groups of spheres. These can be
handled in specific cases. To get a general picture one can follow D. Sullivan’s approach and
look for complete sets of rational invariants which classify objects up to finite ambiguity.

For example, higher dimensional simply connected closed manifolds are given up to
finite ambiguity by

(a) a grade commutative differential graded algebra which describes the rational ho-
motopy type,

(b) a bound on the torsion in the integral (co)homology,

(c) an integral lattice in the first item which gives integral information on the homo-
topy type,

(d) candidates for the rational Pontryagin classes.

Each of the last three conditions arises naturally. The rational homotopy type does not
catch torsion in the cohomology, and one can have torsion of all orders. Likewise, if two
cohomology classes have a nonzero cup product of infinite order, then the cup product in
integral cohomology may be any nonzero multiple of an additive generator in cohomology.
The first three specify the actual homotopy type up to finite ambiguity. Since homotopy
equivalent manifolds may have different rational Pontryagin classes, the fourth piece of
data is also needed. Simply connected surgery then shows that the four conditions suffice
to describe the homeomorphism or diffeomorphism type up to finite ambiguity in higher
dimensions.

M. Rothenberg and G. Triantafillou established an equivariant analog of this result in
the 1990s.

Theorem. Let G be a finite group, and consider closed smooth G-manifolds such that
every fixed point set of every subgroup is simply connected and higher dimensional, and
assume further that the Gap Hypothesis holds. Then there is a notion of equivariant simple
homotopy type which refines the model in (a) such that analogs of the data yield a finite
ambiguity classification for G-manifolds up to equivariant almost diffeormorphism. [Figure
3]

An almost diffeomorphism means a homeomorphism which is a diffeomorphism
except at a finite set of fixed points. — The “almost” can be removed for orientation
preserving Z/p actions on even dimensional manifolds (RT), and in the odd dimensional
case one can sometimes do this by introducing an invariant called a G-signature defect

(M. Masuda-RS).
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Two issues arise. (1) The need to assume the Gap Hypothesis. (2) The need to assume
that every fixed point set of every subgroup is connected. — Even for standard examples,
the fixed point sets might have many components. One simple class of examples arises
by starting with finite linear actions of a group G on C

n+1 and considering the induced
quotient manifold actions on CP

n.

“Work in progress” to suggest the usefulness of isovariant homotopy theory in dealing
with both issues:

Start with some restrictions like semifree, sufficiently large dimensions, all components
of fixed point sets are simply connected (true for previously described actions on CP

n),
codimension ≥ 3 Gap Hypothesis (dim M ≥ dimMG − 3), and (technically useful but

conceptually undesirable) each map x → g · x is homotopic to the identity (but the
homotopy need not be equivariant).

Theorem. Under these conditions, the following data yield a finite ambiguity classifica-
tion for up to equivariant almost diffeormorphism:

(a) A diagram of grade commutative differential graded algebras resembling the Dula-
Schultz diagrams.

(b) Reidemeister torsion invariants (which yield an equivariant simple homotopy type
up to finite ambiguity).

(c) Torsion bounds, integral lattices, candidates for rational characteristic classes.

(d) For each component Mα of MG, a twisting invariant Φα ∈ Hq(α)−1(Mα; Q), where
q(a) = dim M − dim Mα.

The last invariant is elusive, and it represents the obstruction to deforming an isovari-
ant homotopy equivalence (isovariantly) to a transverse linear isovariant map in the sense
of W. Browder and F. Quinn. There are many conditions under which it is automatically
zero. For example, the invariant lies in a zero group if the Gap Hypothesis holds, and it
automatically vanishes when G = Z/2 or Z/3. However, if M is a sphere with a linear
G-action, this invariant can be nonzero.
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