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DERIVATIONS AND VECTOR FIELDS 

 

Let U be an open subset of  
n and let &&��∞∞ (U) denote the ring of smooth C∞∞  functions 

on U.  
 
Given a smooth vector field X on U, the directional (or Lie) derivative along X defines a 

derivation on &&��∞∞ (U).  It is a routine exercise to show that distinct vector fields 
determine distinct derivations, and a fundamental result states that all of the derivations 

on &&��∞∞ (U) come from such directional derivatives.  One immediate consequence of this 
and some  elementary algebra is a simple definition of the Lie bracket of two vector 
fields:  If D and E are derivations on an algebra A, then a routine calculation shows that 

the commutator [D,E] = DE – ED is also a derivation, and therefore there if X and Y 
are smooth vector fields on U there is a unique vector field [X,Y] such that the 
associated directional derivatives are given by the formula 
 

[X,Y]f = X(Yf) – Y(Xf). 
 
Since the treatment in the course is not quite the same as in Conlon, we shall i ndicate 
how one can use the results of Conlon in the spirit of the lectures.   
 

Leibniz functionals 
 
Given an algebra A over the real numbers, define a Leibniz functional to be a linear 
functional D: A →→  

 satisfying the Leibniz rule for products:   

 
D(ab) = (Da)b + a(Db)   

 
It follows immediately that the set of all Leibniz functionals is  a vector subspace of the 
space of all li near functionals on A. 
 

Let x ∈∈ n, and let &&��∞∞ [x] denote the local ring of germs of smooth functions defined 

on neighborhoods of x;  specifically the elements of the ring are represented by smooth 
functions defined on neighborhoods of x and two functions define the same germ if there 
is a common subneighborhood of x on which the two functions are equal (this is denoted 

by **x in Conlon). 
 



Given a vector V∈∈ n
 one can define a Leibniz functional DV  on &&��∞∞ [x]  by taking the 

directional derivative of a representative function f at x in the direction of V.  Since the 
directional derivative only depends upon the behavior of a function on an arbitrarily 
small open neighborhood of  x it follows that this directional derivative is independent of 
the choice of representative.  It is a routine exercise to verify that the map sending a 
vector V to the associated Leibniz functional DV is a linear map of vector spaces and that 
the kernel of this map is trivial.   
 
The key point is that every Leibniz functional has the form DV  for some V. The proof 
of this is implicit in Lemma 2.2.19 to Corollary 2.22 on pages 47 to 49 of Conlon. 
 

Application to derivations 
 
We shall indicate how the discussion in Section 2.7 of Conlon is related to our setting.  

Suppose that ∆∆ is a derivation on &&��∞∞ (U).  Lemmas 2.7.12 and 2.7.13 as well as 

Corollary 2.7.14 go through as stated.  For each x ∈∈ U, Definition 2.7.15 and 

Proposition 2.7.16 define a Leibniz functional ∆∆x  on &&��∞∞ [x].  By the results on Leibniz 

functionals, it follows that ∆∆x  = DV(x)  for some unique vector V(x)  ∈∈ n.  Clearly the 

map sending x to V(x) determines a set-theoretic function from U to  
n; in order to 

establish the one-to-one correspondence between vector fields and derivations, it is 
necessary to show that V(x)  defines a smooth function from U to  

n.  This is 
essentially the content of Proposition 2.7.17, but because of the importance of this result 
we shall sketch  the argument here.  If  V is the i-th unit vector ei, then DV is given by 
partial differentiation with respect to the variable xi , and we shall write  DV = Di  in this 
case.  The results on Leibniz differentials show that the derivations Di  form a basis for 
the space of all such objects, and therefore we can write   
 

V(x)  =  ∑∑ gi(x)Di  
 
for suitable functions gi ;  the function V(x)  is smooth if and only if each gi(x) is 
smooth, so we need to show that each of these real valued functions  is smooth.   
 
Let i be an arbitrary integer between 1 and n, and let xi  be the corresponding coordinate 

function on 
n.  By our assumptions ∆∆(xi ) is a smooth function on U.  On the other 

hand, since ∆∆  =  ∑∑ gj(x)Dj  it follows that ∆∆(xi ) =   gi(x).  Therefore the latter is 

smooth, and by our previous remarks it follows that  ∆∆(f) = Vf  for the vector field V 

whose coordinate functions are given by the smooth functions ∆∆(xi ).  


