Study sheet for Midterm Examination

1. Show that the set \boldsymbol{S} of all points $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ in \mathbf{R}^{3} satisfying $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}=z^{2}$ is $\underline{n o t}$ a topological manifold. [Hint: The origin 0 lies in \boldsymbol{S} and $\boldsymbol{S}-\{0\}$ has two components; show that for every open neighborhood \boldsymbol{U} of 0 in \boldsymbol{S} the deleted neighborhood $\boldsymbol{U}=\{0\}$ has at least two components. Why does this imply that \boldsymbol{S} cannot be a topological \boldsymbol{n} manifold for $\boldsymbol{n} \geq 2$? On the other hand, the set of all points in $\boldsymbol{S} \boldsymbol{-}\{0\}$ with positive \boldsymbol{z} coordinate is homeomorphic to $\mathbf{R}^{\mathbf{2}}-\{0\}$ by the map forgetting the last coordinate. Since the latter is a topological 2-manifold, it follows that $\boldsymbol{S}-\{0\}$, and hence \boldsymbol{S} itself, cannot be a topological 1-manifold.]

A simpler question along the same lines is to show that the set of points in the plane satisfying $\boldsymbol{x}^{\mathbf{2}}=\boldsymbol{y}^{\mathbf{2}}$ is not a topological manifold. As in class, this can be done as follows: In a topological manifold of dimension greater than 1 , for every point \boldsymbol{p} there are arbitrarily small open neighborhoods that are connected and remain connected if the point \boldsymbol{p} is removed, and for 1-manifolds there are arbitrarily small connected neighborhoods that split into two components when \boldsymbol{p} is removed. On the other hand, for the set described above, if \boldsymbol{U} is an arbitrary neighborhood of the origin, then $\boldsymbol{U}-\{0\}$ always has at least four components.
2. Let \boldsymbol{U} and \boldsymbol{V} be open subsets of Euclidean spaces, and let $\boldsymbol{f}: \boldsymbol{U} \rightarrow \boldsymbol{V}$ and $\boldsymbol{g}: \boldsymbol{V} \rightarrow \boldsymbol{U}$ be smooth maps such that $\boldsymbol{g} \boldsymbol{f}=\operatorname{Identity}(\boldsymbol{U})$. Prove that \boldsymbol{f} is an immersion, \boldsymbol{f} is one-toone, and \boldsymbol{f} is a closed mapping. [Hint: The relation $\boldsymbol{g} \boldsymbol{f}=$ Identity implies that \boldsymbol{f} is one-to-one and \boldsymbol{f} is an immersion; to see that it is closed, show that if \boldsymbol{F} is closed in \boldsymbol{U} then $\boldsymbol{f}(\boldsymbol{F})$ is the set of all points in $\boldsymbol{g}^{-\mathbf{1}}(\boldsymbol{F})$ such that $\boldsymbol{f g}(\boldsymbol{x})=\boldsymbol{x}$. Why is this intersection closed in \boldsymbol{V} ?]
3. Outline the construction of a smooth real valued function f on the real line such that $\boldsymbol{f}(\boldsymbol{x})$ is zero when \boldsymbol{x} is nonpositive and 1 if \boldsymbol{x} is greater than or equal to 1 .
4. Let $\boldsymbol{f}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ be a smooth map, let $\boldsymbol{G}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}^{\mathbf{2}}$ be a smooth map, and let \boldsymbol{X} be the smooth vector field defined by $\boldsymbol{X}(\boldsymbol{u})=(\boldsymbol{u}, \boldsymbol{G}(\boldsymbol{u}))$. If $\boldsymbol{G}(\boldsymbol{u})$ is perpendicular to the gradient of $\nabla f(\boldsymbol{u})$ for all \boldsymbol{u}, show that the integral curves $\gamma(\boldsymbol{t})$ of \boldsymbol{X} satisfy $f(\gamma(\boldsymbol{t}))=$ constant. Using this, find a vector field whose integral curves satisfy the equation

$$
x^{3}+y^{3}=C
$$

[Hint: Find the gradient of the left hand side and use the fact that $(\boldsymbol{B},-\boldsymbol{A})$ is perpendicular to $(\boldsymbol{A}, \boldsymbol{B})$.]
5. Define a smooth atlas $\mathscr{\mathscr { H }}$, and state the compatibility condition that characterizes the unique maximal atlas $\mathscr{\mathscr { I }}$ containing $\mathscr{\mathscr { T }}$. Let \boldsymbol{U} be an open subset of Euclidean space and let $\mathscr{\mathscr { H }}$ be the atlas consisting only of the identity map of \boldsymbol{U}. Given a diffeomorphism $\boldsymbol{g}: \boldsymbol{V} \rightarrow \boldsymbol{U}$ where \boldsymbol{V} is open in the Euclidean space containing \boldsymbol{U}, show that the chart $(\boldsymbol{V}, \boldsymbol{g})$ belongs to \mathscr{M}.
6. Let \boldsymbol{M} and \boldsymbol{N} be smooth manifolds (the maximal atlases will be suppressed for notational simplicity). Using the characterization of product manifolds in terms of morphisms, prove the following:
(i) If $\boldsymbol{f}: \boldsymbol{M} \rightarrow \boldsymbol{M}^{\prime}$ and $\boldsymbol{g}: \boldsymbol{N} \rightarrow \boldsymbol{N}^{\prime}$ are smooth then so is the product $\boldsymbol{f} \times \boldsymbol{g}$. If \boldsymbol{f} and \boldsymbol{g} are diffeomorphisms then so is $\boldsymbol{f} \times \boldsymbol{g}$. What is its inverse in this case? [Hint: Look at the projections onto the first and second coordinates.]
(ii) The twist map $\boldsymbol{T}: \boldsymbol{M} \times \boldsymbol{M} \rightarrow \boldsymbol{M} \times \boldsymbol{M}$ given by $\boldsymbol{T}(\boldsymbol{x}, \boldsymbol{y})=(\boldsymbol{y}, \boldsymbol{x})$ is a diffeomorphism that is equal to its own inverse.
(iii) If \boldsymbol{y} is an arbitrary point of \boldsymbol{N} show that the slice injection $\mathbf{S}_{\boldsymbol{y}}: \boldsymbol{M} \rightarrow \boldsymbol{M} \times \boldsymbol{N}$ defined by $\mathbf{S}_{\boldsymbol{y}}(\boldsymbol{x})=(\boldsymbol{x}, \boldsymbol{y})$ is smooth. [Hint: Constant maps are always smooth.]
7. Let $\boldsymbol{f}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}^{\mathbf{2}}$ be defined by $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=(\boldsymbol{x}+\sinh \boldsymbol{y}, \boldsymbol{y})$. Prove that \boldsymbol{f} is a diffeomorphism. [Hint: It is necessary to show that the map is continuous, one-to-one and onto, has continuous partials of all orders, and has a nonvanishing Jacobian determinant at each point.]

