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Abstract

This brief discussion of orientability for differentiable manifolds fol-
lows a manuscript of lecture notes by Prof. Peter Petersen, UCLA. The
presentation uses the point of view of covering spaces. In this talk we will
explore this viewpoint and establish its equivalence with the viewpoint we
discussed last semester.

Let us first review some linear algebra. Let B1 and B2 be two ordered bases
of a finite dimensional vector space V .

Definition: B1 and B2 represent the same orientation for V if the transition
matrix M21 from B1 to B2 has positive determinant.

This relation, call it ∼, on the set of all ordered bases of V is clearly reflexive
since M11 = I, and symmetric since detM12 = detM−1

21 = (detM21)−1 > 0. If
B3 is a third ordered basis for V and B1 ∼ B2 and B2 ∼ B3 then B1 ∼ B3 since

detM31 = det(M32M21) = detM32 · detM21.

So ∼ gives an equivalence relation; furthermore, it has exactly two equivalence
classes.

Definition: A choice of such an equivalence class is called an orientation for
the vector space V .

If M is a smooth manifold of dimension n then for each p ∈M the tangent
space TpM is a vector space of dimension n, and hence has two choices of ori-
entation. We would like to use this scenario to construct a two-sheeted covering
space OM called the orientation covering of M . If (x1, ..., xn) are coordinates
on a connected neighborhood U ⊂M , then the set {∂1|p, ..., ∂n|p} form a basis
for the tangent space at each p ∈M , where

∂i|p =
∂

∂xi

∣∣∣∣
p

.

Since the choice of basis depends smoothly on p, we say that the n-tuple
(∂1, ..., ∂n) gives a framing for the tangent bundle over U . By an orientation
over U we will mean a choice of such a framing. Since U is connected we have
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two choices for orientation over U , i.e. the classes determined by the framing
(∂1, ..., ∂n) and (−∂1, ∂2, ..., ∂n). This analysis yields a two-fold covering map
OM → M where the preimage of each p ∈ M consists of the two orientations
over p.

Definition: A connected manifold M is orientable if and only if its orientation
covering OM is disconnected.

Example: To clear up the subtleties of the above discussion let us consider the
2-Torus, which we know to be an orientable manifold. Then the orientation
covering takes the form as shown in the picture below.
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An advantage of this covering space point of view is that we immediately
have the following result.

Proposition: If M is a smooth connected manifold with π1(M) = 0 then M is
orientable.

Proof: Each covering space M̃ →M is trivial since if p ∈M then π1(M̃, p̃) ⊂
π1(M,p) = 0. In particular the orientation covering must then consist
of two simply-connected components, each diffeomorphic to M .

Thus Sn is orientable for n > 1. Another observation we may make is that the
orientation covering is an orientable manifold since it is locally the same as M
and an orientation on the tangent space has been chosen for us.

Theorem: Let M be a smooth connected manifold of dimension n, then the
following are equivalent:
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1. M is orientable.

2. Orientation is preserved moving along loops in M .

3. M admits an atlas where the Jacobians of all the transition
functions are positive.

4. There exists a nowhere vanishing n-form on M .

Proof: 1 ⇔ 2: The unique path lifting property for the covering OM → M
implies that orientation is preserved along loops if and only if OM is
disconnected.

1 ⇒ 3: Choose an orientation for M , and let {(Uα, φα) : α ∈ A} be an
atlas for M where Uα is connected for each α ∈ A. From the discussion
above we see that φα either corresponds to the chosen orientation, or
otherwise differs by a minus sign in the first component. If the latter
is true we merely create a new chart by changing the sign of the first
component of φα. Using this procedure we get an atlas where each
chart corresponds to the chosen orientation. Then if φα and φβ are
coordinate charts in this new atlas, the transition map φα ◦ φ−1

β has
positive Jacobian since it preserves the canonical orientation of Rn.

3 ⇒ 4: Let {(Uα, φα) : α ∈ A} be an atlas for M for which the Jacobian
of each transition map is positive, and choose a locally finite partition
of unity {ψα} subordinate to the cover {Uα}. On each Uα we have the
nowhere vanishing form ωα = dx1

α∧ ...∧dxn
α. Notice that on an overlap

Uα ∩ Uβ , we may write the alpha-coordinates x1
α = x1

α(x1
β , ..., x

n
β), ...,

xn
α = xn

α(x1
β , ..., x

n
β) in terms of the β-coordinates via the transition map

φα ◦ φ−1
β . By the chain rule ∂

∂xi
β

=
∑

j
∂xj

α

∂xi
β

∂

∂xj
α
, and thus we have

dx1
α ∧ ... ∧ dxn

α

(
∂

∂x1
β

, ...,
∂

∂xn
β

)

= det


dx1

α

(
∂

∂x1
β

)
. . . dx1

α

(
∂

∂xn
β

)
...

. . .
...

dxn
α

(
∂

∂x1
β

)
. . . dxn

α

(
∂

∂xn
β

)
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= det


dx1

α

(∑
j

∂xj
α

∂x1
β

∂

∂xj
α

)
. . . dx1

α

(∑
j

∂xj
α

∂xn
β

∂

∂xj
α

)
...

. . .
...

dxn
α

(∑
j

∂xj
α

∂x1
β

∂

∂xj
α

)
. . . dxn

α

(∑
j

∂xj
α

∂xn
β

∂

∂xj
α

)


= det


∂x1

α

∂x1
β

. . .
∂x1

α

∂xn
β

...
. . .

...
∂xn

α

∂x1
β

. . .
∂xn

α

∂xn
β


= detD(φα ◦ φ−1

β )
> 0.

Hence the globally defined form
∑

α ψαωα is always non-negative when
evaluated on the frame (∂/∂x1

β , ..., ∂/∂x
n
β). Further, at least one term

must be non-zero since {ψα} is a partition of unity.

4 ⇒ 1: Let ω be a non-vanishing n-form on M . Define the set O+ to be
the set of all points p ∈M such that ωp > 0 when evaluated on a basis,
and conversely define O− according to when ωp < 0 when evaluated on
a basis. This yields two disjoint open sets in OM which cover all of M ,
hence OM is disconnected and M is orientable.

The above result gives good conditions for establishing that a manifold we
expect to be orientable is orientable. However, establishing that a manifold is
not orientable can be tricky. The following is one of the greatest advantages to
the covering space point of view for this topic.

In particular, notice that if we suspect that a manifold M is non-orientable,
then our definition of orientability of a manifold implies that there exists a
connected 2-fold covering π : M̂ → M , where M̂ is oriented and the two orien-
tations at points over p ∈ M are mapped different orientations in M via Dπ.
Recall that for such a two-fold cover, there always exists a deck transformation
δ : M̂ → M̂ with the properties that δ(x) 6= x, δ ◦ δ = idM̂ , and π ◦ δ = π. This
gives rise to the Double Covering Lemma:

Lemma: (Double Covering) Let π : M̂ →M be a connected 2-fold covering of
a connected n-manifold M , where M̂ is an oriented manifold, then
M is orientable if and only if the deck transformation δ : M̂ → M̂ is
orientation preserving.

Proof: Suppose that δ preserves the orientation on M̂ , and let p ∈M , and de-
note {p1, p2} = π−1{p}. Then given a choice of orientation e1, ..., en ∈
Tp1M̂ we can declare that Dπ(e1), ..., Dπ(en) ∈ TpM to be an orien-
tation at p. This declaration is consistent since π ◦ δ = π implies that
(Dδ)(e1), ..., (Dδ)(en) ∈ Tp2M̂ which represents the orientation on M̂
is mapped to Dπ(e1), ..., Dπ(en).

Conversely, let M be orientable and choose an orientation for M . Since
M̂ and M are connected and Dπ is non-singular for each p ∈ M ,
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we have that Dπ is either globally orientation preserving or globally
orientation reversing. Without loss of generality we may assume that
the orientation is preserved. Therefore δ must preserve orientation
since π = π ◦ δ implies that 0 < det(Dπ)(p1) = det(D(π ◦ δ))(p1) =
det(Dπ)(δ(p1)) ·detDδ(p1) = det(Dπ)(p2) ·det(Dδ)(p1). Hence δ must
preserve orientation on M̂ .

To get an idea of how this machinery works let’s check some examples with
which we are familiar. We’ve already seen that Sn is orientable for each n > 1
using the covering space defintion. Another way of showing orientability of the
spheres is to construct a non-vanishing n-form. This can be done by considering
the canonical embedding of Sn as the unit sphere Rn+1, and contracting the
volume form dx1 ∧ ... ∧ dxn+1 in the direction of the of the radial vector field
X =

∑
i x

i∂i. i.e., ω = iX(dx1∧ ...∧dxn+1). Since X|Sn is a vector field normal
to the sphere, if {v2, ..., vn} form a basis for the tangent space at p ∈ Sn, then
{Xp, v2, ..., vn} form a basis for Rn+1 and hence

ω(v2, ..., vn) = iX(dx1 ∧ ... ∧ dxn+1)(v1, ..., vn)
= dx1 ∧ ... ∧ dxn+1(X, v2, ..., vn)
6= 0

Example: Recall that Sn is a natural double covering of RPn with the an-
tipodal map a : Sn → Sn as deck transformation. The antipodal map
preserves the radial vector field X, i.e. X|p and X|a(p) are both normal
to Sn at p. So A preserves the orientation of Sn if and only if the deter-
minant of its extension to Rn+1 is positive. This only happens if n+ 1 is
even. Thus we can conclude that RPn is orientable if and only if n is odd.

Example: Consider the following double covering of the open Möbius Strip M
by the open cylinder C = {(r, θ, t) ∈ R3 : r = 1, θ ∈ [0, 2π), t ∈ (−1, 1)}
expressed in cylindrical coordinates on R3, given by the covering map
φ(θ, t) = (x, y, z) where

x(θ, t) = 2 cos 2θ + t cos θ cos 2θ
y(θ, t) = 2 sin 2θ + t cos θ sin 2θ
z(θ, t) = t sin θ
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The deck transformation I which we are looking for is given by the an-
tipodal map a : C → C via a(θ, t) = (θ+π,−t). To show that this is a deck
transformation we need to check that φ(a(θ, t)) = φ(θ, t). Notice that

x(a(θ, t)) = x(θ + π,−t) = 2 cos 2(θ + π)− t cos(θ + π) cos 2(θ + π)
= 2 cos 2θ − t(− cos θ) cos 2θ
= x(θ, t).

A similar computation shows that the result holds for y and z as well. If
we give the cylinder the orientation induced from the canonical orientation
on R3, then by the Double Covering Lemma, M will be non-orientable if
a is orientation reversing. A simple computation shows that

detDa(θ, t) = det
[

1 0
0 −1

]
= −1 < 0

hence M is non-orientable.
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