1. (1 pt) Library/UCSB/Stewart5_5_1/Stewart5_5_1_1/Stewart5_5_1_1.pg

(a) By reading values from the given graph of f, use five rectangles to find a lower estimate and an upper estimate for the area under the given graph of f from $x=0$ to $x=10$.

Lower estimate \approx \qquad
Upper estimate \approx \qquad
(b) Repeat part (a) with 10 rectangles in each case.

Lower estimate \approx \qquad
Upper estimate \approx \qquad

Answer(s) submitted:
-
-
\bullet
\bullet
(incorrect)
2. (1 pt) Library/UCSB/Stewart5_5_1/Stewart5_5_1_2-
/Stewart5_5_1_2.pg
(a) Use six rectangles to find left-hand, right-hand, and midpoint estimates for the area under the given graph of f from $x=0$ to $x=12$.
$L_{6} \approx$ \qquad
$R_{6} \approx$ \qquad
$M_{6} \approx$ \qquad
? 1. (b) Is L_{6} an underestimate or overestimate of the exact area?
? 1. (c) Is R_{6} an underestimate or overestimate of the exact area?
(d) Which of the numbers L_{6}, R_{6}, or M_{6} appears to be the best estimate?

- A. R_{6}
- B. L_{6}
- C. M_{6}
- D. Impossible to tell.

Answer(s) submitted:
-
-
-
-
\bullet
(incorrect)

3. (1 pt) Library/UCSB/Stewart5_5_1/Stewart5-5_1_3.pg

(a) Estimate the area under the graph of $f(x)=2 / x$ from $x=1$ to $x=5$ using four approximating rectangles and right endpoints.
$R_{4}=$ \qquad
(b) Repeat part (a) using left endpoints.
$L_{4}=$ \qquad
(c) By looking at a sketch of the graph and the rectangles, determine for each estimate whether is overestimates, underestimates, or is the exact area.
? $1 . L_{4}$
? 2. R_{4}
Answer(s) submitted:
-
\bullet
\bullet

(incorrect)
4. (1 pt) Library/UCSB/Stewart5-5_1/Stewart5_5_1_4.pg
(a) Estimate the area under the graph of $f(x)=25-x^{2}$ from $x=0$ to $x=5$ using five approximating rectangles and right endpoints.

$$
R_{5}=
$$

\qquad
(b) Repeat part (a) using left endpoints.
$L_{5}=$ \qquad
(c) By looking at a sketch of the graph and the rectangles, determine for each estimate whether it overestimates, underestimates, or is the exact area.
? $1 . R_{5}$
? 2. L_{5}
Answer(s) submitted:
-
-
-
\bullet
(incorrect)

5. ($1 \quad \mathrm{pt}) \quad$ Library/UCSB/Stewart5_5_1/Stewart5_5_1_15/Stewart5_5_1_15.pg

The velocity graph of a braking car is shown. Use the Midpoint Rule with $n=6$ to estimate the distance (in ft) traveled by the car while the brakes are applied.

Distance traveled \approx \qquad ft

Answer(s) submitted:
-
(incorrect)
6. ($1 \quad \mathrm{pt}) \quad$ Library/UCSB/Stewart5_5_1/Stewart5_5_1_16/Stewart5_5_1_16.pg

The velocity graph of a car accelerating from rest to a speed of $120 \mathrm{~km} / \mathrm{h}$ over a period of 30 seconds is shown. Use the Midpoint Rule with $n=6$ to estimate the distance (in km) traveled during this period.

Distance traveled \approx \qquad km

Answer(s) submitted:
-
(incorrect)

