1. (1 pt) Library/UCSB/Stewart5_6_1/Stewart5_6_1_1/Stewart5_6_1_1.pg

Find the area of the shaded region below.

Area $=$ \qquad
Answer(s) submitted:
-
(incorrect)
2. (1 pt) Library/UCSB/Stewart5_6_1/Stewart5_6_1_4-
/Stewart5_6_1_4.pg
Find the area of the shaded region below.

Area = \qquad
Answer(s) submitted:
-
(incorrect)
3. (1 pt) Library/UCSB/Stewart5_6_1/Stewart5_6_1_5.pg

Find the area of the region between the curves $y=x+1$, $y=9-x^{2}, x=-1$, and $x=2$.

Area between curves $=$ \qquad
Answer(s) submitted:
-
(incorrect)
4. (1 pt) Library/UCSB/Stewart5_6_1/Stewart5_6_1_7.pg

Find the area of the region between the curves $y=x$ and $y=x^{2}$.

Area between curves $=$ \qquad
Answer(s) submitted:
-
(incorrect)

5. (1 pt) Library/UCSB/Stewart5_6_1/Stewart5_6_1_8.pg

Find the area of the region between the curves $y=x^{4}$ and $y=x^{2}$.

Area between curves $=$ \qquad
Answer(s) submitted:
-
(incorrect)
6. (1 pt) Library/UCSB/Stewart5_6_1/Stewart5_6_1_12.pg

Find the area of the region between the curves $y=x$ and $y=\sqrt[3]{x}$.

Area between curves $=$ \qquad
Answer(s) submitted:
-
(incorrect)

7. (1 pt) Library/UCSB/Stewart5_6_1/Stewart5_6_1_13.pg

Find the area of the region between the curves $y=12-x^{2}$ and $y=x^{2}-6$.

Area between curves $=$ \qquad
Answer(s) submitted:
-
(incorrect)

8. (1 pt) Library/UCSB/Stewart5_6_1/Stewart5_6_1_15.pg

Find the area of the region between the curves $y=\sqrt{x}$, $y=\frac{1}{2} x$, and $x=9$.

Area between curves $=$ \qquad
Answer(s) submitted:
-
(incorrect)
9. (1 pt) Library/UCSB/Stewart5_6_1/Stewart5_6_1_16.pg

Find the area of the region between the curves $y=8-x^{2}$, $y=x^{2}, x=-3$, and $x=3$.

Area between curves $=$ \qquad
Answer(s) submitted:
-
(incorrect)

10. (1 pt) Library/UCSB/Stewart5_6_1/Stewart5_6_1_20.pg

Find the area of the region between the curves $y=\sin (\pi x / 2)$ and $y=x$.

Area between curves $=$ Answer(s) submitted:
-
(incorrect)
11. (1 pt) Library/UCSB/Stewart5_6_1/Stewart5_6_1_22.pg

Find the area of the region between the curves $y=\sin (x)$, $y=\sin (2 x), x=0$, and $x=\pi / 2$.

Area between curves $=$
Answer(s) submitted:
(incorrect)

Generated by ©(CeBWorK, http://webwork.maa.org, Mathematical Association of America

1. (1 pt) Library/UCSB/Stewart5_5_4/Stewart5_5_4_53.pg

The velocity function (in meters per second) for a particle moving along a line is given by

$$
v(t)=3 t-4,0 \leq t \leq 3
$$

(a) Find the displacement (in meters) of the particle.

Displacement $=$ \qquad meters
(b) Find the total distance traveled (in meters) by the particle.

Total distance traveled $=$ \qquad meters
Answer(s) submitted:
-
\bullet
(incorrect)

2. (1 pt) Library/UCSB/Stewart5_5_4/Stewart5_5_4_54.pg

The velocity function (in meters per second) for a particle moving along a line is given by

$$
v(t)=-1\left(t^{2}-2 t-8\right), 1 \leq t \leq 6
$$

(a) Find the displacement (in meters) of the particle.

Displacement = \qquad meters
(b) Find the total distance traveled (in meters) by the particle.

Total distance traveled $=$ \qquad meters
Answer(s) submitted:
-
\bullet
(incorrect)

3. (1 pt) UCR/Indiana_setIntegrals3Definite_ur_in 3_1_UCR.pg

The velocity function is $v(t)=-t^{2}+5 t-6$ for a particle moving along a line. Find the displacement and the distance traveled by the particle during the time interval $[-2,6]$.
displacement $=$ \qquad
distance traveled $=$ \qquad
Answer(s) submitted:
-
\bullet
(incorrect)
4. (1 pt) UCR/270_setDerivatives20Antideriv_c3s10p3_UCR.pg

A ball is shot straight up into the air with initial velocity of 44 $\mathrm{ft} / \mathrm{sec}$. Assuming that the air resistance can be ignored, how high does it go?

Hint: The acceleration due to gravity is -32 ft per second squared.

Answer(s) submitted:
(incorrect)

5. (1 pt) Library/270/setDerivatives20Antideriv/s3_10_67.pg

A stone is dropped from the edge of a roof, and hits the ground with a velocity of -125 feet per second. How high (in feet) is the roof?

Answer(s) submitted:
-
(incorrect)

6. (1 pt) Library/270/setDerivatives20Antideriv/s3_10_56.pg

A stone is thrown straight up from the edge of a roof, 900 feet above the ground, at a speed of 18 feet per second.
A. Remembering that the acceleration due to gravity is -32 feet per second squared, how high is the stone 2 seconds later?
B. At what time does the stone hit the ground? \qquad
C. What is the velocity of the stone when it hits the ground?

```
Answer(s) submitted:
-
-
-
(incorrect)
```

7. (1 pt) Library/270/setDerivatives20Antideriv/s3_10_51.pg

A particle is moving with acceleration $a(t)=36 t+2$. its position at time $t=0$ is $s(0)=7$ and its velocity at time $t=0$ is $v(0)=8$. What is its position at time $t=13$?

Answer(s) submitted:
-
(incorrect)

8. (1 pt) Library/UCSB/Stewart5_5_4/Stewart5_5_4_55.pg

The acceleration function (in m / s^{2}) and initial velocity for a particle moving along a line is given by

$$
a(t)=2 t+8, v(0)=10,0 \leq t \leq 10
$$

(a) Find the velocity (in m / s) of the particle at time t.

Velocity $=$ \qquad meters
(b) Find the total distance traveled (in meters) by the particle.

Total distance traveled $=$ \qquad meters
Answer(s) submitted:
-
-
(incorrect)

9. (1 pt) Library/UCSB/Stewart5_5_4/Stewart5_5_4_56.pg

The acceleration function (in $\mathrm{m} / \mathrm{s}^{2}$) and initial velocity for a particle moving along a line is given by

$$
a(t)=-6 t-9, v(0)=12,0 \leq t \leq 3 .
$$

(a) Find the velocity (in m / s) of the particle at time t.
$v(t)=$ \qquad m / s
(b) Find the total distance traveled (in meters) by the particle.

Total distance traveled $=$ \qquad meters
Answer(s) submitted:
\bullet
(incorrect)

1. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_1.pg

Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves $y=x^{2}, x=1$, and $y=0$ about the x-axis.

Volume = \qquad
Answer(s) submitted:
-
(incorrect)
2. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_4.pg

Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves $y=\sqrt{x-1}, y=0$, $x=2$, and $x=6$ about the x-axis.

Volume $=$ \qquad
Answer(s) submitted:
-
(incorrect)
3. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_5.pg

Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves $y=x^{2}, 0 \leq x \leq 3$, $y=9$, and $x=0$ about the y-axis.

Volume $=$ \qquad
Answer(s) submitted:
-
(incorrect)
4. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_6.pg

Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves $x=y-y^{2}$ and $x=0$ about the y-axis.

Volume $=$ \qquad
Answer(s) submitted:
-
(incorrect)
5. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_7.pg

Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves $y=x^{2}$ and $y^{2}=x$ about the x-axis.

Volume $=$ \qquad
Answer(s) submitted:
-
(incorrect)

6. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_12.pg

Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves $y=x^{2}$ and $y=4$ about the line $y=4$.

Volume $=$ \qquad
Answer(s) submitted:
-
(incorrect)
7. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_16.pg

Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves $y=x$ and $y=\sqrt{x}$ about the line $x=2$.

Volume $=$ \qquad
Answer(s) submitted:
-
(incorrect)

8. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_18.pg

Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves $y=x, y=0, x=2$, and $x=4$ about the line $x=1$.

Volume $=$ \qquad
Answer(s) submitted:
-
(incorrect)
9. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_20-
/Stewart5_6_2_20.pg

Referring to the figure above, find the volume generated by rotating the region \mathcal{R}_{1} about the line $O C$.

Volume $=$ \qquad
Answer(s) submitted:
-
(incorrect)

10. $\quad\left(\begin{array}{lll}\text { pt }\end{array}\right) \quad$ Library/UCSB/Stewart5_6_2/Stewart5_6_2_26-

 /Stewart5_6_2_26.pg

Referring to the figure above, find the volume generated by rotating the region \mathcal{R}_{2} about the line $B C$.

Volume = \qquad
Answer(s) submitted:
(incorrect)
11. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_29-
/Stewart5_6_2_29.pg

Referring to the figure above, find the volume generated by rotating the region \mathcal{R}_{3} about the line $A B$.

Volume $=$ \qquad
Answer(s) submitted:
-
(incorrect)
12. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_32.pg

Which of the following integrals represents the volume of the solid obtained by rotating the region bounded by the curves $y=(x-2)^{4}$ and $8 x-y=16$ about the line $x=10$?

- A. $\pi \int_{2}^{4}\left\{\left[10-\left(\frac{1}{8} y+2\right)\right]-[10-(2+\sqrt[4]{y})]\right\}^{2} d y$
- В. $\pi \int_{2}^{4}\left\{\left[10-\left(\frac{1}{8} y+2\right)^{2}\right]-\left[10-(2+\sqrt[4]{y})^{2}\right]\right\} d y$
- C. $\pi \int_{0}^{16}\left\{\left[10-\left(\frac{1}{8} y+2\right)\right]-[10-(2+\sqrt[4]{y})]\right\}^{2} d y$
- D. $\pi \int_{0}^{16}\left\{\left[10-\left(\frac{1}{8} y+2\right)^{2}\right]-\left[10-(2+\sqrt[4]{y})^{2}\right]\right\} d y$
- E. $\pi \int_{2}^{4}\left\{\left[10-\left(\frac{1}{8} y+2\right)\right]^{2}-[10-(2+\sqrt[4]{y})]^{2}\right\} d y$
- F. $\pi \int_{0}^{16}\left\{\left[10-\left(\frac{1}{8} y+2\right)\right]^{2}-[10-(2+\sqrt[4]{y})]^{2}\right\} d y$

Answer(s) submitted:

(incorrect)

13. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_34.pg

Which of the following integrals represents the volume of the solid obtained by rotating the region bounded by the curves $y=\sin (x)$ and $y=0$, with $0 \leq x \leq \pi$ about the line $y=-2$?

- A. $\pi \int_{-2}^{0}[\sin (x)-2]^{2} d x$
- B. $\pi \int_{0}^{\pi}\left[\sin ^{2}(x)+2^{2}-2^{2}\right] d x$
- C. $\pi \int_{0}^{\pi}[\sin (x)-2]^{2} d x$
- D. $\pi \int_{-2}^{0}\left[(\sin (x)+2)^{2}-(2)^{2}\right] d x$
- E. $\pi \int_{0}^{\pi}\left[(\sin (x)+2)^{2}-(2)^{2}\right] d x$
- F. $\pi \int_{-2}^{0}\left[\sin ^{2}(x)+2^{2}-2^{2}\right] d x$

Answer(s) submitted:
-
(incorrect)
14. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_2.pg

Let S be the solid obtained by rotating the region bounded by the curves $y=\sin \left(x^{2}\right)$ and $y=0$, with $0 \leq x \leq \sqrt{\pi}$, about the y-axis. Use cylindrical shells to find the volume of S.

Volume = \qquad
Answer(s) submitted:
-
(incorrect)

15. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_4.pg

Use the method of cylindrical shells to find the volume generated by rotating the region bounded by $y=x^{2}, y=0$, and $x=1$ about the y-axis.

Volume = \qquad
Answer(s) submitted:
-

(incorrect)

16. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_6.pg

Use the method of cylindrical shells to find the volume generated by rotating the region bounded by $y=3+2 x-x^{2}$ and $x+y=3$ about the y-axis.

Volume = \qquad
Answer(s) submitted:
-
(incorrect)

17. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_8.pg

Let V be the volume of the solid obtained by rotating about the y-axis the region bounded by $y=\sqrt{x}$ and $y=x^{2}$. Find V either by slicing (the disk/ washer method) or by cylindrical shells.

Volume = \qquad
Answer(s) submitted:
-
(incorrect)

18. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_10.pg

Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the curves $x=\sqrt{y}, x=0$, and $y=1$ about the x-axis.

Volume $=$
Answer(s) submitted:
-
(incorrect)
19. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_12.pg

Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the curves $x=4 y^{2}-y^{3}$ and $x=0$ about the x-axis.

Volume $=$ \qquad
Answer(s) submitted:
-
(incorrect)
20. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_14.pg

Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the curves $x+y=3$ and $x=4-(y-1)^{2}$ about the x-axis.

Volume $=$ \qquad
Answer(s) submitted:
-
(incorrect)

21. (1 pt) Library/UCSB/Stewart5_633/Stewart5_6_3_19.pg

Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the curves $y=\sqrt{x-1}, y=0$, and $x=5$ about the line $y=3$.

Volume $=$
Answer(s) submitted:
-
(incorrect)

22. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_20.pg

Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the curves $y=x^{2}$ and $x=y^{2}$ about the line $y=-1$.

Volume $=$ \qquad
Answer(s) submitted:
-
(incorrect)

23. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_22.pg

Which of the following integrals represents the volume of the solid obtained by rotating the region bounded by the curves $y=x$ and $y=4 x-x^{2}$ about the line $x=10$?

- A. $\int_{0}^{3} 2 \pi(10-x)\left[\left(4 x-x^{2}\right)-x\right] d x$
- B. $\int_{0}^{4} 2 \pi(10-x)\left[x-\left(4 x-x^{2}\right)\right] d x$
- C. $\int_{0}^{3} 2 \pi(10-x)\left[x-\left(4 x-x^{2}\right)\right] d x$
- D. $\int_{0}^{4} 2 \pi(x-10)\left[\left(4 x-x^{2}\right)-x\right] d x$
- E. $\int_{0}^{3} 2 \pi(x-10)\left[\left(4 x-x^{2}\right)-x\right] d x$
- F. $\int_{0}^{4} 2 \pi(10-x)\left[\left(4 x-x^{2}\right)-x\right] d x$

Answer(s) submitted:
-

(incorrect)

24. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_23.pg

Which of the following integrals represents the volume of the solid obtained by rotating the region bounded by the curves $y=x^{4}$ and $y=\sin \left(\frac{\pi x}{2}\right)$ about the line $x=-2$?

- A. $\int_{0}^{1} 2 \pi(2-x)\left(\sin \left(\frac{\pi x}{2}\right)-x^{4}\right) d x$
- B. $\int_{0}^{1} 2 \pi(x+2)\left(x^{4}-\sin \left(\frac{\pi x}{2}\right)\right) d x$
- C. $\int_{0}^{1} 2 \pi(x-2)\left(x^{4}-\sin \left(\frac{\pi x}{2}\right)\right) d x$
- D. $\int_{0}^{1} 2 \pi(x-2)\left(\sin \left(\frac{\pi x}{2}\right)-x^{4}\right) d x$
- E. $\int_{0}^{1} 2 \pi(x+2)\left(\sin \left(\frac{\pi x}{2}\right)-x^{4}\right) d x$
- F. $\int_{0}^{1} 2 \pi(2-x)\left(x^{4}-\sin \left(\frac{\pi x}{2}\right)\right) d x$

Answer(s) submitted:
-
(incorrect)

25. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_24.pg

Which of the following integrals represents the volume of the solid obtained by rotating the region bounded by the curves $y=1 /\left(1+x^{2}\right), y=0, x=0$, and $x=7$ about the line $x=7$?

- A. $\int_{0}^{7} 2 \pi(7-x)\left(\frac{7}{1+x^{2}}\right) d x$
- B. $\int_{0}^{7} 2 \pi(7+x)\left(\frac{7}{1+x^{2}}\right) d x$
- C. $\int_{0}^{7} 2 \pi(7-x)\left(\frac{1}{1+x^{2}}\right) d x$
- D. $\int_{0}^{7} 2 \pi(7+x)\left(\frac{1}{1+x^{2}}\right) d x$
- E. $\int_{0}^{7} 2 \pi(x-7)\left(\frac{7}{1+x^{2}}\right) d x$
- F. $\int_{0}^{7} 2 \pi(x-7)\left(\frac{1}{1+x^{2}}\right) d x$

Answer(s) submitted:
-
(incorrect)
26. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_38.pg

The region bounded by $y=x^{2}-3 x+2$ and $y=0$ is rotated about the y-axis. Find the volume of the resulting solid by any method.

Volume = \qquad
Answer(s) submitted:
-
(incorrect)

27. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_40.pg

The region bounded by $x=1-y^{4}$ and $x=0$ is rotated about the line $x=2$. Find the volume of the resulting solid by any method.

Volume $=$ \qquad
Answer(s) submitted:
-
(incorrect)

/q3.pg The average value of $\sin x$ in the interval $[0, \pi]$ is
\qquad
Answer(s) submitted:
-
(incorrect)

2. (1 pt) Library/ma122DB/set13/s6-5_1.pg

Find the average value of $f(x)=x^{3}$ on the interval [3,5].
Answer: \qquad
Answer(s) submitted:
-
(incorrect)
3. (1 pt) Library/UCSB/Stewart5_6.5/Stewart5_6.5.1.pg

Find the average value of the function $f(x)=6 x^{2}$ on the interval $[-1,1]$.
$f_{\text {ave }}=$
Answer(s) submitted:
-
(incorrect)

4. (1 pt) Library/ma122DB/set13//66.53.pg

Find the average value of $f(x)=\cos (14 x)$ on the interval $[0, \pi / 2]$.

Answer: \qquad
Answer(s) submitted:
-
(incorrect)
5. (1 pt) Library/UVA-Stew5e/setUVA-Stew5e-C06S05-AveValue/6-5-

06.pg

Find the average value of : $f(x)=8 \sin x+3 \cos x$
on the interval $[0,19 \pi / 6]$
Average value $=$ \qquad

Answer(s) submitted:

-

(incorrect)

Find the average value of the function $g(x)=3 \cos (x)$ on the interval $[0, \pi / 2]$.
$g_{a v e}=$ \qquad
Answer(s) submitted:
-
(incorrect)

7. (1 pt) Library/UCSB/Stewart5_6-5/Stewart5_6_5_4.pg

Find the average value of the function $g(x)=2 x^{2} \sqrt{1+x^{3}}$ on the interval $[0,2]$.
$g_{\text {ave }}=$ \qquad
Answer(s) submitted:
-
(incorrect)

8. (1 pt) Library/UCSB/Stewart5_6_5/Stewart5_6_5_6.pg

Find the average value of the function $f(t)=-9 \sec (t) \tan (t)$ on the interval $[0, \pi / 4]$.
$f_{\text {ave }}=$ \qquad
Answer(s) submitted:
-

(incorrect)

9. ($1 \quad \mathrm{pt})$ Library/UCSB/Stewart5_6_5/Stewart5_6_5_16-

/Stewart5_6_5_16.pg

The velocity of an accelerating car is shown in the graph below.

(a) Estimate the average velocity of the car during the first 12 seconds.

Average velocity \approx \qquad km / h
(b) At approximately what time was the instantaneous velocity equal to the average velocity? Give your estimate to the nearest half-second.

Time \approx \qquad seconds
Answer(s) submitted:
-
-
(incorrect)
10. (1 pt) Library/UVA-Stew5e/setUVA-Stew5e-C06S05-AveValue/6-502.pg

A car drives down a road in such a way that its velocity (in m / s) at time t (seconds) is

$$
v(t)=2 t^{1 / 2}+2
$$

Find the car's average velocity (in m / s) between $t=5$ and $t=10$.

$$
\begin{aligned}
& \text { Answer(s) submitted: } \\
& \bullet \\
& \text { (incorrect) }
\end{aligned}
$$

1. (1 pt) Library/UCSB/Stewart5_6_4/Stewart5_6_4_1.pg

Find the work done (in Joules) in pushing a car a distance of 8 meters while exerting a constant force of 900 N .

Work done = \qquad Joules
Answer(s) submitted:
-
(incorrect)
2. (1 pt) Library/UCSB/Stewart5_6_4/Stewart5_6_4_2.pg

How much work is done (in Joules) by a weightlifter in raising a $60-\mathrm{kg}$ barbell from the floor to a height of 2 m ?

Work done = \qquad Joules
Answer(s) submitted:
(incorrect)
3. (1 pt) Library/UCSB/Stewart5_6_4/Stewart5_6_4_4.pg

When a particle is located at a distance x meters from the origin, a force of $\cos (\pi x / 3)$ newtons acts on it.
(a) How much work (in Joules) is done in moving the particle from $x=1$ to $x=1.5$?

Work done $=$ J
(b) How much work (in Joules) is done in moving the particle from $x=1.5$ to $x=2$?

Work done $=$ \qquad J
(c) How much work (in Joules) is done in moving the particle from $x=1$ to $x=2$?

Work done $=$ \qquad J
Answer(s) submitted:
-
-
-
(incorrect)
4. (1 pt) Library/UCSB/Stewart5_6_4/Stewart5_6_4_8.pg

A spring has a natural length of 20 cm . If a $25-\mathrm{N}$ force is required to keep it stretched to a length of 30 cm , how much work (in J) is required to stretch it from 20 cm to 25 cm ?

Work done $=$ \qquad
J
Answer(s) submitted:
-
(incorrect)

5. (1 pt) Library/UCSB/Stewart5_6_4/Stewart5_6_4_10.pg

If the work required to stretch a spring 1 ft beyond its natural length is $12 \mathrm{ft}-\mathrm{lb}$, how much work (in $\mathrm{ft}-\mathrm{lb}$) is needed to stretch it 9 in. beyond its natural length?

Work done $=$ \qquad $\mathrm{ft}-\mathrm{lb}$
Answer(s) submitted:
-
(incorrect)
6. (1 pt) Library/UCSB/Stewart5_6_4/Stewart5_6_4_14.pg

A chain lying on the ground is 10 m long and its mass is 80 kg . How much work (in J) is required to raise one end of the chain to a height of 6 m ?

Work done = \qquad J
Answer(s) submitted:
-
(incorrect)
7. (1 pt) Library/UCSB/Stewart5_6_4/Stewart5_6_4_15.pg

A cable that weighs $2 \mathrm{lb} / \mathrm{ft}$ is used to lift 800 lb of coal up a mineshaft 500 ft deep. Find the work done (in ft-lb).

Work done = \qquad ft-lb
Answer(s) submitted:
-
(incorrect)

8. (1 pt) Library/UCSB/Stewart5_6_4/Stewart5_6_4_16.pg

A bucket that weighs 4 lb and a rope of negligible weight are used to draw water from a well that is 80 ft deep. The bucket starts with 40 lb of water and is pulled up at a rate of $2 \mathrm{ft} / \mathrm{s}$, but water leaks out of a hole in the bucket at a rate of $0.2 \mathrm{lb} / \mathrm{s}$. Find the work done (in ft-lb) in pulling the bucket to the top of the well.

Work done = \qquad ft-lb
Answer(s) submitted:
-
(incorrect)
9. (1 pt) Library/UCSB/Stewart5_6_4/Stewart5_6_4_24/Stewart5_6_4_24.pg

The tank shown below is full of water. Using the fact that the weight of water is $62.5 \mathrm{lb} / \mathrm{ft}^{3}$, find the work (in ft-lbs) required to pump the water out of the outlet. Make sure your answer is correct to within ten ft -lbs.

Work $=$ \qquad $\mathrm{ft}-\mathrm{lbs}$
Answer(s) submitted:
-
(incorrect)

