Reinhard Schultz Assignment 8.1_AREA_BETWEEN_CURVES due 12/31/2012 at 08:00am PST

MATH_009B_020_12S

10. (1 pt) Library/UCSB/Stewart5_6_1/Stewart5_6_1_20.pg	11. (1 pt) Library/UCSB/Stewart5_6_1/Stewart5_6_1_22.pg
Find the area of the region between the curves $y = \sin(\pi x/2)$	Find the area of the region between the curves $y = sin(x)$
and $y = x$.	$y = \sin(2x), x = 0, \text{ and } x = \pi/2.$
Area between curves =	Area between curves =
Answer(s) submitted:	Answer(s) submitted:
•	•
(incorrect)	(incorrect)

1. (1 pt) Library/UCSB/Stewart5_5_4/Stewart5_5_4_53.pg

The velocity function (in meters per second) for a particle moving along a line is given by

 $v(t) = 3t - 4, \ 0 \le t \le 3.$

(a) Find the displacement (in meters) of the particle.
Displacement = _____ meters
(b) Find the total distance traveled (in meters) by the particle.
Total distance traveled = _____ meters
Answer(s) submitted:

•

٠

(incorrect)

2. (1 pt) Library/UCSB/Stewart5_5_4/Stewart5_5_4_54.pg

The velocity function (in meters per second) for a particle moving along a line is given by

 $v(t) = -1(t^2 - 2t - 8), \ 1 \le t \le 6.$

(a) Find the displacement (in meters) of the particle.

Displacement = _____ meters

(b) Find the total distance traveled (in meters) by the particle. Total distance traveled = _____ meters *Answer(s) submitted:*

.

•

(incorrect)

3. (1 pt) UCR/Indiana_setIntegrals3Definite_ur_in_3_1_UCR.pg The velocity function is $v(t) = -t^2 + 5t - 6$ for a particle moving along a line. Find the displacement and the distance traveled by the particle during the time interval [-2,6].

displacement = _____ distance traveled = _____ Answer(s) submitted:

•

(incorrect)

4. (1 pt) UCR/270_setDerivatives20Antideriv_c3s10p3_UCR.pg

A ball is shot straight up into the air with initial velocity of 44 ft/sec. Assuming that the air resistance can be ignored, how high does it go?

Hint: The acceleration due to gravity is -32 ft per second squared.

Answer(s) submitted:

٠

(incorrect)

5. (1 pt) Library/270/setDerivatives20Antideriv/s3_10_67.pg A stone is dropped from the edge of a roof, and hits the ground with a velocity of -125 feet per second. How high (in feet) is the roof?

Answer(s) submitted:

•

(incorrect)

6. (1 pt) Library/270/setDerivatives20Antideriv/s3_10_56.pg A stone is thrown straight up from the edge of a roof, 900 feet above the ground, at a speed of 18 feet per second.

A. Remembering that the acceleration due to gravity is -32 feet per second squared, how high is the stone 2 seconds later?

B. At what time does the stone hit the ground?

C. What is the velocity of the stone when it hits the ground?

Answer(s) submitted:

- .
- .
- •

(incorrect)

7. (1 pt) Library/270/setDerivatives20Antideriv/s3_10_51.pg A particle is moving with acceleration a(t) = 36t + 2. its position at time t = 0 is s(0) = 7 and its velocity at time t = 0 is v(0) = 8. What is its position at time t = 13?

Answer(s) submitted:

•

(incorrect)

8. (1 pt) Library/UCSB/Stewart5_5_4/Stewart5_5_4_55.pg

The acceleration function (in m/s^2) and initial velocity for a particle moving along a line is given by

$$a(t) = 2t + 8, v(0) = 10, 0 \le t \le 10.$$

(a) Find the velocity (in m/s) of the particle at time *t*.
Velocity = _____ meters
(b) Find the total distance traveled (in meters) by the particle.
Total distance traveled = _____ meters
Answer(s) submitted:

•

•

9. (1 pt) Library/UCSB/Stewart5_5_4/Stewart5_5_4_56.pg

The acceleration function (in m/s^2) and initial velocity for a particle moving along a line is given by

 $a(t) = -6t - 9, v(0) = 12, 0 \le t \le 3.$

(a) Find the velocity (in m/s) of the particle at time *t*.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

v(t) =_____m/s

(b) Find the total distance traveled (in meters) by the particle. Total distance traveled = _____ meters *Answer(s) submitted:*

•

1. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_1.pg

Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves $y = x^2$, x = 1, and y = 0 about the *x*-axis.

Volume = _____ Answer(s) submitted:

•

(incorrect)

2. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_4.pg

Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves $y = \sqrt{x-1}$, y = 0, x = 2, and x = 6 about the *x*-axis.

Volume = _____ Answer(s) submitted:

(incorrect)

3. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_5.pg

Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves $y = x^2$, $0 \le x \le 3$, y = 9, and x = 0 about the y-axis.

Volume = ____

Answer(s) submitted:

•

(incorrect)

4. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_6.pg

Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves $x = y - y^2$ and x = 0about the y-axis.

Volume = ____

Answer(s) submitted:

•

(incorrect)

5. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2.7.pg

Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves $y = x^2$ and $y^2 = x$ about the *x*-axis.

Volume = _____

Answer(s) submitted:

•

(incorrect)

6. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_12.pg

Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves $y = x^2$ and y = 4about the line y = 4.

Volume = _____ Answer(s) submitted:

•

(incorrect)

7. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_16.pg

Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves y = x and $y = \sqrt{x}$ about the line x = 2.

Volume = _____ Answer(s) submitted:

•

(incorrect)

8. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_18.pg

Using disks or washers, find the volume of the solid obtained by rotating the region bounded by the curves y = x, y = 0, x = 2, and x = 4 about the line x = 1.

Volume = _____ Answer(s) submitted:

•

(incorrect)

9. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_20-/Stewart5_6_2_20.pg

Referring to the figure above, find the volume generated by rotating the region \mathcal{R}_{I} about the line *OC*.

Volume = _____ Answer(s) submitted:

10. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_26-/Stewart5_6_2_26.pg

Referring to the figure above, find the volume generated by rotating the region \mathcal{R}_2 about the line *BC*.

Volume = _____ Answer(s) submitted:

•

(incorrect)

11. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_29-/Stewart5_6_2_29.pg

Referring to the figure above, find the volume generated by rotating the region \mathcal{R}_3 about the line *AB*.

Volume = _____ Answer(s) submitted:

(incorrect)

12. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_32.pg

Which of the following integrals represents the volume of the solid obtained by rotating the region bounded by the curves $y = (x-2)^4$ and 8x - y = 16 about the line x = 10?

• A.
$$\pi \int_{2}^{4} \left\{ \left[10 - \left(\frac{1}{8} y + 2 \right) \right] - \left[10 - \left(2 + \sqrt[4]{y} \right) \right] \right\}^{2} dy$$

• B. $\pi \int_{2}^{4} \left\{ \left[10 - \left(\frac{1}{8} y + 2 \right)^{2} \right] - \left[10 - \left(2 + \sqrt[4]{y} \right)^{2} \right] \right\} dy$
• C. $\pi \int_{0}^{16} \left\{ \left[10 - \left(\frac{1}{8} y + 2 \right) \right] - \left[10 - \left(2 + \sqrt[4]{y} \right) \right] \right\}^{2} dy$
• D. $\pi \int_{0}^{16} \left\{ \left[10 - \left(\frac{1}{8} y + 2 \right)^{2} \right] - \left[10 - \left(2 + \sqrt[4]{y} \right)^{2} \right] \right\} dy$
• E. $\pi \int_{2}^{4} \left\{ \left[10 - \left(\frac{1}{8} y + 2 \right) \right]^{2} - \left[10 - \left(2 + \sqrt[4]{y} \right)^{2} \right] \right\} dy$
• F. $\pi \int_{0}^{16} \left\{ \left[10 - \left(\frac{1}{8} y + 2 \right) \right]^{2} - \left[10 - \left(2 + \sqrt[4]{y} \right)^{2} \right\} dy$

Answer(s) submitted:

•

(incorrect)

13. (1 pt) Library/UCSB/Stewart5_6_2/Stewart5_6_2_34.pg

Which of the following integrals represents the volume of the solid obtained by rotating the region bounded by the curves $y = \sin(x)$ and y = 0, with $0 \le x \le \pi$ about the line y = -2?

• A.
$$\pi \int_{-2}^{0} [\sin(x) - 2]^2 dx$$

• B. $\pi \int_{0}^{\pi} [\sin^2(x) + 2^2 - 2^2] dx$
• C. $\pi \int_{0}^{\pi} [\sin(x) - 2]^2 dx$
• D. $\pi \int_{-2}^{0} [(\sin(x) + 2)^2 - (2)^2] dx$
• E. $\pi \int_{0}^{\pi} [(\sin(x) + 2)^2 - (2)^2] dx$
• F. $\pi \int_{-2}^{0} [\sin^2(x) + 2^2 - 2^2] dx$

Answer(s) submitted:

(incorrect)

•

14. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_2.pg

Let *S* be the solid obtained by rotating the region bounded by the curves $y = \sin(x^2)$ and y = 0, with $0 \le x \le \sqrt{\pi}$, about the *y*-axis. Use cylindrical shells to find the volume of *S*.

Answer(s) submitted:

(incorrect)

•

Volume = $_{-}$

15. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_4.pg

Use the method of cylindrical shells to find the volume generated by rotating the region bounded by $y = x^2$, y = 0, and x = 1 about the *y*-axis. Volume = _____

Answer(s) submitted:

• (incorrect)

16. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_6.pg

Use the method of cylindrical shells to find the volume generated by rotating the region bounded by $y = 3 + 2x - x^2$ and x + y = 3 about the y-axis.

Volume = _____ Answer(s) submitted:

(incorrect)

•

17. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_8.pg

Let *V* be the volume of the solid obtained by rotating about the *y*-axis the region bounded by $y = \sqrt{x}$ and $y = x^2$. Find *V* either by slicing (the disk/ washer method) or by cylindrical shells.

Volume = _____ Answer(s) submitted:

•

(incorrect)

18. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_10.pg

Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the curves $x = \sqrt{y}$, x = 0, and y = 1 about the *x*-axis.

Volume = _____ Answer(s) submitted:

•

(incorrect)

19. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_12.pg

Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the curves $x = 4y^2 - y^3$ and x = 0 about the *x*-axis.

Volume = _____ Answer(s) submitted:

•

(incorrect)

20. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_14.pg

Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the curves x + y = 3 and $x = 4 - (y - 1)^2$ about the *x*-axis.

Volume = _____

Answer(s) submitted:

٠

(incorrect)

21. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_19.pg

Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the curves $y = \sqrt{x-1}$, y = 0, and x = 5 about the line y = 3.

Volume = ____

Answer(s) submitted:

•

(incorrect)

22. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_20.pg

Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the curves $y = x^2$ and $x = y^2$ about the line y = -1.

Volume = _____ Answer(s) submitted:

(incorrect)

23. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_22.pg

Which of the following integrals represents the volume of the solid obtained by rotating the region bounded by the curves y = x and $y = 4x - x^2$ about the line x = 10?

• A.
$$\int_{0}^{3} 2\pi (10-x) \left[(4x-x^{2}) - x \right] dx$$

• B. $\int_{0}^{4} 2\pi (10-x) \left[x - (4x-x^{2}) \right] dx$
• C. $\int_{0}^{3} 2\pi (10-x) \left[x - (4x-x^{2}) \right] dx$
• D. $\int_{0}^{4} 2\pi (x-10) \left[(4x-x^{2}) - x \right] dx$
• E. $\int_{0}^{3} 2\pi (x-10) \left[(4x-x^{2}) - x \right] dx$
• F. $\int_{0}^{4} 2\pi (10-x) \left[(4x-x^{2}) - x \right] dx$

Answer(s) submitted:

```
٠
```

(incorrect)

24. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_23.pg

Which of the following integrals represents the volume of the solid obtained by rotating the region bounded by the curves $y = x^4$ and $y = \sin(\frac{\pi x}{2})$ about the line x = -2?

• A.
$$\int_{0}^{1} 2\pi(2-x) \left(\sin\left(\frac{\pi x}{2}\right) - x^{4}\right) dx$$

• B. $\int_{0}^{1} 2\pi(x+2) \left(x^{4} - \sin\left(\frac{\pi x}{2}\right)\right) dx$
• C. $\int_{0}^{1} 2\pi(x-2) \left(x^{4} - \sin\left(\frac{\pi x}{2}\right)\right) dx$
• D. $\int_{0}^{1} 2\pi(x-2) \left(\sin\left(\frac{\pi x}{2}\right) - x^{4}\right) dx$
• E. $\int_{0}^{1} 2\pi(x+2) \left(\sin\left(\frac{\pi x}{2}\right) - x^{4}\right) dx$
• F. $\int_{0}^{1} 2\pi(2-x) \left(x^{4} - \sin\left(\frac{\pi x}{2}\right)\right) dx$

Answer(s) submitted:

25. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_24.pg

Which of the following integrals represents the volume of the solid obtained by rotating the region bounded by the curves $y = 1/(1+x^2)$, y = 0, x = 0, and x = 7 about the line x = 7?

• A.
$$\int_{0}^{7} 2\pi(7-x) \left(\frac{7}{1+x^{2}}\right) dx$$

• B. $\int_{0}^{7} 2\pi(7+x) \left(\frac{7}{1+x^{2}}\right) dx$
• C. $\int_{0}^{7} 2\pi(7-x) \left(\frac{1}{1+x^{2}}\right) dx$
• D. $\int_{0}^{7} 2\pi(7+x) \left(\frac{1}{1+x^{2}}\right) dx$
• E. $\int_{0}^{7} 2\pi(x-7) \left(\frac{7}{1+x^{2}}\right) dx$
• F. $\int_{0}^{7} 2\pi(x-7) \left(\frac{1}{1+x^{2}}\right) dx$
Answer(s) submitted:

•

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

(incorrect)

26. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_38.pg

The region bounded by $y = x^2 - 3x + 2$ and y = 0 is rotated about the y-axis. Find the volume of the resulting solid by any method.

Volume = $_{-}$

Answer(s) submitted:

• (incorrect)

```
27. (1 pt) Library/UCSB/Stewart5_6_3/Stewart5_6_3_40.pg
```

The region bounded by $x = 1 - y^4$ and x = 0 is rotated about the line x = 2. Find the volume of the resulting solid by any method.

Volume = _____

Answer(s) submitted:

(incorrect)

•

Reinhard Schultz Assignment 8.4_AVERAGE_VALUE_OF_A_FUNCTION due 12/31/2012 at 08:00am PST

1. (1 pt) Library/Utah/AP_Calculus_I/set12_Further_Techniques_and_Ap	
/q3.pg	plications_or_protegration=0CSD/Stewarts=0=3/Stewarts=0=3=3-pg
The average value of $\sin x$ in the interval $[0,\pi]$ is	Find the average value of the function $g(x) = 3\cos(x)$ on the interval $[0, \pi/2]$.
Answer(s) submitted:	$g_{ave} = $
•	Answer(s) submitted:
(incorrect)	(incorrect)
2. (1 pt) Library/ma122DB/set13/s6_5_1.pg Find the average value of $f(x) = x^3$ on the interval [3,5].	7. (1 pt) Library/UCSB/Stewart5_6_5/Stewart5_6_5_4.pg
Answer:	Find the average value of the function $g(x) = 2x^2\sqrt{1+x^3}$ or the interval [0, 2].
•	$g_{ave} = \underline{\qquad}$ Answer(s) submitted:
(incorrect)	•
3. (1 pt) Library/UCSB/Stewart5_6_5/Stewart5_6_5_1.pg	(incorrect)
Find the average value of the function $f(x) = 6x^2$ on the interval [-1, 1].	8. (1 pt) Library/UCSB/Stewart5_6_5/Stewart5_6_5_6.pg Find the average value of the function $f(t) = -9 \sec(t) \tan(t)$
$f_{ave} = \underline{\qquad}$ Answer(s) submitted:	on the interval $[0, \pi/4]$. $f_{ave} = __\$ Answer(s) submitted:
(incorrect)	•
	(incorrect)
4. (1 pt) Library/ma122DB/set13/s6_5_3.pg Find the average value of $f(x) = \cos(14x)$ on the interval $[0, \pi/2]$.	9. (1 pt) Library/UCSB/Stewart5_6_5/Stewart5_6_5_16 /Stewart5_6_5_16.pg
Answer: Answer(s) submitted:	The velocity of an accelerating car is shown in the graph be- low.
• (incorrect)	(cm) m 60 40 20 0 4 8 12 7 (seconds)
5. (1 pt) Library/UVA-Stew5e/setUVA-Stew5e-C06S05-AveValue/6-5-	(a) Estimate the average velocity of the car during the first 12
06.pg Find the average value of $f(r) = 8 \sin r + 3 \cos r$	seconds.
Find the average value of : $f(x) = 8 \sin x + 3 \cos x$ on the interval $[0, 19\pi/6]$	Average velocity \approx km/h (b) At approximately what time was the instantaneous ve
Average value -	locity equal to the average velocity? Give your estimate to the
Average value =	nearest half-second. Time \approx seconds
Answer(s) submitted:	Answer(s) submitted:
•	
(incorrect)	(incorrect)

10. (1 pt) Library/UVA-Stew5e/setUVA-Stew5e-C06S05-AveValue/6-5-02.pg

A car drives down a road in such a way that its velocity (in m/s) at time t (seconds) is

$$v(t) = 2t^{1/2} + 2$$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

Find the car's average velocity (in m/s) between t = 5 and t = 10.

Answer(s) submitted:

(incorrect)

.

1. (1 pt) Library/UCSB/Stewart5_6_4/Stewart5_6_4_1.pg 5. (1 pt) Library/UCSB/Stewart5_6_4/Stewart5_6_4_10.pg Find the work done (in Joules) in pushing a car a distance of 8 meters while exerting a constant force of 900 N. Work done = _____ Joules it 9 in. beyond its natural length? Answer(s) submitted: Work done = _ ft-lb Answer(s) submitted: • • (incorrect) (incorrect) 2. (1 pt) Library/UCSB/Stewart5_6_4/Stewart5_6_4_2.pg 6. (1 pt) Library/UCSB/Stewart5_6_4/Stewart5_6_4_14.pg How much work is done (in Joules) by a weightlifter in raising a 60-kg barbell from the floor to a height of 2 m? Work done = Joules Answer(s) submitted: chain to a height of 6 m? • Work done = _____ J Answer(s) submitted: (incorrect) • 3. (1 pt) Library/UCSB/Stewart5_6_4/Stewart5_6_4_4.pg (incorrect) When a particle is located at a distance x meters from the 7. (1 pt) Library/UCSB/Stewart5_6_4/Stewart5_6_4_15.pg origin, a force of $\cos(\pi x/3)$ newtons acts on it. (a) How much work (in Joules) is done in moving the particle mineshaft 500 ft deep. Find the work done (in ft-lb). from x = 1 to x = 1.5? Work done = _____ ft-lb Work done = _____ I Answer(s) submitted: (b) How much work (in Joules) is done in moving the particle (incorrect) from x = 1.5 to x = 2?Work done = _____ _ J 8. (1 pt) Library/UCSB/Stewart5_6_4/Stewart5_6_4_16.pg (c) How much work (in Joules) is done in moving the particle from x = 1 to x = 2? Work done = _____ J Answer(s) submitted: well. Work done = ____ ft-lh (incorrect) Answer(s) submitted: 4. (1 pt) Library/UCSB/Stewart5_6_4/Stewart5_6_4_8.pg • (incorrect) A spring has a natural length of 20 cm. If a 25-N force is re-9. quired to keep it stretched to a length of 30 cm, how much work (1 pt)

1

(in J) is required to stretch it from 20 cm to 25 cm?

Work done = _____ J

Answer(s) submitted:

•

(incorrect)

If the work required to stretch a spring 1 ft beyond its natural length is 12 ft-lb, how much work (in ft-lb) is needed to stretch

A chain lying on the ground is 10 m long and its mass is 80 kg. How much work (in J) is required to raise one end of the

A cable that weighs 2 lb/ft is used to lift 800 lb of coal up a

A bucket that weighs 4 lb and a rope of negligible weight are used to draw water from a well that is 80 ft deep. The bucket starts with 40 lb of water and is pulled up at a rate of 2 ft/s, but water leaks out of a hole in the bucket at a rate of 0.2 lb/s. Find the work done (in ft-lb) in pulling the bucket to the top of the

Library/UCSB/Stewart5_6_4/Stewart5_6_4_24-/Stewart5_6_4_24.pg

The tank shown below is full of water. Using the fact that the weight of water is $62.5 lb/ft^3$, find the work (in ft-lbs) required to pump the water out of the outlet. Make sure your answer is correct to within ten ft-lbs.

Work = ______ ft-lbs Answer(s) submitted:

• (incorrect)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America