Mathematics 009B-020, Spring 2012, Examination 1

Answer Key

1. [25 points] Find the following antiderivative:

$$
\int \sqrt[3]{2 x-1} d x
$$

SOLUTION

Let $u=2 x-1$ so that $d u=2 d x$ and $d u=\frac{1}{2} d x$. Then

$$
\begin{gathered}
\int \sqrt[3]{2 x-1} d x=\int \sqrt[3]{u} \frac{1}{2} d u= \\
\frac{1}{2} \int \sqrt[3]{u} d u=\frac{1}{2} \int u^{1 / 3} d u=\frac{1}{2} \frac{4}{3} u^{4 / 3}+C= \\
\frac{2}{3}(2 x-1)^{4 / 3}+C
\end{gathered}
$$

2. [25 points] Find the volume of the solid of revolution generated by rotating the half-ellipse

$$
f(x)=\sqrt{1-\frac{x^{2}}{4}} \quad, \quad-2 \leq x \leq 2
$$

about the x-axis.

SOLUTION

The volume is equal to

$$
\begin{gathered}
\pi \int_{-2}^{2} f(x)^{2} d x=\pi \int_{-2}^{2}\left(1-\frac{x^{2}}{4}\right) d x= \\
\pi\left(x-\left.\frac{1}{12} x^{3}\right|_{-2} ^{2}\right)=\pi\left(2-\frac{8}{12}\right)-\pi\left(-2-\frac{-8}{12}\right)= \\
\pi \frac{4}{3}-\pi \frac{-4}{3}=\frac{8 \pi}{3}
\end{gathered}
$$

3. [25 points] Find the average value of the function $f(x)=\left|x^{5}-1\right|$ over the interval $0 \leq x \leq 2$.

SOLUTION

The average value is

$$
\frac{1}{2} \int_{0}^{2}\left|x^{5}-1\right| d x
$$

and to evaluate the latter we need to break the integral up into parts over which $x^{5}-1$ is positive and negative. Now $x^{5}-1 \geq 0$ on the interval $[1,2]$ and $x^{5}-1 \leq 0$ on the interval $[0,1]$, so the integral we need to compute is equal to

$$
\begin{gathered}
\int_{0}^{1}\left(1-x^{5}\right) d x+\int_{1}^{2}\left(x^{5}-1\right) d x=x-\left.\frac{1}{6} x^{6}\right|_{0} ^{1}+\frac{1}{6} x^{6}-\left.x\right|_{1} ^{2}= \\
\left(1-\frac{1}{6}\right)+\left(\frac{64}{6}-2\right)-\left(\frac{1}{6}-1\right)= \\
\frac{5}{6}+\frac{52}{6}+\frac{5}{6}=\frac{62}{6}=\frac{31}{3}
\end{gathered}
$$

To get the average value, we divide this integral by the length of the interval, which is 2 , and find that the average value is

$$
\frac{31}{6} .
$$

4. [25 points] Find the work needed to roll up a 10 foot long carpet which weighs 30 pounds and has uniform density. [Hint: When x feet of the carpet have been rolled up, the force needed to keep rolling is just the weight of the portion of the carpet that has already been rolled up.]

SOLUTION

When x feet of the carpet have been rolled up, the weight of the rolled up portion of the carpet is (rolled up fraction) \times (total weight), which equals

$$
\frac{x}{10} \times 30=3 x
$$

and hence by the observations in the hint the total force needed to keep rolling the carpet is $3 x$. Thus the work needed to roll up the carpet is equal to

$$
\int_{0}^{10} 3 x d x=\left.\frac{3}{2} x^{2}\right|_{0} ^{10}=150 \text { foot }- \text { pounds }
$$

